當前位置:首頁 » 操作系統 » 圖像演算法主機

圖像演算法主機

發布時間: 2023-11-27 07:47:28

❶ 在圖像處理中有哪些演算法

1、圖像變換:

由於圖像陣列很大,直接在空間域中進行處理,涉及計算量很大。採用各種圖像變換的方法,如傅立葉變換、沃爾什變換、離散餘弦變換等間接處理技術,將空間域的處理轉換為變換域處理,可減少計算量,獲得更有效的處理。它在圖像處理中也有著廣泛而有效的應用。

2、圖像編碼壓縮

圖像編碼壓縮技術可減少描述圖像的數據量,以便節省圖像傳輸、處理時間和減少所佔用的存儲器容量。

壓縮可以在不失真的前提下獲得,也可以在允許的失真條件下進行。

編碼是壓縮技術中最重要的方法,它在圖像處理技術中是發展最早且比較成熟的技術。

3、圖像增強和復原:

圖像增強和復原的目的是為了提高圖像的質量,如去除雜訊,提高圖像的清晰度等。

圖像增強不考慮圖像降質的原因,突出圖像中所感興趣的部分。如強化圖像高頻分量,可使圖像中物體輪廓清晰,細節明顯;如強化低頻分量可減少圖像中雜訊影響。

4、圖像分割:

圖像分割是數字圖像處理中的關鍵技術之一。

圖像分割是將圖像中有意義的特徵部分提取出來,其有意義的特徵有圖像中的邊緣、區域等,這是進一步進行圖像識別、分析和理解的基礎。

5、圖像描述:

圖像描述是圖像識別和理解的必要前提。

一般圖像的描述方法採用二維形狀描述,它有邊界描述和區域描述兩類方法。對於特殊的紋理圖像可採用二維紋理特徵描述。

6、圖像分類:

圖像分類屬於模式識別的范疇,其主要內容是圖像經過某些預處理(增強、復原、壓縮)後,進行圖像分割和特徵提取,從而進行判決分類。

圖像分類常採用經典的模式識別方法,有統計模式分類和句法模式分類。

(1)圖像演算法主機擴展閱讀:

圖像處理主要應用在攝影及印刷、衛星圖像處理、醫學圖像處理、面孔識別、特徵識別、顯微圖像處理和汽車障礙識別等。

數字圖像處理技術源於20世紀20年代,當時通過海底電纜從英國倫敦到美國紐約傳輸了一幅照片,採用了數字壓縮技術。

數字圖像處理技術可以幫助人們更客觀、准確地認識世界,人的視覺系統可以幫助人類從外界獲取3/4以上的信息,而圖像、圖形又是所有視覺信息的載體,盡管人眼的鑒別力很高,可以識別上千種顏色,

但很多情況下,圖像對於人眼來說是模糊的甚至是不可見的,通過圖象增強技術,可以使模糊甚至不可見的圖像變得清晰明亮。

❷ 現今的圖像壓縮演算法有哪些急...

淺談圖像壓縮演算法

余科亮

本文僅討論靜止圖像的壓縮基本演算法,圖像壓縮的目的在於以較少的數據來
表示圖像以節約存儲費用,或者傳輸時間和費用。
JPEG壓縮演算法可以用失真的壓縮方式來處理圖像,但失真的程度卻是肉眼所
無法辯認的。這也就是為什麼JPEG會有如此滿意的壓縮比例的原因。
下面主要討論,JPEG基本壓縮法。
一.JPEG壓縮過程

JPEG壓縮分四個步驟實現:
1.顏色模式轉換及采樣;
2.DCT變換;
3.量化;
4.編碼。

二.1.顏色模式轉換及采樣

RGB色彩系統是我們最常用的表示顏色的方式。JPEG採用的是YCbCr色彩系統。
想要用JPEG基本壓縮法處理全彩色圖像,得先把RGB顏色模式圖像數據,轉換為
YCbCr顏色模式的數據。Y代表亮度,Cb和Cr則代表色度、飽和度。通過下列計算
公式可完成數據轉換。
Y=0.2990R+0.5870G+0.1140B
Cb=-0.1687R-0.3313G+0.5000B+128
Cr=0.5000R-0.4187G-0.0813B+128
人類的眼晴對低頻的數據比對高頻的數據具有更高的敏感度,事實上,人類
的眼睛對亮度的改變也比對色彩的改變要敏感得多,也就是說Y成份的數據是比較
重要的。既然Cb成份和Cr成份的數據比較相對不重要,就可以只取部分數據來處
理。以增加壓縮的比例。JPEG通常有兩種采樣方式:YUV411和YUV422,它們所代
表的意義是Y、Cb和Cr三個成份的數據取樣比例。

