人工智慧常用演算法
❶ 人工智慧演算法簡介
人工智慧的三大基石—演算法、數據和計算能力,演算法作為其中之一,是非常重要的,那麼人工智慧都會涉及哪些演算法呢?不同演算法適用於哪些場景呢?
一、按照模型訓練方式不同可以分為監督學習(Supervised Learning),無監督學習(Unsupervised Learning)、半監督學習(Semi-supervised Learning)和強化學習(Reinforcement Learning)四大類。
常見的監督學習演算法包含以下幾類:
(1)人工神經網路(Artificial Neural Network)類:反向傳播(Backpropagation)、波爾茲曼機(Boltzmann Machine)、卷積神經網路(Convolutional Neural Network)、Hopfield網路(hopfield Network)、多層感知器(Multilyer Perceptron)、徑向基函數網路(Radial Basis Function Network,RBFN)、受限波爾茲曼機(Restricted Boltzmann Machine)、回歸神經網路(Recurrent Neural Network,RNN)、自組織映射(Self-organizing Map,SOM)、尖峰神經網路(Spiking Neural Network)等。
(2)貝葉斯類(Bayesin):樸素貝葉斯(Naive Bayes)、高斯貝葉斯(Gaussian Naive Bayes)、多項樸素貝葉斯(Multinomial Naive Bayes)、平均-依賴性評估(Averaged One-Dependence Estimators,AODE)
貝葉斯信念網路(Bayesian Belief Network,BBN)、貝葉斯網路(Bayesian Network,BN)等。
(3)決策樹(Decision Tree)類:分類和回歸樹(Classification and Regression Tree,CART)、迭代Dichotomiser3(Iterative Dichotomiser 3, ID3),C4.5演算法(C4.5 Algorithm)、C5.0演算法(C5.0 Algorithm)、卡方自動交互檢測(Chi-squared Automatic Interaction Detection,CHAID)、決策殘端(Decision Stump)、ID3演算法(ID3 Algorithm)、隨機森林(Random Forest)、SLIQ(Supervised Learning in Quest)等。
(4)線性分類器(Linear Classifier)類:Fisher的線性判別(Fisher』s Linear Discriminant)
線性回歸(Linear Regression)、邏輯回歸(Logistic Regression)、多項邏輯回歸(Multionmial Logistic Regression)、樸素貝葉斯分類器(Naive Bayes Classifier)、感知(Perception)、支持向量機(Support Vector Machine)等。
常見的無監督學習類演算法包括:
(1) 人工神經網路(Artificial Neural Network)類:生成對抗網路(Generative Adversarial Networks,GAN),前饋神經網路(Feedforward Neural Network)、邏輯學習機(Logic Learning Machine)、自組織映射(Self-organizing Map)等。
(2) 關聯規則學習(Association Rule Learning)類:先驗演算法(Apriori Algorithm)、Eclat演算法(Eclat Algorithm)、FP-Growth演算法等。
(3)分層聚類演算法(Hierarchical Clustering):單連鎖聚類(Single-linkage Clustering),概念聚類(Conceptual Clustering)等。
(4)聚類分析(Cluster analysis):BIRCH演算法、DBSCAN演算法,期望最大化(Expectation-maximization,EM)、模糊聚類(Fuzzy Clustering)、K-means演算法、K均值聚類(K-means Clustering)、K-medians聚類、均值漂移演算法(Mean-shift)、OPTICS演算法等。
(5)異常檢測(Anomaly detection)類:K最鄰近(K-nearest Neighbor,KNN)演算法,局部異常因子演算法(Local Outlier Factor,LOF)等。
常見的半監督學習類演算法包含:生成模型(Generative Models)、低密度分離(Low-density Separation)、基於圖形的方法(Graph-based Methods)、聯合訓練(Co-training)等。
常見的強化學習類演算法包含:Q學習(Q-learning)、狀態-行動-獎勵-狀態-行動(State-Action-Reward-State-Action,SARSA)、DQN(Deep Q Network)、策略梯度演算法(Policy Gradients)、基於模型強化學習(Model Based RL)、時序差分學習(Temporal Different Learning)等。
