當前位置:首頁 » 操作系統 » 貝葉斯演算法java

貝葉斯演算法java

發布時間: 2024-01-27 22:15:50

⑴ 數據挖掘十大經典演算法(1)——樸素貝葉斯(Naive Bayes)

在此推出一個演算法系列的科普文章。我們大家在平時埋頭工程類工作之餘,也可以抽身對一些常見演算法進行了解,這不僅可以幫助我們拓寬思路,從另一個維度加深對計算機技術領域的理解,做到觸類旁通,同時也可以讓我們搞清楚一些既熟悉又陌生的領域——比如數據挖掘、大數據、機器學習——的基本原理,揭開它們的神秘面紗,了解到其實很多看似高深的領域,其實背後依據的基礎和原理也並不復雜。而且,掌握各類演算法的特點、優劣和適用場景,是真正從事數據挖掘工作的重中之重。只有熟悉演算法,才可能對紛繁復雜的現實問題合理建模,達到最佳預期效果。

本系列文章的目的是力求用最干練而生動的講述方式,為大家講解由國際權威的學術組織the IEEE International Conference on Data Mining (ICDM) 於2006年12月評選出的數據挖掘領域的十大經典演算法。它們包括:

本文作為本系列的第一篇,在介紹具體演算法之前,先簡單為大家鋪墊幾個數據挖掘領域的常見概念:

在數據挖掘領域,按照演算法本身的行為模式和使用目的,主要可以分為分類(classification),聚類(clustering)和回歸(regression)幾種,其中:

打幾個不恰當的比方

另外,還有一個經常有人問起的問題,就是 數據挖掘 機器學習 這兩個概念的區別,這里一句話闡明我自己的認識:機器學習是基礎,數據挖掘是應用。機器學習研製出各種各樣的演算法,數據挖掘根據應用場景把這些演算法合理運用起來,目的是達到最好的挖掘效果。

當然,以上的簡單總結一定不夠准確和嚴謹,更多的是為了方便大家理解打的比方。如果大家有更精當的理解,歡迎補充和交流。

好了,鋪墊了這么多,現在終於進入正題!
作為本系列入門的第一篇,先為大家介紹一個容易理解又很有趣的演算法—— 樸素貝葉斯

先站好隊,樸素貝葉斯是一個典型的 有監督的分類演算法

光從名字也可以想到,要想了解樸素貝葉斯,先要從 貝葉斯定理 說起。
貝葉斯定理是我們高中時代學過的一條概率學基礎定理,它描述了條件概率的計算方式。不要怕已經把這些知識還給了體育老師,相信你一看公式就能想起來。

P(A|B)表示事件B已經發生的前提下,事件A發生的概率,叫做事件B發生下事件A的條件概率。其基本求解公式為:

其中,P(AB)表示A和B同時發生的概率,P(B)標識B事件本身的概率。

貝葉斯定理之所以有用,是因為我們在生活中經常遇到這種情況:我們可以很容易直接得出P(A|B),P(B|A)則很難直接得出,但我們更關心P(B|A)。

而貝葉斯定理就為我們打通從P(A|B)獲得P(B|A)的道路。
下面不加證明地直接給出貝葉斯定理:

有了貝葉斯定理這個基礎,下面來看看樸素貝葉斯演算法的基本思路。

你看,其思想就是這么的樸素。那麼,屬於每個分類的概率該怎麼計算呢?下面我們先祭出形式化語言!

那麼現在的關鍵就是如何計算第3步中的各個條件概率。我們可以這么做:

因為分母對於所有類別為常數,因為我們只要將分子最大化皆可。又因為各特徵屬性是條件獨立的,所以有:

如果你也跟我一樣,對形式化語言有嚴重生理反應,不要怕,直接跳過前面這一坨,我們通過一個鮮活的例子,用人類的語言再解釋一遍這個過程。

某個醫院早上收了六個門診病人,如下表。

現在又來了第七個病人,是一個打噴嚏的建築工人。請問他最有可能患有何種疾病?

