當前位置:首頁 » 操作系統 » 社區劃分演算法

社區劃分演算法

發布時間: 2024-03-22 14:04:33

㈠ 基於社區發現演算法和圖分析Neo4j解讀《權力的游戲》下篇

其中的分析和可視化是用Gephi做的,Gephi是非常流行的圖分析工具。但作者覺得使用Neo4j來實現更有趣。

節點中心度
節點中心度給出網路中節點的重要性的相對度量。有許多不同的方式來度量中心度,每種方式都代表不同類型的「重要性」。

度中心性(Degree Centrality)
度中心性是最簡單度量,即為某個節點在網路中的聯結數。在《權力的游戲》的圖中,某個角色的度中心性是指該角色接觸的其他角色數。作者使用Cypher計算度中心性:
MATCH (c:Character)-[:INTERACTS]- RETURN c.name AS character, count(*) AS degree ORDER BY degree DESC

character
degree

Tyrion
36

Jon
26

Sansa
26

Robb
25

Jaime
24

Tywin
22

Cersei
20

Arya
19

Joffrey
18

Robert
18

從上面可以發現,在《權力的游戲》網路中提利昂·蘭尼斯特(Tyrion)和最多的角色有接觸。鑒於他的心計,我們覺得這是有道理的。

加權度中心性(Weighted Degree Centrality)
作者存儲一對角色接觸的次數作為 INTERACTS 關系的 weight 屬性。對該角色的 INTERACTS 關系的所有 weight 相加得到加權度中心性。作者使用Cypher計算所有角色的這個度量:
MATCH (c:Character)-[r:INTERACTS]- RETURN c.name AS character, sum(r.weight) AS weightedDegree ORDER BY weightedDegree DESC

character
weightedDegree

Tyrion
551

Jon
442

Sansa
383

Jaime
372

Bran
344

Robb
342

Samwell
282

Arya
269

Joffrey
255

Daenerys
232

介數中心性(Betweenness Centrality)
介數中心性:在網路中,一個節點的介數中心性是指其它兩個節點的所有最短路徑都經過這個節點,則這些所有最短路徑數即為此節點的介數中心性。介數中心性是一種重要的度量,因為它可以鑒別出網路中的「信息中間人」或者網路聚類後的聯結點。

圖6中紅色節點是具有高的介數中心性,網路聚類的聯結點。
為了計算介數中心性,作者使用Neo4j 3.x或者apoc庫。安裝apoc後能用Cypher調用其170+的程序:
MATCH (c:Character) WITH collect(c) AS charactersCALL apoc.algo.betweenness(['INTERACTS'], characters, 'BOTH') YIELD node, scoreSET node.betweenness = scoreRETURN node.name AS name, score ORDER BY score DESC

name
score

Jon
1279.7533534055322

Robert
1165.6025171231624

Tyrion
1101.3849724234349

Daenerys
874.8372110508583

Robb
706.5572832464792

Sansa
705.1985623519137

Stannis
571.5247305125714

Jaime
556.1852522889822

Arya
443.01358430043337

Tywin
364.7212195528086

緊度中心性(Closeness centrality)
緊度中心性是指到網路中所有其他角色的平均距離的倒數。在圖中,具有高緊度中心性的節點在聚類社區之間被高度聯結,但在社區之外不一定是高度聯結的。

圖7 :網路中具有高緊度中心性的節點被其它節點高度聯結
MATCH (c:Character) WITH collect(c) AS charactersCALL apoc.algo.closeness(['INTERACTS'], characters, 'BOTH') YIELD node, scoreRETURN node.name AS name, score ORDER BY score DESC

name
score

Tyrion
0.004830917874396135

Sansa
0.004807692307692308

Robert
0.0047169811320754715

Robb
0.004608294930875576

Arya
0.0045871559633027525

Jaime
0.004524886877828055

Stannis
0.004524886877828055

Jon
0.004524886877828055

Tywin
0.004424778761061947

Eddard
0.004347826086956522

使用python-igraph
Neo4j與其它工具(比如,R和Python數據科學工具)完美結合。我們繼續使用apoc運行 PageRank和社區發現(community detection)演算法。這里接著使用python-igraph計算分析。Python-igraph移植自R的igraph圖形分析庫。 使用 pip install python-igraph 安裝它。