常見的深度學習類演算法包含:深度信念網路(Deep Belief Machines)、深度卷積神經網路(Deep Convolutional Neural Networks)、深度遞歸神經網路(Deep Recurrent Neural Network)、分層時間記憶(Hierarchical Temporal Memory,HTM)、深度波爾茲曼機(Deep Boltzmann Machine,DBM)、棧式自動編碼器(Stacked Autoencoder)、生成對抗網路(Generative Adversarial Networks)等。
二、按照解決任務的不同來分類,粗略可以分為二分類演算法(Two-class Classification)、多分類演算法(Multi-class Classification)、回歸演算法(Regression)、聚類演算法(Clustering)和異常檢測(Anomaly Detection)五種。
1.二分類(Two-class Classification)
(1)二分類支持向量機(Two-class SVM):適用於數據特徵較多、線性模型的場景。
(2)二分類平均感知器(Two-class Average Perceptron):適用於訓練時間短、線性模型的場景。
(3)二分類邏輯回歸(Two-class Logistic Regression):適用於訓練時間短、線性模型的場景。
(4)二分類貝葉斯點機(Two-class Bayes Point Machine):適用於訓練時間短、線性模型的場景。(5)二分類決策森林(Two-class Decision Forest):適用於訓練時間短、精準的場景。
(6)二分類提升決策樹(Two-class Boosted Decision Tree):適用於訓練時間短、精準度高、內存佔用量大的場景
(7)二分類決策叢林(Two-class Decision Jungle):適用於訓練時間短、精確度高、內存佔用量小的場景。
(8)二分類局部深度支持向量機(Two-class Locally Deep SVM):適用於數據特徵較多的場景。
(9)二分類神經網路(Two-class Neural Network):適用於精準度高、訓練時間較長的場景。
解決多分類問題通常適用三種解決方案:第一種,從數據集和適用方法入手,利用二分類器解決多分類問題;第二種,直接使用具備多分類能力的多分類器;第三種,將二分類器改進成為多分類器今兒解決多分類問題。
常用的演算法:
(1)多分類邏輯回歸(Multiclass Logistic Regression):適用訓練時間短、線性模型的場景。
(2)多分類神經網路(Multiclass Neural Network):適用於精準度高、訓練時間較長的場景。
(3)多分類決策森林(Multiclass Decision Forest):適用於精準度高,訓練時間短的場景。
(4)多分類決策叢林(Multiclass Decision Jungle):適用於精準度高,內存佔用較小的場景。
(5)「一對多」多分類(One-vs-all Multiclass):取決於二分類器效果。
回歸
回歸問題通常被用來預測具體的數值而非分類。除了返回的結果不同,其他方法與分類問題類似。我們將定量輸出,或者連續變數預測稱為回歸;將定性輸出,或者離散變數預測稱為分類。長巾的演算法有:
(1)排序回歸(Ordinal Regression):適用於對數據進行分類排序的場景。
(2)泊松回歸(Poission Regression):適用於預測事件次數的場景。
(3)快速森林分位數回歸(Fast Forest Quantile Regression):適用於預測分布的場景。
(4)線性回歸(Linear Regression):適用於訓練時間短、線性模型的場景。
(5)貝葉斯線性回歸(Bayesian Linear Regression):適用於線性模型,訓練數據量較少的場景。
(6)神經網路回歸(Neural Network Regression):適用於精準度高、訓練時間較長的場景。
(7)決策森林回歸(Decision Forest Regression):適用於精準度高、訓練時間短的場景。
(8)提升決策樹回歸(Boosted Decision Tree Regression):適用於精確度高、訓練時間短、內存佔用較大的場景。
聚類
聚類的目標是發現數據的潛在規律和結構。聚類通常被用做描述和衡量不同數據源間的相似性,並把數據源分類到不同的簇中。
(1)層次聚類(Hierarchical Clustering):適用於訓練時間短、大數據量的場景。
(2)K-means演算法:適用於精準度高、訓練時間短的場景。
(3)模糊聚類FCM演算法(Fuzzy C-means,FCM):適用於精確度高、訓練時間短的場景。
(4)SOM神經網路(Self-organizing Feature Map,SOM):適用於運行時間較長的場景。
異常檢測
異常檢測是指對數據中存在的不正常或非典型的分體進行檢測和標志,有時也稱為偏差檢測。
異常檢測看起來和監督學習問題非常相似,都是分類問題。都是對樣本的標簽進行預測和判斷,但是實際上兩者的區別非常大,因為異常檢測中的正樣本(異常點)非常小。常用的演算法有:
(1)一分類支持向量機(One-class SVM):適用於數據特徵較多的場景。
(2)基於PCA的異常檢測(PCA-based Anomaly Detection):適用於訓練時間短的場景。
常見的遷移學習類演算法包含:歸納式遷移學習(Inctive Transfer Learning) 、直推式遷移學習(Transctive Transfer Learning)、無監督式遷移學習(Unsupervised Transfer Learning)、傳遞式遷移學習(Transitive Transfer Learning)等。
演算法的適用場景:
需要考慮的因素有:
(1)數據量的大小、數據質量和數據本身的特點
(2)機器學習要解決的具體業務場景中問題的本質是什麼?