本質上,這就是一個典型的分類問題, 症狀 職業 是特徵屬性, 疾病種類 是目標類別

根據 貝葉斯定理

可得

假定"打噴嚏"和"建築工人"這兩個特徵是獨立的,因此,上面的等式就變成了

這是可以計算的。

因此,這個打噴嚏的建築工人,有66%的概率是得了感冒。同理,可以計算這個病人患上過敏或腦震盪的概率。比較這幾個概率,就可以知道他最可能得什麼病。

接下來,我們再舉一個樸素貝葉斯演算法在實際中經常被使用的場景的例子—— 文本分類器 ,通常會用來識別垃圾郵件。
首先,我們可以把一封郵件的內容抽象為由若干關鍵片語成的集合,這樣是否包含每種關鍵詞就成了一封郵件的特徵值,而目標類別就是 屬於垃圾郵件 不屬於垃圾郵件

假設每個關鍵詞在一封郵件里出現與否的概率相互之間是獨立的,那麼只要我們有若干已經標記為垃圾郵件和非垃圾郵件的樣本作為訓練集,那麼就可以得出,在全部垃圾郵件(記為Trash)出現某個關鍵詞Wi的概率,即 P(Wi|Trash)

而我們最重要回答的問題是,給定一封郵件內容M,它屬於垃圾郵件的概率是多大,即 P(Trash|M)

根據貝葉斯定理,有

我們先來看分子:
P(M|Trash) 可以理解為在垃圾郵件這個范疇中遇見郵件M的概率,而一封郵件M是由若干單詞Wi獨立匯聚組成的,只要我們所掌握的單詞樣本足夠多,因此就可以得到

這些值我們之前已經可以得到了。

再來看分子里的另一部分 P(Trash) ,這個值也就是垃圾郵件的總體概率,這個值顯然很容易得到,用訓練集中垃圾郵件數除以總數即可。

而對於分母來說,我們雖然也可以去計算它,但實際上已經沒有必要了,因為我們要比較的 P(Trash|M) 和 P(non-Trash|M) 的分母都是一樣的,因此只需要比較分子大小即可。

這樣一來,我們就可以通過簡單的計算,比較郵件M屬於垃圾還是非垃圾二者誰的概率更大了。

樸素貝葉斯的英文叫做 Naive Bayes ,直譯過來其實是 天真的貝葉斯 ,那麼他到底天真在哪了呢?

這主要是因為樸素貝葉斯的基本假設是所有特徵值之間都是相互獨立的,這才使得概率直接相乘這種簡單計算方式得以實現。然而在現實生活中,各個特徵值之間往往存在一些關聯,比如上面的例子,一篇文章中不同單詞之間一定是有關聯的,比如有些詞總是容易同時出現。

因此,在經典樸素貝葉斯的基礎上,還有更為靈活的建模方式—— 貝葉斯網路(Bayesian Belief Networks, BBN) ,可以單獨指定特徵值之間的是否獨立。這里就不展開了,有興趣的同學們可以做進一步了解。

最後我們來對這個經典演算法做個點評:

優點:

缺點:

好了,對於 樸素貝葉斯 的介紹就到這里,不知道各位看完之後是否會對數據挖掘這個領域產生了一點興趣了呢?

⑵ 貝葉斯演算法是什麼

貝葉斯演算法是統計學的一種分類方法,它是一類利用概率統計知識進行分類的演算法。在許多場合,樸素貝葉斯(Naïve Bayes,NB)分類演算法可以與決策樹和神經網路分類演算法相媲美,該演算法能運用到大型資料庫中,而且方法簡單、分類准確率高、速度快。

由於貝葉斯定理假設一個屬性值對給定類的影響獨立於其它屬性的值,而此假設在實際情況中經常是不成立的,因此其分類准確率可能會下降。為此,就衍生出許多降低獨立性假設的貝葉斯分類演算法,如TAN(tree augmented Bayes network)演算法。

貝葉斯演算法的主要步驟:

1、收集大量的垃圾郵件和非垃圾郵件,建立垃圾郵件集和非垃圾郵件集。

2、提取郵件主題和郵件體中的獨立字元串,例如ABC32,¥234等作為TOKEN串並統計提取出的TOKEN串出現的次數即字頻。按照上述的方法分別處理垃圾郵件集和非垃圾郵件集中的所有郵件。

3、每一個郵件集對應一個哈希表,hashtable_good對應非垃圾郵件集而hashtable_bad對應垃圾郵件集。表中存儲TOKEN串到字頻的映射關系。

⑶ 程序員開發用到的十大基本演算法

演算法一:快速排序演算法
快速排序是由東尼·霍爾所發展的一種排序演算法。在平均狀況下,排序 n 個項目要Ο(n log n)次比較。在最壞狀況下則需要Ο(n2)次比較,但這種狀況並不常見。事實上,快速排序通常明顯比其他Ο(n log n) 演算法更快,因為它的內部循環(inner loop)可以在大部分的架構上很有效率地被實現出來。

