硬體的演算法
1. 如何用fpga實現演算法的硬體加速
首先,利用傳統的軟體技巧來優化演算法,然後將其轉向定製指令以加速演算法。我們將討論不同實現方法的性能比較和折衷。
CRC演算法可用來校驗數據在傳輸過程中是否被破壞。這些演算法很流行,因為它們具有很高的檢錯率,而且不會對數據吞吐量造成太大影響,因為CRC校驗位被添加進數據信息中。但是,CRC演算法比一些簡單的校驗和演算法有更大的計算量要求。盡管如此,檢錯率的提高使得這種演算法值得去實施。
一般說來,發送端對要被發送的消息執行CRC演算法,並將CRC結果添加進該消息中。消息的接收端對包括CRC結果在內的消息執行同樣的CRC操作。如果接收端的結果與發送端的不同,這說明數據被破壞了。
CRC演算法是一種密集的數學運算,涉及到二元模數除法(molo-2 division),即數據消息被16或32位多項式(取決於所用CRC標准)除所得的余數。這種操作一般通過異或和移位的迭代過程來實現,當採用16位多項式時,這相當於每數據位元組要執行數百條指令。如果發送數百個位元組,計算量就會高達數萬條指令。因此,任何優化都會大幅提高吞吐量。
代碼列表1中的CRC函數有兩個自變數(消息指針和消息中的位元組數),它可返回所計算的CRC值(余數)。盡管該函數的自變數是一些位元組,但計算要逐位來執行。該演算法並不高效,因為所有操作(與、移位、異或和循環控制)都必須逐位地執行。
列表1:逐位執行的CRC演算法C代碼。
/*
* The width of the CRC calculation and result.
* Modify the typedef for a 16 or 32-bit CRC standard.
*/
typedef unsigned char crc;
#define WIDTH (8 * sizeof(crc))
#define TOPBIT (1 << (WIDTH - 1))
crc crcSlow(unsigned char const message[], int nBytes)
{
crc remainder = 0;
/*
* Perform molo-2 division, a byte at a time.
*/
for (int byte = 0; byte < nBytes; ++byte)
{
/*
* Bring the next byte into the remainder.
*/
remainder ^= (message[byte] << (WIDTH - 8));
/*
* Perform molo-2 division, a bit at a time.
*/
for (unsigned char bit = 8; bit > 0; "bit)
{
/*
* Try to divide the current data bit.
*/
if (remainder & TOPBIT)
{
remainder = (remainder << 1) ^ POLYNOMIAL;
}
else
{
remainder = (remainder << 1);
}
}
}
/*
* The final remainder is the CRC result.
*/
return (remainder);
}
1.傳統的軟體優化
圖3:帶CRC外圍電路和DMA的系統模塊示意圖。
讓我們看一下如何利用傳統的軟體技巧來優化CRC演算法。因為CRC操作中的一個操作數,即多項式(除數)是常數,位元組寬CRC操作的所有可能結果都可以預先計算並存儲在一個查找表中。這樣,通過一個讀查找表動作就可讓操作按逐個位元組執行下去。
採用這一演算法時,需要將這些預先計算好的值存儲在存儲器中。選擇ROM或RAM都可以,只要在啟動CRC計算之前將存儲器初始化就行。查找表有256個位元組,表中每個位元組位置包含一個CRC結果,共有256種可能的8位消息(與多項式大小無關)。
列表2示出了採用查找表方法的C代碼,包括生成查找表crcInit()中數值的代碼。
列表2:採用查找表方法的CRC演算法C代碼。
crc crcTable[256];
void crcInit(void)
{
crc remainder;
/*
* Compute the remainder of each possible dividend.
*/
for (int dividend = 0; dividend < 256; ++dividend)
{
/*
* Start with the dividend followed by zeros.
*/
remainder = dividend << (WIDTH - 8);
/*
* Perform molo-2 division, a bit at a time.
*/
for (unsigned char bit = 8; bit > 0; "bit)
{
/*
* Try to divide the current data bit.
*/
if (remainder & TOPBIT)
{
remainder = (remainder << 1) ^ POLYNOMIAL;
}
else
{
remainder = (remainder << 1);
}
}
/*
* Store the result into the table.
*/
crcTable[dividend] = remainder;
}
} /* crcInit() */
crc crcFast(unsigned char const message[], int nBytes)
{
unsigned char data;
crc remainder = 0;
/*
* Divide the message by the polynomial, a byte at a time.
*/
for (int byte = 0; byte < nBytes; ++byte)
{
data = message[byte] ^ (remainder >> (WIDTH - 8));
remainder = crcTable[data] ^ (remainder << 8);
}
/*
* The final remainder is the CRC.
