當前位置:首頁 » 操作系統 » 非BP演算法

非BP演算法

發布時間: 2024-02-27 20:07:58

『壹』 BP演算法及其改進

傳統的BP演算法及其改進演算法的一個很大缺點是:由於其誤差目標函數對於待學習的連接權值來說非凸的,存在局部最小點,對網路進行訓練時,這些演算法的權值一旦落入權值空間的局部最小點就很難跳出,因而無法達到全局最小點(即最優點)而使得網路訓練失敗。針對這些缺陷,根據凸函數及其共軛的性質,利用Fenchel不等式,使用約束優化理論中的罰函數方法構造出了帶有懲罰項的新誤差目標函數。

用新的目標函數對前饋神經網路進行優化訓練時,隱層輸出也作為被優化變數。這個目標函數的主要特點有:
1.固定隱層輸出,該目標函數對連接權值來說是凸的;固定連接權值,對隱層輸出來說是凸的。這樣在對連接權值和隱層輸出進行交替優化時,它們所面對的目標函數都是凸函數,不存在局部最小的問題,演算法對於初始權值的敏感性降低;
2.由於懲罰因子是逐漸增大的,使得權值的搜索空間變得比較大,從而對於大規模的網路也能夠訓練,在一定程度上降低了訓練過程陷入局部最小的可能性。

這些特性能夠在很大程度上有效地克服以往前饋網路的訓練演算法易於陷入局部最小而使網路訓練失敗的重大缺陷,也為利用凸優化理論研究前饋神經網路的學習演算法開創了一個新思路。在網路訓練時,可以對連接權值和隱層輸出進行交替優化。把這種新演算法應用到前饋神經網路訓練學習中,在學習速度、泛化能力、網路訓練成功率等多方面均優於傳統訓練演算法,如經典的BP演算法。數值試驗也表明了這一新演算法的有效性。

本文通過典型的BP演算法與新演算法的比較,得到了二者之間相互關系的初步結論。從理論上證明了當懲罰因子趨於正無窮大時新演算法就是BP演算法,並且用數值試驗說明了懲罰因子在網路訓練演算法中的作用和意義。對於三層前饋神經網路來說,懲罰因子較小時,隱層神經元局部梯度的可變范圍大,有利於連接權值的更新;懲罰因子較大時,隱層神經元局部梯度的可變范圍小,不利於連接權值的更新,但能提高網路訓練精度。這說明了在網路訓練過程中懲罰因子為何從小到大變化的原因,也說明了新演算法的可行性而BP演算法則時有無法更新連接權值的重大缺陷。

礦體預測在礦床地質中佔有重要地位,由於輸入樣本量大,用以往前饋網路演算法進行礦體預測效果不佳。本文把前饋網路新演算法應用到礦體預測中,取得了良好的預期效果。

本文最後指出了新演算法的優點,並指出了有待改進的地方。

關鍵詞:前饋神經網路,凸優化理論,訓練演算法,礦體預測,應用

Feed forward Neural Networks Training Algorithm Based on Convex Optimization and Its Application in Deposit Forcasting
JIA Wen-chen (Computer Application)
Directed by YE Shi-wei

Abstract

The paper studies primarily the application of convex optimization theory and algorithm for feed forward neural networks』 training and convergence performance.

It reviews the history of feed forward neural networks, points out that the training of feed forward neural networks is essentially a non-linear problem and introces BP algorithm, its advantages as well as disadvantages and previous improvements for it. One of the big disadvantages of BP algorithm and its improvement algorithms is: because its error target function is non-convex in the weight values between neurons in different layers and exists local minimum point, thus, if the weight values enter local minimum point in weight values space when network is trained, it is difficult to skip local minimum point and reach the global minimum point (i.e. the most optimal point).If this happening, the training of networks will be unsuccessful. To overcome these essential disadvantages, the paper constructs a new error target function including restriction item according to convex function, Fenchel inequality in the conjugate of convex function and punishment function method in restriction optimization theory.
When feed forward neural networks based on the new target function is being trained, hidden layers』 outputs are seen as optimization variables. The main characteristics of the new target function are as follows:

1.With fixed hidden layers』 outputs, the new target function is convex in connecting weight variables; with fixed connecting weight values, the new target function is convex in hidden layers』 outputs. Thus, when connecting weight values and hidden layers』 outputs are optimized alternately, the new target function is convex in them, doesn』t exist local minimum point, and the algorithm』s sensitiveness is reced for original weight values .
2.Because the punishment factor is increased graally, weight values 』 searching space gets much bigger, so big networks can be trained and the possibility of entering local minimum point can be reced to a certain extent in network training process.