快速排序使用分治法(Divide and conquer)策略來把一個串列(list)分為兩個子串列(sub-lists)。

演算法步驟:
1 從數列中挑出一個元素,稱為 「基準」(pivot),
2 重新排序數列,所有元素比基準值小的擺放在基準前面,所有元素比基準值大的擺在基準的後面(相同的數可以到任一邊)。在這個分區退出之後,該基準就處於數列的中間位置。這個稱為分區(partition)操作。
3 遞歸地(recursive)把小於基準值元素的子數列和大於基準值元素的子數列排序。

遞歸的最底部情形,是數列的大小是零或一,也就是永遠都已經被排序好了。雖然一直遞歸下去,但是這個演算法總會退出,因為在每次的迭代(iteration)中,它至少會把一個元素擺到它最後的位置去。

演算法二:堆排序演算法
堆排序(Heapsort)是指利用堆這種數據結構所設計的一種排序演算法。堆積是一個近似完全二叉樹的結構,並同時滿足堆積的性質:即子結點的鍵值或索引總是小於(或者大於)它的父節點。堆排序的平均時間復雜度為Ο(nlogn) 。

演算法步驟:
1.創建一個堆H[0..n-1]
2.把堆首(最大值)和堆尾互換
3.把堆的尺寸縮小1,並調用shift_down(0),目的是把新的數組頂端數據調整到相應位置
4.重復步驟2,直到堆的尺寸為1

演算法三:歸並排序
歸並排序(Merge sort,台灣譯作:合並排序)是建立在歸並操作上的一種有效的排序演算法。該演算法是採用分治法(Divide and Conquer)的一個非常典型的應用。

演算法步驟:

演算法四:二分查找演算法
二分查找演算法是一種在有序數組中查找某一特定元素的搜索演算法。搜素過程從數組的中間元素開始,如果中間元素正好是要查找的元素,則搜 素過程結束;如果某一特定元素大於或者小於中間元素,則在數組大於或小於中間元素的那一半中查找,而且跟開始一樣從中間元素開始比較。如果在某一步驟數組 為空,則代表找不到。這種搜索演算法每一次比較都使搜索范圍縮小一半。折半搜索每次把搜索區域減少一半,時間復雜度為Ο(logn) 。

演算法五:BFPRT(線性查找演算法)
BFPRT演算法解決的問題十分經典,即從某n個元素的序列中選出第k大(第k小)的元素,通過巧妙的分 析,BFPRT可以保證在最壞情況下仍為線性時間復雜度。該演算法的思想與快速排序思想相似,當然,為使得演算法在最壞情況下,依然能達到o(n)的時間復雜 度,五位演算法作者做了精妙的處理。

演算法步驟:

終止條件:n=1時,返回的即是i小元素。

演算法六:DFS(深度優先搜索)
深度優先搜索演算法(Depth-First-Search),是搜索演算法的一種。它沿著樹的深度遍歷樹的節點,盡可能深的搜索樹的分 支。當節點v的所有邊都己被探尋過,搜索將回溯到發現節點v的那條邊的起始節點。這一過程一直進行到已發現從源節點可達的所有節點為止。如果還存在未被發 現的節點,則選擇其中一個作為源節點並重復以上過程,整個進程反復進行直到所有節點都被訪問為止。DFS屬於盲目搜索。

深度優先搜索是圖論中的經典演算法,利用深度優先搜索演算法可以產生目標圖的相應拓撲排序表,利用拓撲排序表可以方便的解決很多相關的圖論問題,如最大路徑問題等等。一般用堆數據結構來輔助實現DFS演算法。

演算法步驟:

上述描述可能比較抽象,舉個實例:
DFS 在訪問圖中某一起始頂點 v 後,由 v 出發,訪問它的任一鄰接頂點 w1;再從 w1 出發,訪問與 w1鄰 接但還沒有訪問過的頂點 w2;然後再從 w2 出發,進行類似的訪問,… 如此進行下去,直至到達所有的鄰接頂點都被訪問過的頂點 u 為止。

接著,退回一步,退到前一次剛訪問過的頂點,看是否還有其它沒有被訪問的鄰接頂點。如果有,則訪問此頂點,之後再從此頂點出發,進行與前述類似的訪問;如果沒有,就再退回一步進行搜索。重復上述過程,直到連通圖中所有頂點都被訪問過為止。

演算法七:BFS(廣度優先搜索)
廣度優先搜索演算法(Breadth-First-Search),是一種圖形搜索演算法。簡單的說,BFS是從根節點開始,沿著樹(圖)的寬度遍歷樹(圖)的節點。如果所有節點均被訪問,則演算法中止。BFS同樣屬於盲目搜索。一般用隊列數據結構來輔助實現BFS演算法。