2.DCT變換

DCT變換的全稱是離散餘弦變換(Discrete Cosine Transform),是指將一組
光強數據轉換成頻率數據,以便得知強度變化的情形。若對高頻的數據做些修飾,
再轉回原來形式的數據時,顯然與原始數據有些差異,但是人類的眼睛卻是不容
易辨認出來。
壓縮時,將原始圖像數據分成8*8數據單元矩陣,例如亮度值的第一個矩陣內
容如下:

JPEG將整個亮度矩陣與色度Cb矩陣,飽和度Cr矩陣,視為一個基本單元稱作
MCU。每個MCU所包含的矩陣數量不得超過10個。例如,行和列采樣的比例皆為4:
2:2,則每個MCU將包含四個亮度矩陣,一個色度矩陣及一個飽和度矩陣。
當圖像數據分成一個8*8矩陣後,還必須將每個數值減去128,然後一一代入
DCT變換公式中,即可達到DCT變換的目的。圖像數據值必須減去128,是因為DCT
轉換公式所接受的數字范圍是在-128到+127之間。
DCT變換公式:

x,y代表圖像數據矩陣內某個數值的坐標位置
f(x,y)代表圖像數據矩陣內的數個數值
u,v代表DCT變換後矩陣內某個數值的坐標位置
F(u,v)代表DCT變換後矩陣內的某個數值
u=0 且 v=0 c(u)c(v)=1/1.414
u>0 或 v>0 c(u)c(v)=1
經過DCT變換後的矩陣數據自然數為頻率系數,這些系數以F(0,0)的值最
大,稱為DC,其餘的63個頻率系數則多半是一些接近於0的正負浮點數,一概稱
之為AC。
3、量化
圖像數據轉換為頻率系數後,還得接受一項量化程序,才能進入編碼階段。
量化階段需要兩個8*8矩陣數據,一個是專門處理亮度的頻率系數,另一個則是
針對色度的頻率系數,將頻率系數除以量化矩陣的值,取得與商數最近的整數,
即完成量化。
當頻率系數經過量化後,將頻率系數由浮點數轉變為整數,這才便於執行最
後的編碼。不過,經過量化階段後,所有數據只保留整數近似值,也就再度損失
了一些數據內容,JPEG提供的量化表如下:

4、編碼
Huffman編碼無專利權問題,成為JPEG最常用的編碼方式,Huffman編碼通常
是以完整的MCU來進行的。
編碼時,每個矩陣數據的DC值與63個AC值,將分別使用不同的Huffman編碼
表,而亮度與色度也需要不同的Huffman編碼表,所以一共需要四個編碼表,才
能順利地完成JPEG編碼工作。
DC編碼
DC是彩採用差值脈沖編碼調制的差值編碼法,也就是在同一個圖像分量中取
得每個DC值與前一個DC值的差值來編碼。DC採用差值脈沖編碼的主要原因是由於
在連續色調的圖像中,其差值多半比原值小,對差值進行編碼所需的位數,會比
對原值進行編碼所需的位數少許多。例如差值為5,它的二進製表示值為101,如
果差值為-5,則先改為正整數5,再將其二進制轉換成1的補數即可。所謂1的補
數,就是將每個Bit若值為0,便改成1;Bit為1,則變成0。差值5應保留的位數
為3,下表即列出差值所應保留的Bit數與差值內容的對照。

在差值前端另外加入一些差值的霍夫曼碼值,例如亮度差值為5(101)的位
數為3,則霍夫曼碼值應該是100,兩者連接在一起即為100101。下列兩份表格分
別是亮度和色度DC差值的編碼表。根據這兩份表格內容,即可為DC差值加上霍夫
曼碼值,完成DC的編碼工作。