Using these characteristics can overcome efficiently in the former feed forward neural networks』 training algorithms the big disadvantage that networks training enters local minimum point easily. This creats a new idea for feed forward neural networks』 learning algorithms by using convex optimization theory .In networks training, connecting weight variables and hidden layer outputs can be optimized alternately. The new algorithm is much better than traditional algorithms for feed forward neural networks. The numerical experiments show that the new algorithm is successful.

By comparing the new algorithm with the traditional ones, a primary conclusion of their relationship is reached. It is proved theoretically that when the punishment factor nears infinity, the new algorithm is BP algorithm yet. The meaning and function of the punishment factor are also explained by numerical experiments. For three-layer feed forward neural networks, when the punishment factor is smaller, hidden layer outputs』 variable range is bigger and this is in favor to updating of the connecting weights values, when the punishment factor is bigger, hidden layer outputs』 variable range is smaller and this is not in favor to updating of the connecting weights values but it can improve precision of networks. This explains the reason that the punishment factor should be increased graally in networks training process. It also explains feasibility of the new algorithm and BP algorithm』s disadvantage that connecting weigh values can not be updated sometimes.

Deposit forecasting is very important in deposit geology. The previous algorithms』 effect is not good in deposit forecasting because of much more input samples. The paper applies the new algorithm to deposit forecasting and expectant result is reached.
The paper points out the new algorithm』s strongpoint as well as to-be-improved places in the end.

Keywords: feed forward neural networks, convex optimization theory, training algorithm, deposit forecasting, application

傳統的BP演算法及其改進演算法的一個很大缺點是:由於其誤差目標函數對於待學習的連接權值來說非凸的,存在局部最小點,對網路進行訓練時,這些演算法的權值一旦落入權值空間的局部最小點就很難跳出,因而無法達到全局最小點(即最優點)而使得網路訓練失敗。針對這些缺陷,根據凸函數及其共軛的性質,利用Fenchel不等式,使用約束優化理論中的罰函數方法構造出了帶有懲罰項的新誤差目標函數。

用新的目標函數對前饋神經網路進行優化訓練時,隱層輸出也作為被優化變數。這個目標函數的主要特點有:
1.固定隱層輸出,該目標函數對連接權值來說是凸的;固定連接權值,對隱層輸出來說是凸的。這樣在對連接權值和隱層輸出進行交替優化時,它們所面對的目標函數都是凸函數,不存在局部最小的問題,演算法對於初始權值的敏感性降低;
2.由於懲罰因子是逐漸增大的,使得權值的搜索空間變得比較大,從而對於大規模的網路也能夠訓練,在一定程度上降低了訓練過程陷入局部最小的可能性。

這些特性能夠在很大程度上有效地克服以往前饋網路的訓練演算法易於陷入局部最小而使網路訓練失敗的重大缺陷,也為利用凸優化理論研究前饋神經網路的學習演算法開創了一個新思路。在網路訓練時,可以對連接權值和隱層輸出進行交替優化。把這種新演算法應用到前饋神經網路訓練學習中,在學習速度、泛化能力、網路訓練成功率等多方面均優於傳統訓練演算法,如經典的BP演算法。數值試驗也表明了這一新演算法的有效性。

本文通過典型的BP演算法與新演算法的比較,得到了二者之間相互關系的初步結論。從理論上證明了當懲罰因子趨於正無窮大時新演算法就是BP演算法,並且用數值試驗說明了懲罰因子在網路訓練演算法中的作用和意義。對於三層前饋神經網路來說,懲罰因子較小時,隱層神經元局部梯度的可變范圍大,有利於連接權值的更新;懲罰因子較大時,隱層神經元局部梯度的可變范圍小,不利於連接權值的更新,但能提高網路訓練精度。這說明了在網路訓練過程中懲罰因子為何從小到大變化的原因,也說明了新演算法的可行性而BP演算法則時有無法更新連接權值的重大缺陷。

礦體預測在礦床地質中佔有重要地位,由於輸入樣本量大,用以往前饋網路演算法進行礦體預測效果不佳。本文把前饋網路新演算法應用到礦體預測中,取得了良好的預期效果。

本文最後指出了新演算法的優點,並指出了有待改進的地方。

關鍵詞:前饋神經網路,凸優化理論,訓練演算法,礦體預測,應用

Feed forward Neural Networks Training Algorithm Based on Convex Optimization and Its Application in Deposit Forcasting
JIA Wen-chen (Computer Application)
Directed by YE Shi-wei

Abstract

The paper studies primarily the application of convex optimization theory and algorithm for feed forward neural networks』 training and convergence performance.