從Neo4j構建一個igraph實例
為了在《權力的游戲》的數據的圖分析中使用igraph,首先需要從Neo4j拉取數據,用Python建立igraph實例。作者使用 Neo4j 的Python驅動庫py2neo。我們能直接傳入Py2neo查詢結果對象到igraph的 TupleList 構造器,創建igraph實例:
from py2neo import Graphfrom igraph import Graph as IGraph graph = Graph query = ''' MATCH (c1:Character)-[r:INTERACTS]->(c2:Character) RETURN c1.name, c2.name, r.weight AS weight '''ig = IGraph.TupleList(graph.run(query), weights=True)

現在有了igraph對象,可以運行igraph實現的各種圖演算法來。

PageRank
作者使用igraph運行的第一個演算法是PageRank。PageRank演算法源自Google的網頁排名。它是一種特徵向量中心性(eigenvector centrality)演算法。
在igraph實例中運行PageRank演算法,然後把結果寫回Neo4j,在角色節點創建一個pagerank屬性存儲igraph計算的值:
pg = ig.pagerank pgvs = for p in zip(ig.vs, pg): print(p) pgvs.append({"name": p[0]["name"], "pg": p[1]}) pgvs write_clusters_query = ''' UNWIND {nodes} AS n MATCH (c:Character) WHERE c.name = n.name SET c.pagerank = n.pg '''graph.run(write_clusters_query, nodes=pgvs)

現在可以在Neo4j的圖中查詢最高PageRank值的節點:
MATCH (n:Character) RETURN n.name AS name, n.pagerank AS pagerank ORDER BY pagerank DESC LIMIT 10

name
pagerank

Tyrion
0.042884981999963316

Jon
0.03582869669163558

Robb
0.03017114665594764

Sansa
0.030009716660108578

Daenerys
0.02881425425830273

Jaime
0.028727587587471206

Tywin
0.02570016262642541

Robert
0.022292016521362864

Cersei
0.022287327589773507

Arya
0.022050209663844467

社區發現(Community detection)

圖8
社區發現演算法用來找出圖中的社區聚類。作者使用igraph實現的隨機遊走演算法( walktrap)來找到在社區中頻繁有接觸的角色社區,在社區之外角色不怎麼接觸。
在igraph中運行隨機遊走的社區發現演算法,然後把社區發現的結果導入Neo4j,其中每個角色所屬的社區用一個整數來表示:
clusters = IGraph.community_walktrap(ig, weights="weight").as_clustering nodes = [{"name": node["name"]} for node in ig.vs]for node in nodes: idx = ig.vs.find(name=node["name"]).index node["community"] = clusters.membership[idx] write_clusters_query = ''' UNWIND {nodes} AS n MATCH (c:Character) WHERE c.name = n.name SET c.community = toInt(n.community) '''graph.run(write_clusters_query, nodes=nodes)

我們能在Neo4j中查詢有多少個社區以及每個社區的成員數:
MATCH (c:Character) WITH c.community AS cluster, collect(c.name) AS members RETURN cluster, members ORDER BY cluster ASC

cluster
members

0
[Aemon, Alliser, Craster, Eddison, Gilly, Janos, Jon, Mance, Rattleshirt, Samwell, Val, Ygritte, Grenn, Karl, Bowen, Dalla, Orell, Qhorin, Styr]

1
[Aerys, Amory, Balon, Brienne, Bronn, Cersei, Gregor, Jaime, Joffrey, Jon Arryn, Kevan, Loras, Lysa, Meryn, Myrcella, Oberyn, Podrick, Renly, Robert, Robert Arryn, Sansa, Shae, Tommen, Tyrion, Tywin, Varys, Walton, Petyr, Elia, Ilyn, Pycelle, Qyburn, Margaery, Olenna, Marillion, Ellaria, Mace, Chataya, Doran]

2
[Arya, Beric, Eddard, Gendry, Sandor, Anguy, Thoros]

3
[Brynden, Catelyn, Edmure, Hoster, Lothar, Rickard, Robb, Roose, Walder, Jeyne, Roslin, Ramsay]

4
[Bran, Hodor, Jojen, Luwin, Meera, Rickon, Nan, Theon]

5
[Belwas, Daario, Daenerys, Irri, Jorah, Missandei, Rhaegar, Viserys, Barristan, Illyrio, Drogo, Aegon, Kraznys, Rakharo, Worm]

6
[Davos, Melisandre, Shireen, Stannis, Cressen, Salladhor]

