當前位置:首頁 » 操作系統 » aco演算法

aco演算法

發布時間: 2023-09-22 23:10:07

A. 遺傳演算法,蟻群演算法和粒子群演算法都是什麼演算法

遺傳演算法(Genetic Algorithm)是模擬達爾文生物進化論的自然選擇和遺傳學機理的生物進化過程的計算模型,是一種通過模擬自然進化過程搜索最優解的方法。
蟻群演算法(ant colony optimization, ACO),又稱螞蟻演算法,是一種用來在圖中尋找優化路徑的機率型演算法。
粒子群演算法,也稱粒子群優化演算法(Particle Swarm Optimization),縮寫為 PSO, 是近年來由J. Kennedy和R. C. Eberhart等[1] 開發的一種新的進化演算法(Evolutionary Algorithm - EA)。PSO 演算法屬於進化演算法的一種,和模擬退火演算法相似,它也是從隨機解出發,通過迭代尋找最優解,它也是通過適應度來評價解的品質,但它比遺傳演算法規則更為簡單,它沒有遺傳演算法的「交叉」(Crossover) 和「變異」(Mutation) 操作,它通過追隨當前搜索到的最優值來尋找全局最優。

B. 優化演算法是什麼

智能優化演算法是一種啟發式優化演算法,包括遺傳演算法、蟻群演算法、禁忌搜索演算法、模擬退火演算法、粒子群演算法等。·智能優化演算法一般是針對具體問題設計相關的演算法,理論要求弱,技術性強。一般,我們會把智能演算法與最優化演算法進行比較,相比之下,智能演算法速度快,應用性強。

群體智能優化演算法是一類基於概率的隨機搜索進化演算法,各個演算法之間存在結構、研究內容、計算方法等具有較大的相似性。

各個群體智能演算法之間最大不同在於演算法更新規則上,有基於模擬群居生物運動長更新的(如PSO,AFSA與SFLA),也有根據某種演算法機理設置更新規則(如ACO)。

(2)aco演算法擴展閱讀:

優化演算法有很多,關鍵是針對不同的優化問題,例如可行解變數的取值(連續還是離散)、目標函數和約束條件的復雜程度(線性還是非線性)等,應用不同的演算法。 對於連續和線性等較簡單的問題,可以選擇一些經典演算法,例如梯度、Hessian 矩陣、拉格朗日乘數、單純形法、梯度下降法等;而對於更復雜的問題,則可考慮用一些智能優化演算法。

C. 蟻群演算法的概念,最好能舉例說明一些蟻群演算法適用於哪些問題!

概念:蟻群演算法(ant colony optimization,ACO),又稱螞蟻演算法,是一種用來在圖中尋找優化路徑的機率型演算法.它由Marco Dorigo於1992年在他的博士論文中提出,其靈感來源於螞蟻在尋找食物過程中發現路徑的行為.蟻群演算法是一種模擬進化演算法,初步的研究表明該演算法具有許多優良的性質.針對PID控制器參數優化設計問題,將蟻群演算法設計的結果與遺傳演算法設計的結果進行了比較,數值模擬結果表明,蟻群演算法具有一種新的模擬進化優化方法的有效性和應用價值
其原理:為什麼小小的螞蟻能夠找到食物?他們具有智能么?設想,如果我們要為螞蟻設計一個人工智慧的程序,那麼這個程序要多麼復雜呢?首先,你要讓螞蟻能夠避開障礙物,就必須根據適當的地形給它編進指令讓他們能夠巧妙的避開障礙物,其次,要讓螞蟻找到食物,就需要讓他們遍歷空間上的所有點;再次,如果要讓螞蟻找到最短的路徑,那麼需要計算所有可能的路徑並且比較它們的大小,而且更重要的是,你要小心翼翼的編程,因為程序的錯誤也許會讓你前功盡棄.這是多麼不可思議的程序!太復雜了,恐怕沒人能夠完成這樣繁瑣冗餘的程序
應用范圍:螞蟻觀察到的范圍是一個方格世界,螞蟻有一個參數為速度半徑(一般是3),那麼它能觀察到的范圍就是3*3個方格世界,並且能移動的距離也在這個范圍之內
引申:跟著螞蟻的蹤跡,你找到了什麼?通過上面的原理敘述和實際操作,我們不難發現螞蟻之所以具有智能行為,完全歸功於它的簡單行為規則,而這些規則綜合起來具有下面兩個方面的特點:1、多樣性 2、正反饋 多樣性保證了螞蟻在覓食的時候不置走進死胡同而無限循環,正反饋機制則保證了相對優良的信息能夠被保存下來.我們可以把多樣性看成是一種創造能力,而正反饋是一種學習強化能力.正反饋的力量也可以比喻成權威的意見,而多樣性是打破權威體現的創造性,正是這兩點小心翼翼的巧妙結合才使得智能行為涌現出來了.引申來講,大自然的進化,社會的進步、人類的創新實際上都離不開這兩樣東西,多樣性保證了系統的創新能力,正反饋保證了優良特性能夠得到強化,兩者要恰到好處的結合.如果多樣性過剩,也就是系統過於活躍,這相當於螞蟻會過多的隨機運動,它就會陷入混沌狀態;而相反,多樣性不夠,正反饋機制過強,那麼系統就好比一潭死水.這在蟻群中來講就表現為,螞蟻的行為過於僵硬,當環境變化了,螞蟻群仍然不能適當的調整.既然復雜性、智能行為是根據底層規則涌現的,既然底層規則具有多樣性和正反饋特點,那麼也許你會問這些規則是哪裡來的?多樣性和正反饋又是哪裡來的?我本人的意見:規則來源於大自然的進化.而大自然的進化根據剛才講的也體現為多樣性和正反饋的巧妙結合.而這樣的巧妙結合又是為什麼呢?為什麼在你眼前呈現的世界是如此栩栩如生呢?答案在於環境造就了這一切,之所以你看到栩栩如生的世界,是因為那些不能夠適應環境的多樣性與正反饋的結合都已經死掉了,被環境淘汰了!蟻群演算法的實現 下面的程序開始運行之後,螞蟻們開始從窩里出動了,尋找食物;他們會順著屏幕爬滿整個畫面,直到找到食物再返回窩.其中,『F』點表示食物,『H』表示窩,白色塊表示障礙物,『+』就是螞蟻了.