(3)可以接受的計算時間是什麼?
(4)演算法精度要求有多高?
————————————————
原文鏈接: https://blog.csdn.net/nfzhlk/article/details/82725769
❷ 人工智慧演算法有哪些
人工智慧演算法有:決策樹、隨機森林演算法、邏輯回歸、SVM、樸素貝葉斯、K最近鄰演算法、K均值演算法、Adaboost演算法、神經網路、馬爾可夫。
❸ 機器學習一般常用的演算法有哪些
機器學習是人工智慧的核心技術,是學習人工智慧必不可少的環節。機器學習中有很多演算法,能夠解決很多以前難以企的問題,機器學習中涉及到的演算法有不少,下面小編就給大家普及一下這些演算法。
一、線性回歸
一般來說,線性回歸是統計學和機器學習中最知名和最易理解的演算法之一。這一演算法中我們可以用來預測建模,而預測建模主要關注最小化模型誤差或者盡可能作出最准確的預測,以可解釋性為代價。我們將借用、重用包括統計學在內的很多不同領域的演算法,並將其用於這些目的。當然我們可以使用不同的技術從數據中學習線性回歸模型,例如用於普通最小二乘法和梯度下降優化的線性代數解。就目前而言,線性回歸已經存在了200多年,並得到了廣泛研究。使用這種技術的一些經驗是盡可能去除非常相似(相關)的變數,並去除噪音。這是一種快速、簡單的技術。
二、Logistic 回歸
它是解決二分類問題的首選方法。Logistic 回歸與線性回歸相似,目標都是找到每個輸入變數的權重,即系數值。與線性回歸不同的是,Logistic 回歸對輸出的預測使用被稱為 logistic 函數的非線性函數進行變換。logistic 函數看起來像一個大的S,並且可以將任何值轉換到0到1的區間內。這非常實用,因為我們可以規定logistic函數的輸出值是0和1並預測類別值。像線性回歸一樣,Logistic 回歸在刪除與輸出變數無關的屬性以及非常相似的屬性時效果更好。它是一個快速的學習模型,並且對於二分類問題非常有效。
三、線性判別分析(LDA)
在前面我們介紹的Logistic 回歸是一種分類演算法,傳統上,它僅限於只有兩類的分類問題。而LDA的表示非常簡單直接。它由數據的統計屬性構成,對每個類別進行計算。單個輸入變數的 LDA包括兩個,第一就是每個類別的平均值,第二就是所有類別的方差。而在線性判別分析,進行預測的方法是計算每個類別的判別值並對具備最大值的類別進行預測。該技術假設數據呈高斯分布,因此最好預先從數據中刪除異常值。這是處理分類預測建模問題的一種簡單而強大的方法。
四、決策樹
決策樹是預測建模機器學習的一種重要演算法。決策樹模型的表示是一個二叉樹。這是演算法和數據結構中的二叉樹,沒什麼特別的。每個節點代表一個單獨的輸入變數x和該變數上的一個分割點。而決策樹的葉節點包含一個用於預測的輸出變數y。通過遍歷該樹的分割點,直到到達一個葉節點並輸出該節點的類別值就可以作出預測。當然決策樹的有點就是決策樹學習速度和預測速度都很快。它們還可以解決大量問題,並且不需要對數據做特別准備。
五、樸素貝葉斯
