當前位置:首頁 » 操作系統 » 協同進化演算法

協同進化演算法

發布時間: 2023-09-08 16:22:39

⑴ pso的演算法結構

對微粒群演算法結構的改進方案有很多種,對其可分類為:採用多個子種群;改進微粒學習對象的選取策略;修改微粒更新迭代公式;修改速度更新策略;修改速度限制方法、位置限制方法和動態確定搜索空間;與其他搜索技術相結合;以及針對多模問題所作的改進。
第一類方案是採用多個子種群。柯晶考慮優化問題對收斂速度和尋優精度的雙重要求並借鑒多群體進化演算法的思想,將尋優微粒分成兩組,一組微粒採用壓縮因子的局部模式PSO演算法,另一組微粒採用慣性權重的全局模式PSO演算法,兩組微粒之間採用環形拓撲結構。對於高維優化問題,PSO演算法需要的微粒個數很多,導致計算復雜度常常很高,並且很難得到好的解。因此,出現了一種協作微粒群演算法(Cooperative ParticleSwarm Optimizer, CPSO-H),將輸入向量拆分成多個子向量,並對每個子向量使用一個微粒群來進行優化。雖然CPSO-H演算法使用一維群體來分別搜索每一維,但是這些搜索結果被一個全局群體集成起來之後,在多模問題上的性能與原始PSO演算法相比有很大的改進。Chow使用多個互相交互的子群,並引入相鄰群參考速度。馮奇峰提出將搜索區域分區,使用多個子群並通過微粒間的距離來保持多樣性。陳國初將微粒分成飛行方向不同的兩個分群,其中一分群朝最優微粒飛行,另一分群微粒朝相反方向飛行;飛行時,每一微粒不僅受到微粒本身飛行經驗和本分群最優微粒的影響,還受到全群最優微粒的影響。Niu在PSO演算法中引入主—從子群模式,提出一種多種群協作PSO演算法。Seo提出一種多組PSO演算法(Multigrouped PSO),使用N組微粒來同時搜索多模問題的N個峰。Selleri使用多個獨立的子群,在微粒速度的更新方程中添加了一些新項,分別使得微粒向子群歷史最優位置運動,或者遠離其他子群的重心。王俊年借鑒遞階編碼的思想,構造出一種多種群協同進化PSO演算法。高鷹借鑒生態學中環境和種群競爭的關系,提出一種基於種群密度的多種群PSO演算法。
第二類方案是改進微粒學習對象的選取策略。Al-kazemi提出多階段PSO演算法,將微粒按不同階段的臨時搜索目標分組,這些臨時目標允許微粒向著或背著它自己或全局最好位置移動。Ting對每個微粒的pBest進行操作,每一維從其他隨機確定的維度學習,之後如果新的pBest更好則替換原pBest;該文還比較了多種不同學習方式對應的PSO演算法的性能。Liang提出一種新穎的學習策略CLPSO,利用所有其他微粒的歷史最優信息來更新微粒的速度;每個微粒可以向不同的微粒學習,並且微粒的每一維可以向不同的微粒學習。該策略能夠保持群體的多樣性,防止早熟收斂,可以提高PSO演算法在多模問題上的性能;通過實驗將該演算法與其它幾種PSO演算法的變種進行比較,實驗結果表明該演算法在解決多模復雜問題時效果很好。Zhao在PSO演算法中使用適應值最好的n個值來代替速度更新公式中的gBest。Abdelbar提出一種模糊度量,從而使得每個鄰域中有多個適應值最好的微粒可以影響其它微粒。Wang也採用多個適應值最好的微粒信息來更新微粒速度,並提出一種模糊規則來自適應地確定參數。崔志華提出一種動態調整的改進PSO演算法,在運行過程中動態調整極限位置,使得每個微粒的極限位置在其所經歷的最好位置與整體最好位置所形成的動態圓中分布。與原始PSO演算法相反,有一類方法是遠離最差位置而非飛向最優位置。Yang提出在演算法中記錄最差位置而非最優位置,所有微粒都遠離這些最差位置。與此類似,Leontitsis在微粒群演算法中引入排斥子的概念,在使用個體最優位置和群體最優位置信息的同時,在演算法中記錄當前的個體最差位置和群體最差位置,並利用它們將微粒排斥到最優位置,從而讓微粒群更快地到達最優位置。孟建良提出一種改進的PSO演算法,在進化的初期,微粒以較大的概率向種群中其他微粒的個體最優學習;在進化後期,微粒以較大的概率向當前全局最優個體學習。Yang在PSO演算法中引入輪盤選擇技術來確定gBest,使得所有個體在進化早期都有機會引領搜索方向,從而避免早熟。
第三類方案是修改微粒更新公式。Hendtlass在速度更新方程中給每個微粒添加了記憶能力。He在速度更新方程中引入被動聚集機制。曾建潮通過對PSO演算法的速度進化迭代方程進行修正,提出一種保證全局收斂的隨機PSO演算法。Zeng在PSO演算法中引入加速度項,使得PSO演算法從一個二階隨機系統變為一個三階隨機系統,並使用PID控制器來控制演算法的演化。為了改進PSO演算法的全局搜索能力,Ho提出一種新的微粒速度和位置更新公式,並引入壽命(Age)變數。
