蟻群演算法英文
A. 求關於蟻群演算法的英文文獻,網站或者文章等!跪謝!
採用蟻群演算法求解調度模型。
Ant Colony Optimization Algorithms (ACOAs) were appropriate for this optimization problem.
摘要本文引入一種全新的尋優演算法-蟻群演算法。
In this paper a new optimum algorithm (ant colony optimization) is introced.
摘要蟻群演算法是近年來出現的一種新的仿生優化演算法。
The ant colony algorithm is a new bionic simulated evolutionary algorithm developed in recent years.
.
http://www.cqtianlong.com/norman_ellison/devolep.htm
http://chemyq.com/expert/ep99/986676_03AF4.htm
B. 蟻群演算法在物流配送路徑優化問題的英文翻譯
The physical distribution routing problem based on ant colony optimization
C. 英語翻譯2
AADCS演算法原理
AADCS algorithm principle
本演算法在傳統蟻群演算法的基礎之上進行改進,根據濃度較高的信息素來吸引後面的螞蟻,如果路徑上的信息素濃度越高,更多螞蟻就會選擇該路徑,從而得到一條從出發點到目的地之間的最短路徑,該路徑就是全局最優解。正是由於螞蟻優質的尋優能力,適用在雲計算任務的分配演算法,許多的學者利用該演算法解決了復雜的NP問題
This algorithm is improved on the basis of the traditional ant colony algorithm, according to the high concentration of pheromone to attract the ants behind, if the path pheromone concentration is higher, more ants will choose the path, to get the shortest path between a starting point to the destination path, the path is the global optimal solution. It is because of the ant quality optimization ability, suitable for cloud computing task allocation algorithm, many scholars use this algorithm to solve the complex NP problem
在進行虛擬機資源分配演算法中,虛擬機表示為X ,任務分解成Y個子任務,子任務表示為X ,在每個時刻,子任務只能在一個虛擬機上執行 ,配合蟻群演算法公式計算得到每個虛擬機被某一個任務選中的概率為A
In the virtual machine resource allocation algorithm, the virtual machine is expressed as X, task decomposition into Y sub task, sub task is expressed as X, in every moment, the sub task can only be performed in a virtual machine, calculate the probability of each virtual machine is a task for the selected A formula with ant colony algorithm
B表示期望啟發權重因子,都是改變路徑選擇概率的重要因素, 表示在 A時刻節點 B的信息素濃度, A表示信息素啟發權重因子, B表示在時刻 路徑節點C 到路徑節點D 之間的期望值, A表示螞蟻已走過的路徑,將其加入禁忌表, 表示第A 只螞蟻能夠選擇的路徑,設 A為螞蟻的當前迭代次數, A為迭代次數最大值。
B said the expected heuristic weighting factors are important factors to change the path selection probability, said at the A moment B node pheromone concentration, A said the information inspired weight factor, B said in a moment path node between C path to node D expectations, A said the ant has been added to the taboo, table A, said the path of ants can choose, let A be the current iteration number of ants, A for the maximum number of iterations.
通過公式(1)可知,影響虛擬機的選擇最大的兩個因素就是 A和B ,AADCS演算法就是通過虛擬機質量函數對信息素的更新進行改進,利用負載均衡差函數進行改進,提高雲計算系統的負載均衡度。
By the formula (1) shows that the two factors influencing the selection of virtual machine is the largest A and B, AADCS algorithm is through the virtual machine quality function to the pheromone update is improved by using the load balancing function was improved, improve the load balance of the system of cloud computing.
D. 關於蟻群演算法應用的英文翻譯
找不到翻譯,給你一個演算法吧!