演算法步驟:

演算法八:Dijkstra演算法
戴克斯特拉演算法(Dijkstra』s algorithm)是由荷蘭計算機科學家艾茲赫爾·戴克斯特拉提出。迪科斯徹演算法使用了廣度優先搜索解決非負權有向圖的單源最短路徑問題,演算法最終得到一個最短路徑樹。該演算法常用於路由演算法或者作為其他圖演算法的一個子模塊。

該演算法的輸入包含了一個有權重的有向圖 G,以及G中的一個來源頂點 S。我們以 V 表示 G 中所有頂點的集合。每一個圖中的邊,都是兩個頂點所形成的有序元素對。(u, v) 表示從頂點 u 到 v 有路徑相連。我們以 E 表示G中所有邊的集合,而邊的權重則由權重函數 w: E → [0, ∞] 定義。因此,w(u, v) 就是從頂點 u 到頂點 v 的非負權重(weight)。邊的權重可以想像成兩個頂點之間的距離。任兩點間路徑的權重,就是該路徑上所有邊的權重總和。已知有 V 中有頂點 s 及 t,Dijkstra 演算法可以找到 s 到 t的最低權重路徑(例如,最短路徑)。這個演算法也可以在一個圖中,找到從一個頂點 s 到任何其他頂點的最短路徑。對於不含負權的有向圖,Dijkstra演算法是目前已知的最快的單源最短路徑演算法。

演算法步驟:

重復上述步驟2、3,直到S中包含所有頂點,即W=Vi為止

演算法九:動態規劃演算法
動態規劃(Dynamic programming)是一種在數學、計算機科學和經濟學中使用的,通過把原問題分解為相對簡單的子問題的方式求解復雜問題的方法。 動態規劃常常適用於有重疊子問題和最優子結構性質的問題,動態規劃方法所耗時間往往遠少於樸素解法。

動態規劃背後的基本思想非常簡單。大致上,若要解一個給定問題,我們需要解其不同部分(即子問題),再合並子問題的解以得出原問題的解。 通常許多 子問題非常相似,為此動態規劃法試圖僅僅解決每個子問題一次,從而減少計算量: 一旦某個給定子問題的解已經算出,則將其記憶化存儲,以便下次需要同一個 子問題解之時直接查表。 這種做法在重復子問題的數目關於輸入的規模呈指數增長時特別有用。

關於動態規劃最經典的問題當屬背包問題。

演算法步驟:

演算法十:樸素貝葉斯分類演算法
樸素貝葉斯分類演算法是一種基於貝葉斯定理的簡單概率分類演算法。貝葉斯分類的基礎是概率推理,就是在各種條件的存在不確定,僅知其出現概率的情況下, 如何完成推理和決策任務。概率推理是與確定性推理相對應的。而樸素貝葉斯分類器是基於獨立假設的,即假設樣本每個特徵與其他特徵都不相關。

樸素貝葉斯分類器依靠精確的自然概率模型,在有監督學習的樣本集中能獲取得非常好的分類效果。在許多實際應用中,樸素貝葉斯模型參數估計使用最大似然估計方法,換言之樸素貝葉斯模型能工作並沒有用到貝葉斯概率或者任何貝葉斯模型。

盡管是帶著這些樸素思想和過於簡單化的假設,但樸素貝葉斯分類器在很多復雜的現實情形中仍能夠取得相當好的效果。

熱點內容
福建電信伺服器ip地址 發布:2025-01-19 23:07:24 瀏覽:647
伺服器怎麼製作公告欄 發布:2025-01-19 23:06:23 瀏覽:873
英雄聯盟皮膚源碼 發布:2025-01-19 22:56:14 瀏覽:94
三星手機忘記解鎖密碼怎麼辦 發布:2025-01-19 22:45:43 瀏覽:291
Java為什麼沒有預編譯命令 發布:2025-01-19 22:44:14 瀏覽:303
路由器上寫的初始無密碼什麼意思 發布:2025-01-19 22:42:38 瀏覽:847
mysql配置主從資料庫 發布:2025-01-19 22:35:33 瀏覽:730
4大資料庫 發布:2025-01-19 22:34:35 瀏覽:975
win10用什麼解壓 發布:2025-01-19 22:27:15 瀏覽:799
反編譯連接資料庫 發布:2025-01-19 22:07:55 瀏覽:787