其實樸素貝葉斯是一個簡單但是很強大的預測建模演算法。而這個模型由兩種概率組成,這兩種概率都可以直接從訓練數據中計算出來。第一種就是每個類別的概率,第二種就是給定每個 x 的值,每個類別的條件概率。一旦計算出來,概率模型可用於使用貝葉斯定理對新數據進行預測。當我們的數據是實值時,通常假設一個高斯分布,這樣我們可以簡單的估計這些概率。而樸素貝葉斯之所以是樸素的,是因為它假設每個輸入變數是獨立的。這是一個強大的假設,真實的數據並非如此,但是,該技術在大量復雜問題上非常有用。所以說,樸素貝葉斯是一個十分實用的功能。
六、K近鄰演算法
K近鄰演算法簡稱KNN演算法,KNN 演算法非常簡單且有效。KNN的模型表示是整個訓練數據集。KNN演算法在整個訓練集中搜索K個最相似實例(近鄰)並匯總這K個實例的輸出變數,以預測新數據點。對於回歸問題,這可能是平均輸出變數,對於分類問題,這可能是眾數類別值。而其中的訣竅在於如何確定數據實例間的相似性。如果屬性的度量單位相同,那麼最簡單的技術是使用歐幾里得距離,我們可以根據每個輸入變數之間的差值直接計算出來其數值。當然,KNN需要大量內存或空間來存儲所有數據,但是只有在需要預測時才執行計算。我們還可以隨時更新和管理訓練實例,以保持預測的准確性。
七、Boosting 和 AdaBoost
首先,Boosting 是一種集成技術,它試圖集成一些弱分類器來創建一個強分類器。這通過從訓練數據中構建一個模型,然後創建第二個模型來嘗試糾正第一個模型的錯誤來完成。一直添加模型直到能夠完美預測訓練集,或添加的模型數量已經達到最大數量。而AdaBoost 是第一個為二分類開發的真正成功的 boosting 演算法。這是理解 boosting 的最佳起點。現代 boosting 方法建立在 AdaBoost 之上,最顯著的是隨機梯度提升。當然,AdaBoost 與短決策樹一起使用。在第一個決策樹創建之後,利用每個訓練實例上樹的性能來衡量下一個決策樹應該對每個訓練實例付出多少注意力。難以預測的訓練數據被分配更多權重,而容易預測的數據分配的權重較少。依次創建模型,每一個模型在訓練實例上更新權重,影響序列中下一個決策樹的學習。在所有決策樹建立之後,對新數據進行預測,並且通過每個決策樹在訓練數據上的精確度評估其性能。所以說,由於在糾正演算法錯誤上投入了太多注意力,所以具備已刪除異常值的干凈數據十分重要。
八、學習向量量化演算法(簡稱 LVQ)
學習向量量化也是機器學習其中的一個演算法。可能大家不知道的是,K近鄰演算法的一個缺點是我們需要遍歷整個訓練數據集。學習向量量化演算法(簡稱 LVQ)是一種人工神經網路演算法,它允許你選擇訓練實例的數量,並精確地學習這些實例應該是什麼樣的。而學習向量量化的表示是碼本向量的集合。這些是在開始時隨機選擇的,並逐漸調整以在學習演算法的多次迭代中最好地總結訓練數據集。在學習之後,碼本向量可用於預測。最相似的近鄰通過計算每個碼本向量和新數據實例之間的距離找到。然後返回最佳匹配單元的類別值或作為預測。如果大家重新調整數據,使其具有相同的范圍,就可以獲得最佳結果。當然,如果大家發現KNN在大家數據集上達到很好的結果,請嘗試用LVQ減少存儲整個訓練數據集的內存要求