該程序試圖對具有31個城市的VRP進行求解,已知的最優解為784.1,我用該程序只能優化到810左右,應該是陷入局部最優,但我不知問題出在什麼地方。請用過蟻群演算法的高手指教。
蟻群演算法的matlab源碼,同時請指出為何不能優化到已知的最好解
%
%
% the procere of ant colony algorithm for VRP
%
% % % % % % % % % % %
%initialize the parameters of ant colony algorithms
load data.txt;
d=data(:,2:3);
g=data(:,4);
m=31; % 螞蟻數
alpha=1;
belta=4;% 決定tao和miu重要性的參數
lmda=0;
rou=0.9; %衰減系數
q0=0.95;
% 概率
tao0=1/(31*841.04);%初始信息素
Q=1;% 螞蟻循環一周所釋放的信息素
defined_phrm=15.0; % initial pheromone level value
QV=100; % 車輛容量
vehicle_best=round(sum(g)/QV)+1; %所完成任務所需的最少車數
V=40;
% 計算兩點的距離
for i=1:32;
for j=1:32;
dist(i,j)=sqrt((d(i,1)-d(j,1))^2+(d(i,2)-d(j,2))^2);
end;
end;
%給tao miu賦初值
for i=1:32;
for j=1:32;
if i~=j;
%s(i,j)=dist(i,1)+dist(1,j)-dist(i,j);
tao(i,j)=defined_phrm;
miu(i,j)=1/dist(i,j);
end;
end;
end;
for k=1:32;
for k=1:32;
deltao(i,j)=0;
end;
end;
best_cost=10000;
for n_gen=1:50;
print_head(n_gen);
for i=1:m;
%best_solution=[];
print_head2(i);
sumload=0;
cur_pos(i)=1;
rn=randperm(32);
n=1;
nn=1;
part_sol(nn)=1;
%cost(n_gen,i)=0.0;
n_sol=0; % 由螞蟻產生的路徑數量
M_vehicle=500;
t=0; %最佳路徑數組的元素數為0
while sumload<=QV;
for k=1:length(rn);
if sumload+g(rn(k))<=QV;
gama(cur_pos(i),rn(k))=(sumload+g(rn(k)))/QV;
A(n)=rn(k);
n=n+1;
end;
end;
fid=fopen('out_customer.txt','a+');
fprintf(fid,'%s %i\t','the current position is:',cur_pos(i));
fprintf(fid,'\n%s','the possible customer set is:')
fprintf(fid,'\t%i\n',A);
fprintf(fid,'------------------------------\n');
fclose(fid);
p=compute_prob(A,cur_pos(i),tao,miu,alpha,belta,gama,lmda,i);
maxp=1e-8;
na=length(A);
for j=1:na;
if p(j)>maxp
maxp=p(j);
index_max=j;
end;
end;
old_pos=cur_pos(i);
if rand(1)<q0
cur_pos(i)=A(index_max);
else
krnd=randperm(na);
cur_pos(i)=A(krnd(1));
bbb=[old_pos cur_pos(i)];
ccc=[1 1];
if bbb==ccc;
cur_pos(i)=A(krnd(2));
end;
end;
tao(old_pos,cur_pos(i))=taolocalupdate(tao(old_pos,cur_pos(i)),rou,tao0);%對所經弧進行局部更新
sumload=sumload+g(cur_pos(i));
nn=nn+1;
part_sol(nn)=cur_pos(i);
temp_load=sumload;
if cur_pos(i)~=1;
rn=setdiff(rn,cur_pos(i));
n=1;
A=[];
end;
if cur_pos(i)==1; % 如果當前點為車場,將當前路徑中的已訪問用戶去掉後,開始產生新路徑
if setdiff(part_sol,1)~=[];
n_sol=n_sol+1; % 表示產生的路徑數,n_sol=1,2,3,..5,6...,超過5條對其費用加上車輛的派遣費用
fid=fopen('out_solution.txt','a+');
fprintf(fid,'%s%i%s','NO.',n_sol,'條路徑是:');
fprintf(fid,'%i ',part_sol);
fprintf(fid,'\n');
fprintf(fid,'%s','當前的用戶需求量是:');
fprintf(fid,'%i\n',temp_load);
fprintf(fid,'------------------------------\n');
fclose(fid);
% 對所得路徑進行路徑內3-opt優化
final_sol=exchange(part_sol);
for nt=1:length(final_sol); % 將所有產生的路徑傳給一個數組
temp(t+nt)=final_sol(nt);
end;
t=t+length(final_sol)-1;
sumload=0;
final_sol=setdiff(final_sol,1);
rn=setdiff(rn,final_sol);
part_sol=[];
final_sol=[];
nn=1;
part_sol(nn)=cur_pos(i);
A=[];
n=1;
end;
end;
if setdiff(rn,1)==[];% 產生最後一條終點不為1的路徑
n_sol=n_sol+1;
nl=length(part_sol);
part_sol(nl+1)=1;%將路徑的最後1位補1
% 對所得路徑進行路徑內3-opt優化
final_sol=exchange(part_sol);
for nt=1:length(final_sol); % 將所有產生的路徑傳給一個數組
temp(t+nt)=final_sol(nt);
end;
cost(n_gen,i)=cost_sol(temp,dist)+M_vehicle*(n_sol-vehicle_best); %計算由螞蟻i產生的路徑總長度
for ki=1:length(temp)-1;
deltao(temp(ki),temp(ki+1))=deltao(temp(ki),temp(ki+1))+Q/cost(n_gen,i);
end;
if cost(n_gen,i)<best_cost;
best_cost=cost(n_gen,i);
old_cost=best_cost;
best_gen=n_gen; % 產生最小費用的代數
best_ant=i; %產生最小費用的螞蟻
best_solution=temp;
end;
if i==m; %如果所有螞蟻均完成一次循環,,則用最佳費用所對應的路徑對弧進行整體更新
for ii=1:32;
for jj=1:32;
tao(ii,jj)=(1-rou)*tao(ii,jj);
end;
end;
for kk=1:length(best_solution)-1;
tao(best_solution(kk),best_solution(kk+1))=tao(best_solution(kk),best_solution(kk+1))+deltao(best_solution(kk),best_solution(kk+1));
end;
end;
fid=fopen('out_solution.txt','a+');
fprintf(fid,'%s%i%s','NO.',n_sol,'路徑是:');
fprintf(fid,'%i ',part_sol);
fprintf(fid,'\n');
fprintf(fid,'%s %i\n','當前的用戶需求量是:',temp_load);
fprintf(fid,'%s %f\n','總費用是:',cost(n_gen,i));
fprintf(fid,'------------------------------\n');
fprintf(fid,'%s\n','最終路徑是:');
fprintf(fid,'%i-',temp);
fprintf(fid,'\n');
fclose(fid);
temp=[];
break;
end;
end;
end;
end;
我現在也在研究它,希望能共同進步.建義可以看一下段海濱的關於蟻群演算法的書.講的不錯,李士勇的也可以,還有一本我在圖書館見過,記不得名字了.