7
[Lancel]

角色「大合影」
《權力的游戲》的權力圖。節點的大小正比於介數中心性,顏色表示社區(由隨機遊走演算法獲得),邊的厚度正比於兩節點接觸的次數。現在已經計算好這些圖的分析數據,讓我們對其進行可視化,讓數據看起來更有意義。
Neo4j自帶瀏覽器可以對Cypher查詢的結果進行很好的可視化,但如果我們想把可視化好的圖嵌入到其它應用中,可以使用Javascript可視化庫Vis.js。從Neo4j拉取數據,用Vis.js的neovis.js構建可視化圖。Neovis.js提供簡單的API配置,例如:
var config = { container_id: "viz", server_url: "localhost", labels: { "Character": "name" }, label_size: { "Character": "betweenness" }, relationships: { "INTERACTS": }, relationship_thickness: { "INTERACTS": "weight" }, cluster_labels: { "Character": "community" } }; var viz = new NeoVis(config); viz.render;

其中:
節點帶有標簽Character,屬性name;

節點的大小正比於betweenness屬性;

可視化中包括INTERACTS關系;

關系的厚度正比於weight屬性;

節點的顏色是根據網路中社區community屬性決定;

從本地伺服器localhost拉取Neo4j的數據;

在一個id為viz的DOM元素中展示可視化。

㈡ 社區檢測演算法(Community Detection)

社區檢測(community detection)又被稱為是社區發現,它是用來揭示網路聚集行為的一種技術。社區檢測實際就是一種網路聚類的方法,這里的「社區」在文獻中並沒有一種嚴格的定義,我們可以將其理解為一類具有相同特性的節點的集合。

近年來,社區檢測得到了快速的發展,這主要是由於復雜網路領域中的大牛Newman提出了一種模塊度(molarity)的概念,從而使得網路社區劃分的優劣可以有一個明確的評價指標來衡量。一個網路不通情況下的社區劃分對應不同的模塊度,模塊度越大,對應的社區劃分也就越合理;如果模塊度越小,則對應的網路社區劃分也就越模糊。

下圖描述了網路中的社區結構:

Newman提出的模塊度計算公式如下:

所以模塊度其實就是指一個網路在某種社區劃分下與隨機網路的差異,因為隨機網路並不具有社區結構,對應的差異越大說明該社區劃分越好。

Newman提出的模塊度具有兩方面的意義:

(1)模塊度的提出成為了社區檢測評價一種常用指標,它是度量網路社區劃分優劣的量化指標;

(2)模塊度的提出極大地促進了各種優化演算法應用於社區檢測領域的發展。在模塊度的基礎之上,許多優化演算法以模塊度為優化的目標方程進行優化,從而使得目標函數達到最大時得到不錯的社區劃分結果。

當然,模塊度的概念不是絕對合理的,它也有弊端,比如解析度限制問題等,後期國內學者在模塊度的基礎上提出了模塊度密度的概念,可以很好的解決模塊度的弊端,這里就不詳細介紹了。

常用的社區檢測方法主要有如下幾種:

(1)基於圖分割的方法,如Kernighan-Lin演算法,譜平分法等;

(2)基於層次聚類的方法,如GN演算法、Newman快速演算法等;

(3)基於模塊度優化的方法,如貪婪演算法、模擬退火演算法、Memetic演算法、PSO演算法、進化多目標優化演算法等

熱點內容
聯想怎麼刷機解鎖密碼 發布:2024-11-28 04:31:21 瀏覽:244
方舟編譯器廠家 發布:2024-11-28 04:13:15 瀏覽:979
android源碼編輯 發布:2024-11-28 04:12:38 瀏覽:596
兩路伺服器是什麼意思 發布:2024-11-28 03:39:39 瀏覽:937
sql精簡版64 發布:2024-11-28 03:36:28 瀏覽:73
金立怎麼加密圖片 發布:2024-11-28 03:31:43 瀏覽:664
2017玩dnf電腦什麼配置 發布:2024-11-28 03:30:56 瀏覽:520
ftp掛載存儲ip配置 發布:2024-11-28 03:28:51 瀏覽:963
山耐斯空壓機密碼多少 發布:2024-11-28 03:26:28 瀏覽:405
安卓拍照搖一搖是什麼軟體 發布:2024-11-28 03:26:27 瀏覽:257