AC編碼
AC編碼方式與DC略有不同,在AC編碼之前,首先得將63個AC值按Zig-zag排
序,即按照下圖箭頭所指示的順序串聯起來。

63個AC值排列好的,將AC系數轉換成中間符號,中間符號表示為RRRR/SSSS,
RRRR是指第非零的AC之前,其值為0的AC個數,SSSS是指AC值所需的位數,AC系
數的范圍與SSSS的對應關系與DC差值Bits數與差值內容對照表相似。
如果連續為0的AC個數大於15,則用15/0來表示連續的16個0,15/0稱為ZRL
(Zero Rum Length),而(0/0)稱為EOB(Enel of Block)用來表示其後所
剩餘的AC系數皆等於0,以中間符號值作為索引值,從相應的AC編碼表中找出適
當的霍夫曼碼值,再與AC值相連即可。
例如某一組亮度的中間符為5/3,AC值為4,首先以5/3為索引值,從亮度AC
的Huffman編碼表中找到1111111110011110霍夫曼碼值,於是加上原來100(4)
即是用來取[5,4]的Huffman編碼1111111110011110100,[5,4]表示AC值為4的
前面有5個零。
由於亮度AC,色度AC霍夫曼編碼表比較長,在此省略去,有興趣者可參閱相
關書籍。
實現上述四個步驟,即完成一幅圖像的JPEG壓縮。

參考資料
[1] 林福宗 《圖像文件格式(上)——Windows 編程》,清華大學出版社,
1996年
[2] 李振輝、李仁各編著,《探索圖像文件的奧秘》,清華大學出版社,1996年
[3] 黎洪松、成實譯《JPEG靜止數據壓縮標准》,學苑出版社,1996年

❸ 圖像變換的目的是什麼,常用的圖像變換演算法有哪些

圖像變換的目的為了有效和快速地對圖像進行處理和分析,需要將原定義在圖像空間的圖像以某種形式轉換到另外的空間,利用空間的特有性質方便地進行一定的加工,最後再轉換回圖像空間以得到所需的效果。

圖像變換是對圖像處理演算法的總結,它可以分為四個部分:空域變換等維度演算法,空域變換變維度演算法,值域變換等維度演算法和值域變換變維度演算法。

其中空域變換主要指圖像在幾何上的變換,而值域變換主要指圖像在像素值上的變換。等維度變換是在相同的維度空間中,而變維度變換是在不同的維度空間中,例如二維到三維,灰度空間到彩色空間。

(3)圖像演算法主機擴展閱讀:

相關延伸:圖像簡介

21世紀是一個充滿信息的時代,圖像作為人類感知世界的視覺基礎,是人類獲取信息、表達信息和傳遞信息的重要手段。數字圖像處理,即用計算機對圖像進行處理,其發展歷史並不長。數字圖像處理技術源於20世紀20年代,當時通過海底電纜從英國倫敦到美國紐約傳輸了一幅照片,採用了數字壓縮技術。

首先數字圖像處理技術可以幫助人們更客觀、准確地認識世界,人的視覺系統可以幫助人類從外界獲取3/4以上的信息,而圖像、圖形又是所有視覺信息的載體,盡管人眼的鑒別力很高;

可以識別上千種顏色,但很多情況下,圖像對於人眼來說是模糊的甚至是不可見的,通過圖象增強技術,可以使模糊甚至不可見的圖像變得清晰明亮。

在計算機中,按照顏色和灰度的多少可以將圖像分為二值圖像、灰度圖像、索引圖像和真彩色RGB圖像四種基本類型。大多數圖像處理軟體都支持這四種類型的圖像。

中國物聯網校企聯盟認為圖像處理將會是物聯網產業發展的重要支柱之一,它的具體應用是指紋識別技術。

❹ 數字圖像處理的基本演算法及要解決的主要問題

圖像處理,是對圖像進行分析、加工、和處理,使其滿足視覺、心理以及其他要求的技術。圖像處理是信號處理在圖像域上的一個應用。目前大多數的圖像是以數字形式存儲,因而圖像處理很多情況下指數字圖像處理。此外,基於光學理論的處理方法依然佔有重要的地位。

圖像處理是信號處理的子類,另外與計算機科學、人工智慧等領域也有密切的關系。

傳統的一維信號處理的方法和概念很多仍然可以直接應用在圖像處理上,比如降噪、量化等。然而,圖像屬於二維信號,和一維信號相比,它有自己特殊的一面,處理的方式和角度也有所不同。
目錄
[隱藏]