E. 求翻譯關於蟻群演算法,英文原文如下:
雖然如此,我們相信蟻群隱喻可以幫助解釋我們的典範。考慮到圖2圖,這是一個可能的解釋的現狀圖1 b。固定的想法,認為D之間的距離和H之間、B和H之間,B和D-via C-are等於一,讓C位置之間的一半D和B(見圖2)。現在讓我們考慮有什麼事情發生的時間間隔定期離散:t = 0、1、2、……。假設30新螞蟻來到我從一個,30天每次單位E,使每個人都只螞蟻走路速度每時間單位為1,螞蟻走路時放下在時間t信息素軌跡強度1,而讓例子比較簡單,瞬間蒸發,完全在中間的連續時間間隔(t + 1,t + 2)。
在t = 0無蹤跡嗎,但30螞蟻是在B和30 d .他們選擇走哪一條路是完全隨機的。因此,平均每個節點15螞蟻從就要往H和15向C(圖2 b)。在t = 1 30新螞蟻來到我從一個找到一條道路的強度15導致H,鋪設在15螞蟻那樣,就從B和一串強度30走上了C,得到了總和的蹤跡,制定了15螞蟻從B和在15螞蟻達到通過來自維B C(圖2 C)。選擇職業道路的可能性因此偏見,因此預期的數量,螞蟻往C將朝著雙的H:20和10的分別。這同樣適用於新30螞蟻在D來自大腸這個過程一直持續到所有的螞蟻最終會選擇最短路徑。他們的想法是,如果在某一給定一隻螞蟻要選擇不同的路徑,那些被嚴重被前螞蟻(也就是說,那些有高跟蹤級別)選擇的幾率更高。此外高水平是同義詞蹤跡短路徑。
摘要組織如下。第二部分包含描述的像
目前實施和應用問題的定義:部分反映了演算法結構問題的結構,我們介紹他們聚在一起。第三部分描述了三種稍微不同的手段應用該演算法。IV,V部分報告
實驗。第六章我們比較與其他策略、第七章wesubstantiate的魯棒性和功能性以展示如何,它可以應用到其他的優化問題。第八章我們非正式討論為什麼以及如何為範式的功能。第九章的結論。
F. 求翻譯關於於蟻群演算法,英文原文如下:
例如考慮實驗設置如圖1所示。有一個沿該路徑螞蟻走(例如從食物源的巢,反之亦然,見圖1)。突然出現障礙和路徑被切斷。所以在位置的螞蟻走從一個電子(或在這些位置相反的方向走)必須決定是否左右轉動(附圖)。選擇是影響強度的左前螞蟻信息素步道。更高層次的信息在正確的道路,使螞蟻刺激更強,更高的概率右轉。第一個螞蟻到達點(或)有sameprobability左右轉動(因為沒有以前的信息素的替代路徑)。因為路是小於第一個螞蟻,以下將達到之前第一個螞蟻以下路徑系統(圖集成電路)。結果是,螞蟻返回到將找到一個更強的步道路徑粑,造成一半的所有螞蟻偶然決定的做法,通過dcba障礙和由已到了那些通過碼:他們會因此更喜歡(概率)路徑粑路徑道亨銀行。因此,一些螞蟻路徑碼後每單位時間將高於螞蟻數以下公司這使得大量信息素的短路徑增長速度比在較長的一個,因此,概率與任何單一的螞蟻選擇跟隨的道路迅速偏向較短1。最終的結果是,很快所有螞蟻都會選擇較短的路徑。該演算法,我們將在下一部分是定義模型的研究得出的真實蟻群。因此,我們呼籲我們的系統,蟻群系統()和演算法介紹蟻群演算法。因為我們不感興趣,模擬螞蟻的殖民地,但在使用人工蟻群的優化工具,我們的系統將有一些重大的分歧,一個真正的人(自然):•人工螞蟻會有一些記憶,•不能完全失明,•他們將生活在一個環境,在時間離散。
G. 求人工翻譯,將下面的文字翻譯成英文,不要在線軟體翻譯的那玩意坑爹
The vehicle path planning is a key link in the optimization of logisticsmanagement, is to raise economic benefits, make logistics scientificessential, but also an important research topic in management science.This graation design according to the actual needs of logistics management application, developed a "shortest path" in the logistics and distribution system. This software mainly by hybrid ant colony algorithm based on ant colony algorithm and the convergence of genetic algorithm to solve the vehicle routing problem in logistics distribution routing group,can help the logistics enterprises to quickly find a reasonable, the distance is short, can rece the cost of logistics enterprises.