第四類方案是修改速度更新策略。Liu認為過於頻繁的速度更新會弱化微粒的局部開采能力並減慢收斂,因此提出一種鬆弛速度更新(RVU)策略,僅當微粒使用原速度不能進一步提高適應值時才更新速度,並通過試驗證明該策略可以大大減小計算量並加速收斂。羅建宏對同步模式和非同步模式的PSO演算法進行了對比研究,試驗結果表明非同步模式收斂速度顯著提高,同時尋優效果更好。Yang在微粒的更新規則中引入感情心理模型。Liu採用一個最小速度閾值來控制微粒的速度,並使用一個模糊邏輯控制器來自適應地調節該最小速度閾值。張利彪提出了對PSO演算法增加更新概率,對一定比例的微粒並不按照原更新公式更新,而是再次隨機初始化。Dioan利用遺傳演算法(GA)來演化PSO演算法的結構,即微粒群中各微粒更新的順序和頻率。
第五類方案是修改速度限制方法、位置限制方法和動態確定搜索空間。Stacey提出一種重新隨機化速度的速度限制和一種重新隨機化位置的位置限制。Liu在[76]的基礎上,在PSO演算法中引入動量因子,來將微粒位置限制在可行范圍內。陳炳瑞提出一種根據微粒群的最佳適應值動態壓縮微粒群的搜索空間與微粒群飛行速度范圍的改進PSO演算法。
第六類方案是通過將PSO演算法與一些其他的搜索技術進行結合來提高PSO演算法的性能,主要目的有二,其一是提高種群多樣性,避免早熟;其二是提高演算法局部搜索能力。這些混合演算法包括將各種遺傳運算元如選擇、交叉、變異引入PSO演算法,來增加種群的多樣性並提高逃離局部最小的能力。Krink通過解決微粒間的沖突和聚集來增強種群多樣性,提出一種空間擴展PSO演算法(Spatial ExtensionPSO,SEPSO);但是SEPSO演算法的參數比較難以調節,為此Monson提出一種自適應調節參數的方法。用以提高種群多樣性的其他方法或模型還包括「吸引—排斥」、捕食—被捕食模型、耗散模型、自組織模型、生命周期模型(LifeCycle model)、貝葉斯優化模型、避免沖突機制、擁擠迴避(Crowd Avoidance)、層次化公平競爭(HFC)、外部記憶、梯度下降技術、線性搜索、單純形法運算元、爬山法、勞動分工、主成分分析技術、卡爾曼濾波、遺傳演算法、隨機搜索演算法、模擬退火、禁忌搜索、蟻群演算法(ACO)、人工免疫演算法、混沌演算法、微分演化、遺傳規劃等。還有人將PSO演算法在量子空間進行了擴展。Zhao將多主體系統(MAS)與PSO演算法集成起來,提出MAPSO演算法。Medasani借鑒概率C均值和概率論中的思想對PSO演算法進行擴展,提出一種概率PSO演算法,讓演算法分勘探和開發兩個階段運行。
第七類方案專門針對多模問題,希望能夠找到多個較優解。為了能使PSO演算法一次獲得待優化問題的多個較優解,Parsopoulos使用了偏轉(Deflection)、拉伸(Stretching)和排斥(Repulsion)等技術,通過防止微粒運動到之前已經發現的最小區域,來找到盡可能多的最小點。但是這種方法會在檢測到的局部最優點兩端產生一些新的局部最優點,可能會導致優化演算法陷入這些局部最小點。為此,Jin提出一種新的函數變換形式,可以避免該缺點。基於類似思想,熊勇提出一種旋轉曲面變換方法。
保持種群多樣性最簡單的方法,是在多樣性過小的時候,重置某些微粒或整個微粒群。Lvbjerg在PSO演算法中採用自組織臨界性作為一種度量,來描述微粒群中微粒相互之間的接近程度,來確定是否需要重新初始化微粒的位置。Clerc提出了一種「Re-Hope」方法,當搜索空間變得相當小但是仍未找到解時(No-Hope),重置微粒群。Fu提出一種帶C-Pg變異的PSO演算法,微粒按照一定概率飛向擾動點而非Pg。赫然提出了一種自適應逃逸微粒群演算法,限制微粒在搜索空間內的飛行速度並給出速度的自適應策略。
另一種變種是小生境PSO演算法,同時使用多個子種群來定位和跟蹤多個最優解。Brits還研究了一種通過調整適應值計算方式的方法來同時找到多個最優解。Li在PSO演算法中引入適應值共享技術來求解多模問題。Zhang在PSO演算法中採用順序生境(SequentialNiching)技術。在小生境PSO演算法的基礎上,還可以使用向量點積運算來確定各個小生境中的候選解及其邊界,並使該過程並行化,以獲得更好的結果。但是,各種小生境PSO演算法存在一個共同的問題,即需要確定一個小生境半徑,且演算法性能對該參數很敏感。為解決該問題,Bird提出一種自適應確定niching參數的方法。
Hendtlass在PSO演算法中引入短程力的概念,並基於此提出一種WoSP演算法,可以同時確定多個最優點。劉宇提出一種多模態PSO演算法,用聚類演算法對微粒進行聚類,動態地將種群劃分成幾個類,並且使用微粒所屬類的最優微粒而非整個種群的最好微粒來更新微粒的速度,從而可以同時得到多個近似最優解。Li在PSO演算法中引入物種的概念,但是由於其使用的物種間距是固定的,該方法只適用於均勻分布的多模問題;為此,Yuan對該演算法進行擴展,採用多尺度搜索方法對物種間距加以自適應的調整。
此外,也有研究者將PSO演算法的思想引入其他演算法中,如將PSO演算法中微粒的運動規則嵌入到進化規劃中,用PSO演算法中的運動規則來替代演化演算法中交叉運算元的功能。