* 1 解決方案
* 2 常用的信號處理技術
o 2.1 從一維信號處理擴展來的技術和概念
o 2.2 專用於二維(或更高維)的技術和概念
* 3 典型問題
* 4 應用
* 5 相關相近領域
* 6 參見

[編輯] 解決方案

幾十年前,圖像處理大多數由光學設備在模擬模式下進行。由於這些光學方法本身所具有的並行特性,至今他們仍然在很多應用領域佔有核心地位,例如 全息攝影。但是由於計算機速度的大幅度提高,這些技術正在迅速的被數字圖像處理方法所替代。

從通常意義上講,數字圖像處理技術更加普適、可靠和准確。比起模擬方法,它們也更容易實現。專用的硬體被用於數字圖像處理,例如,基於流水線的計算機體系結構在這方面取得了巨大的商業成功。今天,硬體解決方案被廣泛的用於視頻處理系統,但商業化的圖像處理任務基本上仍以軟體形式實現,運行在通用個人電腦上。

[編輯] 常用的信號處理技術

大多數用於一維信號處理的概念都有其在二維圖像信號領域的延伸,它們中的一部分在二維情形下變得十分復雜。同時圖像處理也具有自身一些新的概念,例如,連通性、旋轉不變性,等等。這些概念僅對二維或更高維的情況下才有非平凡的意義。

圖像處理中常用到快速傅立葉變換,因為它可以減小數據處理量和處理時間。

[編輯] 從一維信號處理擴展來的技術和概念

* 解析度(Image resolution|Resolution)
* 動態范圍(Dynamic range)
* 帶寬(Bandwidth)
* 濾波器設計(Filter (signal processing)|Filtering)
* 微分運算元(Differential operators)
* 邊緣檢測(Edge detection)
* Domain molation
* 降噪(Noise rection)

[編輯] 專用於二維(或更高維)的技術和概念

* 連通性(Connectedness|Connectivity)
* 旋轉不變性(Rotational invariance)

[編輯] 典型問題

* 幾何變換(geometric transformations):包括放大、縮小、旋轉等。
* 顏色處理(color):顏色空間的轉化、亮度以及對比度的調節、顏色修正等。
* 圖像合成(image composite):多個圖像的加、減、組合、拼接。
* 降噪(image denoising):研究各種針對二維圖像的去噪濾波器或者信號處理技術。
* 邊緣檢測(edge detection):進行邊緣或者其他局部特徵提取。
* 分割(image segmentation):依據不同標准,把二維圖像分割成不同區域。
* 圖像製作(image editing):和計算機圖形學有一定交叉。
* 圖像配准(image registration):比較或集成不同條件下獲取的圖像。
* 圖像增強(image enhancement):
* 圖像數字水印(image watermarking):研究圖像域的數據隱藏、加密、或認證。
* 圖像壓縮(image compression):研究圖像壓縮。

[編輯] 應用

* 攝影及印刷 (Photography and printing)
* 衛星圖像處理 (Satellite image processing)
* 醫學圖像處理 (Medical image processing)
* 面孔識別, 特徵識別 (Face detection, feature detection, face identification)
* 顯微圖像處理 (Microscope image processing)
* 汽車障礙識別 (Car barrier detection)

[編輯] 相關相近領域

* 分類(Classification)
* 特徵提取(Feature extraction)
* 模式識別(Pattern recognition)
* 投影(Projection)
* 多尺度信號分析(Multi-scale signal analysis)
* 離散餘弦變換(The Discrete Cosine Transform)