Keywords: vehicle routing problem; ant colony algorithm; genetic algorithm; logistics distribution; the shortest path planning.
H. 基於蟻群演算法的最優路徑選擇研究外文文獻誰有
你好,請認准正確答案下載附件,文獻已上傳,蟻群演算法的最優路徑選擇旅行商路徑優化外文文獻,2014年的,望及時採納答案!
作者:Ouaarab A, Ahiod B, Yang X S.
文題:Discrete cuckoo search algorithm for the travelling salesman problem
期刊:Neural Computing and Applications, 2014, 24(7-8): 1659-1669.
I. 關於蟻群演算法的一些英文專業名詞翻譯
哥們這都不是專業詞彙 你翻譯通順就行了
J. 請把下面這段話翻譯成英文:
本文介紹了.NET Remoting,它提供了一種很有用的方法,用於管理跨應用程序域的同步和非同步 RPC 會話。||This text introced the .NET Remoting, it provided a kind of of great use method, useding for a management to across an applied procere area of synchronous tread the RPC conversation with difference.遠程對象代碼可以運行在伺服器上,也可以運行在客戶端上。||This text introced the .NET Remoting, it provided a kind of of great use method, useding for a management to across an applied procere area of synchronous tread the RPC conversation with difference.The long range object code can circulate on the server, can also circulate at the customer to carry up.伺服器和客戶端組件都可以選擇埠,就象可以選擇通信協議一樣。||This text introced the .NET Remoting, it provided a kind of of great use method, useding for a management to across an applied procere area of synchronous tread the RPC conversation with difference.The long range object code can circulate on the server, can also circulate at the customer to carry up.The server and customer carry moles and can choose a port, the elephant can choose the correspondence agreement similar.因此,很容易建立並運行基本的通信。||This text introced the .NET Remoting, it provided a kind of of great use method, useding for a management to across an applied procere area of synchronous tread the RPC conversation with difference.The long range object code can circulate on the server, can also circulate at the customer to carry up.The server and customer carry moles and can choose a port, the elephant can choose the correspondence agreement similar.Therefore and very easily build up and circulate basic correspondence.同時介紹了蟻群演算法,是模擬螞蟻的行為而提出的一種啟發式演算法。||This text introced the .NET Remoting, it provided a kind of of great use method, useding for a management to across an applied procere area of synchronous tread the RPC conversation with difference.The long range object code can circulate on the server, can also circulate at the customer to carry up.The server and customer carry moles and can choose a port, the elephant can choose the correspondence agreement similar.Therefore and very easily build up and circulate basic correspondence.Introced the 蟻s calculate way in the meantime, is the behavior that imitates ant but put forward of a kind of inspire type calculate way.能夠用於求解TSP問題,即旅行商問題,是一類已經被證明具有NPC計算復雜性的組合優化難題。||This text introced the .NET Remoting, it provided a kind of of great use method, useding for a management to across an applied procere area of synchronous tread the RPC conversation with difference.The long range object code can circulate on the server, can also circulate at the customer to carry up.The server and customer carry moles and can choose a port, the elephant can choose the correspondence agreement similar.Therefore and very easily build up and circulate basic correspondence.The Introced the 蟻 s calculate way in the meantime, is the behavior that imitates ant but put forward of a kind of inspire type calculate way.Can used for solving the TSP problem, then take a trip company's problem, is a type of combination that have already been prove to have the NPC calculation complexity is excellent to turn a hard nut to crack.本文在此基礎上,設計了一個基於.NET Remoting的蟻群演算法應用,就中國的31個城市的TSP問題,在C#.NET的環境下,運用蟻群演算法對其進行求解。