It reviews the history of feed forward neural networks, points out that the training of feed forward neural networks is essentially a non-linear problem and introces BP algorithm, its advantages as well as disadvantages and previous improvements for it. One of the big disadvantages of BP algorithm and its improvement algorithms is: because its error target function is non-convex in the weight values between neurons in different layers and exists local minimum point, thus, if the weight values enter local minimum point in weight values space when network is trained, it is difficult to skip local minimum point and reach the global minimum point (i.e. the most optimal point).If this happening, the training of networks will be unsuccessful. To overcome these essential disadvantages, the paper constructs a new error target function including restriction item according to convex function, Fenchel inequality in the conjugate of convex function and punishment function method in restriction optimization theory.
When feed forward neural networks based on the new target function is being trained, hidden layers』 outputs are seen as optimization variables. The main characteristics of the new target function are as follows:

1.With fixed hidden layers』 outputs, the new target function is convex in connecting weight variables; with fixed connecting weight values, the new target function is convex in hidden layers』 outputs. Thus, when connecting weight values and hidden layers』 outputs are optimized alternately, the new target function is convex in them, doesn』t exist local minimum point, and the algorithm』s sensitiveness is reced for original weight values .
2.Because the punishment factor is increased graally, weight values 』 searching space gets much bigger, so big networks can be trained and the possibility of entering local minimum point can be reced to a certain extent in network training process.

Using these characteristics can overcome efficiently in the former feed forward neural networks』 training algorithms the big disadvantage that networks training enters local minimum point easily. This creats a new idea for feed forward neural networks』 learning algorithms by using convex optimization theory .In networks training, connecting weight variables and hidden layer outputs can be optimized alternately. The new algorithm is much better than traditional algorithms for feed forward neural networks. The numerical experiments show that the new algorithm is successful.

By comparing the new algorithm with the traditional ones, a primary conclusion of their relationship is reached. It is proved theoretically that when the punishment factor nears infinity, the new algorithm is BP algorithm yet. The meaning and function of the punishment factor are also explained by numerical experiments. For three-layer feed forward neural networks, when the punishment factor is smaller, hidden layer outputs』 variable range is bigger and this is in favor to updating of the connecting weights values, when the punishment factor is bigger, hidden layer outputs』 variable range is smaller and this is not in favor to updating of the connecting weights values but it can improve precision of networks. This explains the reason that the punishment factor should be increased graally in networks training process. It also explains feasibility of the new algorithm and BP algorithm』s disadvantage that connecting weigh values can not be updated sometimes.

Deposit forecasting is very important in deposit geology. The previous algorithms』 effect is not good in deposit forecasting because of much more input samples. The paper applies the new algorithm to deposit forecasting and expectant result is reached.
The paper points out the new algorithm』s strongpoint as well as to-be-improved places in the end.

Keywords: feed forward neural networks, convex optimization theory, training algorithm, deposit forecasting, application

BP演算法及其改進

2.1 BP演算法步驟

1°隨機抽取初始權值ω0;

2°輸入學習樣本對(Xp,Yp),學習速率η,誤差水平ε;

3°依次計算各層結點輸出opi,opj,opk;

4°修正權值ωk+1=ωk+ηpk,其中pk=,ωk為第k次迭代權變數;

5°若誤差E<ε停止,否則轉3°。

2.2 最優步長ηk的確定

在上面的演算法中,學習速率η實質上是一個沿負梯度方向的步長因子,在每一次迭代中如何確定一個最優步長ηk,使其誤差值下降最快,則是典型的一維搜索問題,即E(ωk+ηkpk)=(ωk+ηpk)。令Φ(η)=E(ωk+ηpk),則Φ′(η)=dE(ωk+ηpk)/dη=E(ωk+ηpk)Tpk。若ηk為(η)的極小值點,則Φ′(ηk)=0,即E(ωk+ηpk)Tpk=-pTk+1pk=0。確定ηk的演算法步驟如下

1°給定η0=0,h=0.01,ε0=0.00001;

2°計算Φ′(η0),若Φ′(η0)=0,則令ηk=η0,停止計算;

3°令h=2h, η1=η0+h;

4°計算Φ′(η1),若Φ′(η1)=0,則令ηk=η1,停止計算;

若Φ′(η1)>0,則令a=η0,b=η1;若Φ′(η1)<0,則令η0=η1,轉3°;