❺ 常見圖像插值演算法只有3種么

電腦攝像頭最高只有130萬像素的,800萬是通過軟體修改的。
何為數碼插值(軟體插值)
插值(Interpolation),有時也稱為「重置樣本」,是在不生成像素的情況下增加圖像像素大小的一種方法,在周圍像素色彩的基礎上用數學公式計算丟失像素的色彩。簡單地說,插值是根據中心像素點的顏色參數模擬出周邊像素值的方法,是數碼相機特有的放大數碼照片的軟體手段。
一、認識插值的演算法
「插值」最初是電腦術語,後來引用到數碼圖像上來。圖像放大時,像素也相應地增加,但這些增加的像素從何而來?這時插值就派上用場了。插值就是在不生成像素的情況下增加圖像像素大小的一種方法,在周圍像素色彩的基礎上用數學公式計算丟失像素的色彩(也有些相機使用插值,人為地增加圖像的解析度)。所以在放大圖像時,圖像看上去會比較平滑、干凈。但必須注意的是插值並不能增加圖像信息。以圖1為原圖(見圖1),以下是經過不同插值演算法處理的圖片。
1.最近像素插值演算法
最近像素插值演算法(Nearest Neighbour Interpolation)是最簡單的一種插值演算法,當圖片放大時,缺少的像素通過直接使用與之最接近的原有像素的顏色生成,也就是說照搬旁邊的像素,這樣做的結果是產生了明顯可見的鋸齒(見圖2)。
2.雙線性插值演算法
雙線性插值演算法(Bilinear Interpolation)輸出的圖像的每個像素都是原圖中四個像素(2×2)運算的結果,這種演算法極大程度上消除了鋸齒現象(見圖3)。 3.雙三次插值演算法
雙三次插值演算法(Bicubic Interpolation)是上一種演算法的改進演算法,它輸出圖像的每個像素都是原圖16個像素(4×4)運算的結果(見圖4)。這種演算法是一種很常見的演算法,普遍用在圖像編輯軟體、列印機驅動和數碼相機上。 4.分形演算法
分形演算法(Fractal Interpolation)是Altamira Group提出的一種演算法,這種演算法得到的圖像跟其他演算法相比更清晰、更銳利(見圖5)。
現在有許多數碼相機廠商將插值演算法用在了數碼相機上,並將通過演算法得到的解析度值大肆宣傳,固然他們的演算法比雙三次插值演算法等演算法先進很多,但是事實是圖像的細節不是憑空造出來的。因為插值解析度是數碼相機通過自身的內置軟體來增加圖像的像素,從而達到增大解析度的效果。
二、插值的影響
使用數碼變焦拍出來的照片不清晰,這是數碼變焦最遭人垢病的地方,事實上,這只是一種片面的說法。
數碼變焦對照片清晰度的影響有多大,取決於數碼相機在變焦時,CCD是否進行了插值運算。在使用高像素的情況下,如果採用數碼變焦進行拍攝,則此時CCD並不會有任何插值運算,數碼變焦對最終得到的數碼照片的清晰度的影響將會因此而變得極其有限。舉個例子,一台CCD像素為520萬、最大解析度為2560×1920的數碼相機,如果採用2×的數碼變焦來進行拍攝的話,那麼成像過程中只會有一半CCD在工作。換句話說,數碼相機並不會使用類似「在一個像素點周圍添加八個像素點」的插值演算法進行成像,而是通過降低解析度的方法,即1280×960這個解析度指標來進行成像。對於一般的數碼照片來說,1280×960這個解析度指標已經足夠優秀了,它與2560×1920解析度的差別將會因為沒有插值運算的參與而變得可以接受。不過這種現象只限於某些比較高級的數碼相機,對於那些千元以下的定焦數碼相機來說,使用數碼變焦就意味著必然的插值運算,犧牲解析度的後果使得照片拍攝者只能有兩個選擇:要麼得到一張模糊不清的「全尺寸」照片、要麼得到一張質量可以保證但解析度只有類似320×240這樣的「迷你」照片。

熱點內容
軒逸經典豪華有哪些配置 發布:2025-01-21 18:56:16 瀏覽:70
hibernate查詢sql語句 發布:2025-01-21 18:48:46 瀏覽:303
微信在安卓手機的哪個文件夾 發布:2025-01-21 18:43:52 瀏覽:51
sql127001 發布:2025-01-21 18:31:50 瀏覽:112
伺服器ip是什麼格式 發布:2025-01-21 18:13:13 瀏覽:706
oa和郵箱的初始密碼在哪裡改 發布:2025-01-21 18:08:46 瀏覽:52
如何去除pdf的加密 發布:2025-01-21 18:08:46 瀏覽:565
雲端的伺服器怎麼設置ip 發布:2025-01-21 17:48:52 瀏覽:186
會議腳本 發布:2025-01-21 17:41:29 瀏覽:23
android的toast 發布:2025-01-21 17:41:28 瀏覽:9