D. 蟻群演算法及其應用實例

       蟻群演算法(ant colony optimization, ACO),又稱螞蟻演算法,是一種對自然界螞蟻的尋徑方式進行模擬而得到的一種仿生演算法,是一種用來在圖中尋找優化路徑的機率型演算法。
       螞蟻在運動過程中,可以在行走的路徑上留下信息素,後來的螞蟻可以感知到信息素的存在,信息素濃度越高的路徑越容易被後來的螞蟻選擇,從而形成一種正反饋現象。
       它能夠求出從原點出發,經過若干個給定的需求點,最終返回原點的最短路徑。這也就是著名的旅行商問題(Traveling Saleman Problem,TSP)。

       若螞蟻從A點出發到D點覓食,它可以隨機從ABD或ACD中選擇一條路。假設初始時為每條路分配一隻螞蟻,每個時間單位行走一步,則經過8個時間單位後,情形如下圖所示:ABD路線的螞蟻到達D點,ACD路線的螞蟻到達C點。

       那麼,再過8個時間單位,很容易可以得到下列情形:ABD路線的螞蟻回到A點,ACD路線的螞蟻到達D點。

α 代表信息素量對是否選擇當前路徑的影響程度,反映了蟻群在路徑搜索中隨機性因素作用的強度。
α 越大,螞蟻選擇以前走過的路徑的可能性越大,搜索的隨機性就會減弱。
α 過小,會導致蟻群搜索過早陷入局部最優,取值范圍通常為[1,4]。

β 反映了啟發式信息在指導蟻群搜索中的相對重要程度,蟻群尋優過程中先驗性、確定性因素作用的強度。
β 過大,雖然收斂速度加快,但是易陷入局部最優。
β 過小,蟻群易陷入純粹的隨機搜索,很難找到最優解。通常取[0,5]。

ρ 反映了信息素的蒸發程度,相反,1-ρ 表示信息素的保留水平
ρ 過大,信息素會發過快,容易導致最優路徑被排除。
ρ 過小,各路徑上信息素含量差別過小,以前搜索過的路徑被在此選擇的可能性過大,會影響演算法的隨機性和全局搜索能力。通常取[0.2,0.5]。

m過大,每條路徑上信息素趨於平均,正反饋作用減弱,從而導致收斂速度減慢。
m過小,可能導致一些從未搜索過的路徑信息素濃度減小為0,導致過早收斂,解的全局最優性降低

總信息量Q對演算法性能的影響有賴於αβρ的選取,以及演算法模型的選擇。
Q對ant-cycle模型蟻群演算法的性能沒有明顯影響,不必特別考慮,可任意選取。

E. 概率搜索演算法有哪些,除了遺傳演算法和蟻群

遺傳演算法(Genetic Algorithm,GA)是由Holland J.H.於20世紀70年代提出的一種優化方法,其最優解的搜索過程模擬達爾文的進化論和「適者生存」的思想。