*/
return (remainder);
} /* crcFast() */
整個計算減少為一個循環,每位元組(不是每位)有兩個異或、兩個移位操作和兩個裝載指令。基本上,這里是用查找表的存儲空間來換取速度。該方法比逐位計算的方法要快9.9倍,這一提高對某些應用已經足夠。如果需要更高的性能,可以嘗試編寫匯編代碼或增加查找表容量以擠出更多性能來。但是,如果需要20、50甚至500倍的性能提高,就要考慮採用硬體加速來實現該演算法了。
表1:各種規模的數據模塊下CRC演算法測試比較結果。
2.採用定製指令方法
CRC演算法由連續的異或和移位操作構成,用很少的邏輯即可在硬體中簡單實現。由於這一硬體模塊僅需幾個周期來計算CRC,採用定製指令來實現CRC計算要比採用外圍電路更好。此外,無須涉及系統中任何其它外圍電路或存儲器。僅需要一個微處理器來支持定製指令即可,一般是指可配置微處理器。
當在硬體中實現時,演算法應該每次執行16或32位計算,這取決於所採用的CRC標准。如果採用CRC-CCITT標准(16位多項式),最好每次執行16位計算。如果使用8位微處理器,效率可能不太高,因為裝載操作數值及返回CRC值需要額外的周期。圖2示出了用硬體實現16位CRC演算法的內核。
信號msg(15..0)每次被移入異或/移位硬體一位。列表3示出了在64KB數據模塊上計算CRC的一些C代碼例子。該實例是針對Nios嵌入式處理器。
列表3:採用定製指令的CRC計算C代碼。
unsigned short crcCompute(unsigned short *data_block, unsigned int nWords)
{
unsigned short* pointer;
unsigned short word;
/*
* initialize crc reg to 0xFFFF
*/
word = nm_crc (0xFFFF, 1); /* nm_crc() is the CRC custom instruction */
/*
* calculate CRC on block of data
* nm_crc() is the CRC custom instruction
*
*/
for (pointer = data_block; pointer < (data_block + nWords); pointer ++)
word = nm_crc(*pointer, 0) return (word);
}
int main(void)
{
#define data_block_begin (na_onchip_memory)
#define data_block_end (na_onchip_memory + 0xffff)
unsigned short crc_result;
unsigned int data_block_length = (unsigned short *)data_block_end - (unsigned short
*)data_block_begin + 1;
crc_result = crcCompute((unsigned short *)data_block_begin, data_block_length);
}
採用定製指令時,用於計算CRC值的代碼是一個函數調用,或宏。當針對Nios處理器實現定製指令時,系統構建工具會生成一個宏。在本例中為nm_crc(),可用它來調用定製指令。
在啟動CRC計算之前,定製指令內的CRC寄存器需要先初始化。裝載初始值是CRC標準的一部分,而且每種CRC標准都不一樣。接著,循環將為數據模塊中的每16位數據調用一次CRC定製指令。這種定製指令實現方式要比逐位實現的方法快27倍。
3.CRC外圍電路方法
如果將CRC演算法作為硬體外圍電路來實現,並利用DMA將數據從存儲器轉移到外圍電路,這樣還可以進一步提高速度。這種方法將省去處理器為每次計算而裝載數據所需要的額外周期。DMA可在此外圍電路完成前一次CRC計算的時鍾周期內提供新的數據。圖3示出了利用DMA、CRC外圍電路來實現加速的系統模塊示意圖。
在64KB數據模塊上,利用帶DMA的定製外圍電路可獲得比逐位計算的純軟體演算法快500倍的性能。要知道,隨著數據模塊規模的增加,使用DMA所獲得的性能也隨之提高。這是因為設置DMA僅需很少的開銷,設置之後DMA運行得特別快,因為每個周期它都可以傳遞數據。因此,若只有少數位元組的數據,用DMA並不劃算。
這里所討論的所有採用CRC-CCITT標准(16位多項式)的演算法都是在Altera Stratix FPGA的Nios處理器上實現的。表1示出了各種數據長度的測試比較結果,以及大致的硬體使用情況(FPGA中的存儲器或邏輯單元)。
可以看出,演算法所用的硬體越多,演算法速度越快。這是用硬體資源來換取速度。
2. 國密演算法中,哪一個是需要硬體支持的對稱加密演算法
國密SM2是非對稱密碼演算法。非對稱加密演算法需要兩個密鑰:公開密鑰和私有密鑰。公開密鑰與私有密鑰是一對,如果用公開密鑰對數據進行加密,只有用對應的私有密鑰才能解密;如果用私有密鑰對數據進行加密,那麼只有用對應的公開密鑰才能解密。因為加密和解密使用的是兩個不同的密鑰,所以這種演算法叫作非對稱加密演算法特點:演算法強度復雜、安全性依賴於演算法與密鑰但是由於其演算法復雜,而使得加密解密速度沒有對稱加密解密的速度快
3. 如何深入理解無人機硬體與演算法
常見飛行器機型系列告一段落後,MR.城堡專欄的「城堡里學無人機系列」將逐漸深入到演算法、硬體、無人機設計等內容。首先面對的問題就是如何選擇合適的「過渡切入點」,即如何找到一個切入點能夠讓喜歡無人機的朋友們容易過渡到無人機的專業內容,這個環節非常重要。因為大家雖然都很喜歡無人機,但現實情況是每個人的教育背景,對無人機的需求,看待問題和事物的習慣與角度等都有很大區別。
同樣的,無論採用隨身tracker還是內置感測系統的地面站式遙控器抑或直接採用手機,都可以傳輸回被跟蹤目標的「外環狀態信息」。
兩者比較,形成狀態誤差,通過IMU等感測器反饋無人機內環姿態信息,與目標姿態形成狀態誤差,並以此計算得出控制量。
通過狀態視角,可以很清晰的理解不同產品的硬體意義,並以此設計自己的無人機控制系統。
圍繞著無人機狀態反饋信息的處理和使用,演算法可以走向兩個不同的分支:數據融合(數據濾波)和自動控制。根據不同的狀態特點,圍繞數學模型建立系統框架,根據演算法以及反饋狀態信息的要求選擇相關的硬體搭建無人機系統等內容是無人機控制系統設計的清晰脈絡。MR.城堡會在後續系列文章中逐漸搭建這個系統架構中的各個部分,幫助不同行業喜歡無人機的朋友走入奇妙的無人機世界。