5°計算Φ′(a),若Φ′(a)=0,則ηk=a,停止計算;

6°計算Φ′(b),若Φ′(b)=0,則ηk=b,停止計算;

7°計算Φ′(a+b/2),若Φ′(a+b/2)=0,則ηk=a+b/2,停止計算;

若Φ′(a+b/2)<0,則令a=a+b/2;若Φ′(a+b/2)>0,則令b=a+b/2

8°若|a-b|<ε0,則令,ηk=a+b/2,停止計算,否則轉7°。

2.3 改進BP演算法的特點分析

在上述改進的BP演算法中,對學習速率η的選取不再由用戶自己確定,而是在每次迭代過程中讓計算機自動尋找最優步長ηk。而確定ηk的演算法中,首先給定η0=0,由定義Φ(η)=E(ωk+ηpk)知,Φ′(η)=dE(ωk+ηpk)/dη=E(ωk+ηpk)Tpk,即Φ′(η0)=-pTkpk≤0。若Φ′(η0)=0,則表明此時下降方向pk為零向量,也即已達到局部極值點,否則必有Φ′(η0)<0,而對於一維函數Φ(η)的性質可知,Φ′(η0)<0則在η0=0的局部范圍內函數為減函數。故在每一次迭代過程中給η0賦初值0是合理的。

改進後的BP演算法與原BP演算法相比有兩處變化,即步驟2°中不需給定學習速率η的值;另外在每一次修正權值之前,即步驟4°前已計算出最優步長ηk。

『貳』 bp演算法是什麼

誤差反向傳播演算法:

BP演算法的基本思想是,學習過程包括兩個過程:信號前向傳播和誤差後向傳播。

(1)前向傳播:輸入樣本->輸入層->各隱層(處理)->輸出層。

(2)錯誤反向傳播:輸出錯誤(某種形式)->隱藏層(逐層)->輸入層。

BP演算法基本介紹:

多層隱含層前饋網路可以極大地提高神經網路的分類能力,但長期以來一直沒有提出解決權值調整問題的博弈演算法。

1986年,Rumelhart和McCelland領導的科學家團隊出版了《並行分布式處理》一書,詳細分析了具有非線性連續傳遞函數的多層前饋網路的誤差反向比例(BP)演算法,實現了Minsky關於多層網路的思想。由於誤差的反向傳播演算法常用於多層前饋網路的訓練,人們常直接稱多層前饋網路為BP網路。

『叄』 BP演算法、BP神經網路、遺傳演算法、神經網路這四者之間的關系

這四個都屬於人工智慧演算法的范疇。其中BP演算法、BP神經網路和神經網路
屬於神經網路這個大類。遺傳演算法為進化演算法這個大類。
神經網路模擬人類大腦神經計算過程,可以實現高度非線性的預測和計算,主要用於非線性擬合,識別,特點是需要「訓練」,給一些輸入,告訴他正確的輸出。若干次後,再給新的輸入,神經網路就能正確的預測對於的輸出。神經網路廣泛的運用在模式識別,故障診斷中。BP演算法和BP神經網路是神經網路的改進版,修正了一些神經網路的缺點。
遺傳演算法屬於進化演算法,模擬大自然生物進化的過程:優勝略汰。個體不斷進化,只有高質量的個體(目標函數最小(大))才能進入下一代的繁殖。如此往復,最終找到全局最優值。遺傳演算法能夠很好的解決常規優化演算法無法解決的高度非線性優化問題,廣泛應用在各行各業中。差分進化,蟻群演算法,粒子群演算法等都屬於進化演算法,只是模擬的生物群體對象不一樣而已。

熱點內容
演算法對算 發布:2024-11-28 15:41:38 瀏覽:3
稱重系統界面如何找配置項 發布:2024-11-28 15:28:29 瀏覽:569
vue能被反編譯嘛 發布:2024-11-28 15:23:59 瀏覽:79
gl和中配哪個配置好 發布:2024-11-28 15:20:01 瀏覽:235
linuxandroid嵌入式 發布:2024-11-28 15:18:58 瀏覽:200
服務密碼是啥有什麼用 發布:2024-11-28 15:08:48 瀏覽:164
編程王國 發布:2024-11-28 15:05:12 瀏覽:977
ftp伺服器對什麼硬體要求高 發布:2024-11-28 14:45:10 瀏覽:650
sql服務管理器下載 發布:2024-11-28 14:45:02 瀏覽:772
windows第三方ftp搭建 發布:2024-11-28 14:43:53 瀏覽:199