蟻群演算法(Ant Colony Optimization, ACO),是一種用來在圖中尋找優化路徑的機率型演算法。

兩種演算法從概念上都屬於隨機優化演算法,遺傳演算法是進化演算法,主要通過選擇、變異和交叉運算元,其中每個基因是由二進制串組成;蟻群演算法是基於圖論的演算法,通過信息素選擇交換信息。

F. 中興捧月演算法大賽的比賽內容主要有哪一些賽題難么

去年的賽題分為四個門派,分別是:香農派、迪傑斯特拉派、傅里葉派、阿爾法勒克斯特派。四個門派代表四個不同的演算法方向,包括有線、無線、SDN和人工智慧大數據。選自己熟悉的方向參賽,賽題難不難看個人,無論如何一定要好好准備。

G. TSP解決之道——蟻群演算法

蟻群演算法java實現以及TSP問題蟻群演算法求解

蟻群演算法原理與應用講解

蟻群演算法原理與應用1 -自然計算與群體智能

1、蟻群演算法(Ant Clony Optimization,ACO)是一種群智能演算法,它是由一群無智能或有輕微智能的個體(Agent)通過相互協作而表現出智能行為,從而為求解復雜問題提供了一個新的可能性。

2、是一種仿生學的演算法,是由自然界中螞蟻覓食的行為而啟發。(artificial ants;雙橋實驗)

3、運作機理:當一定路徑上通過的螞蟻越來越多時,其留下的信息素軌跡也越來越多,後來螞蟻選擇該路徑的概率也越高,從而更增加了該路徑的信息素強度,而強度大的信息素會吸引更多的螞蟻,從而形成一種正反饋機制。

4、蟻群演算法歐化過程中的兩個重要原則:

     a、螞蟻在眾多路徑中轉移路線的選擇規則。

     b、全局化信息素更新規則。信息素更新的實質就是人工螞蟻根據真實螞蟻在訪問過的邊上留下的信息素和蒸發的信息素來模擬真實信息素數量的變化,從而使得越好的解得到越多的增強。這就形成了一種自催化強化學習(Autocatalytic Reinforcement Learning)的正反饋機制。

1、描述:螞蟻數量m;城市之間的信息素矩陣pheromone;每次迭代的m個螞蟻的最短路徑    BestLength;最佳路徑BestTour。                                                                                                                                     每隻螞蟻都有 :禁忌表(Tabu)存儲已訪問過的城市,允許訪問的城市表(Allowed)存儲還可以訪問的城市,矩陣( Delta )來存儲它在一個循環(或者迭代)中給所經過的路徑釋放的信息素。

2、 狀態轉移概率 :在搜索過程中,螞蟻根據各條路徑上的信息量及路徑的啟發信息來計算狀態轉移概率。在t時刻螞蟻k由元素(城市)i轉移到元素(城市)j的狀態轉移概率:

τij (t) :時刻路徑(i, j)上的信息量。ηij=1/dij :啟發函數。

α為信息啟發式因子 ,表示軌跡的相對重要性,反映了螞蟻在運動過程中積累的信息在螞蟻運動時所起的作用,其值越大,則該螞蟻越傾向於選擇其它螞蟻經過的路徑,螞蟻之間的協作性越強;

β為期望啟發式因子 ,表示能見度的相對重要性,反映螞蟻在運動過程中啟發信息在螞蟻選擇路徑中的受重視程度,其值越大,則該狀態狀態轉移概率越接近於貪心規則;

3、 息素更新規則 :

ρ表示信息素揮發系數;Δτij(t)表示本次循環中路徑(i, j)上的信息素增量,初始時刻Δτij(t) =0。

4、三種信息增量計算方法:

區別:第一種利用了全局信息,在走一圈後更新。二、三中都利用的是局部信息。通常使用第一種。

5、TSP中流程圖

熱點內容
電信帳號怎麼改密碼 發布:2025-01-24 05:11:22 瀏覽:846
筆記本x17配置怎麼選 發布:2025-01-24 05:05:53 瀏覽:7
python如何封裝 發布:2025-01-24 05:05:46 瀏覽:843
csgo怎麼連接伺服器 發布:2025-01-24 05:05:45 瀏覽:322
408哪個配置合適 發布:2025-01-24 05:01:54 瀏覽:882
oraclesql刪除重復 發布:2025-01-24 05:01:12 瀏覽:408
少兒編程排行 發布:2025-01-24 04:40:46 瀏覽:698
搭建伺服器怎麼使用 發布:2025-01-24 04:19:34 瀏覽:444
平行進口霸道哪些配置有用 發布:2025-01-24 04:19:32 瀏覽:874
ngram演算法 發布:2025-01-24 04:03:16 瀏覽:659