⑵ 多目標智能優化演算法及其應用的序言

大多數工程和科學問題都是多目標優化問題,存在多個彼此沖突的目標,如何獲取這些問題的最優解,一直都是學術界和工程界關注的焦點問題.與單目標優化問題不同,多目標優化的本質在於,大多數情況下,某目標的改善可能引起其他目標性能的降低,同時使多個目標均達到最優是不可能的,只能在各目標之間進行協調權衡和折中處理,使所有目標函數盡可能達到最優,而且問題的最優解由數量眾多,甚至無窮大的Pareto最優解組成。
智能優化演算法是一類通過模擬某一自然現象或過程而建立起來的優化方法』這類演算法包括進化演算法、粒子群演算法、禁忌搜索、分散搜索、模擬退火、人工免疫系統和蟻群演算法等。和傳統的數學規劃法相比,智能優化演算法更適合求解多目標優化問題。首先,大多數智能優化演算法能同時處理一組解,演算法每運行一次,能獲得多個有效解。其次,智能優化演算法對Pareto最優前端的形狀和連續性不敏感,能很好地逼近非凸或不連續的最優前端。目前,智能優化演算法作為一類啟發式搜索演算法,已被成功應用於多目標優化領域,出現了一些熱門的研究方向,如進化多目標優化,同時,多目標智能優化演算法在電力系統、製造系統和控制系統等方面的應用研究也取得了很大的進展。
本書力圖全面總結作者和國內外同行在多目標智能優化演算法的理論與應用方面所取得的一系列研究成果。全書包括兩部分,共8章。第一部分為第1-4主要介紹了各種多目標智能優化演算法的理論。其中第1章為緒論,介紹各種智能優化演算法的基本思想和原理。第2章介紹多目標進化演算法,主要描述多目標進化演算法的基本原理、典型演算法和各種進化機制與策略,如混合策略、協同進化和動態進化策略等。第3章介紹多目標粒子群演算法,包括基本原理、典型演算法、混合演算法和交互粒子群演算法等。第4章描述除粒子群演算法和進化演算法之外的其他多目標智能優化演算法,主要介紹多目標模擬退火演算法、多目標蟻群演算法、多目標免疫演算法、多目標差分進化演算法和多目標分散搜索等。
第二部分為第5-8章,主要介紹了多目標智能優化演算法的應用』包括神經網路優化、生產調度、交通與物流系統優化、電力系統優化及其他。第5章描述人工神經網路的多目標優化,主要包括Pareto進化神經網路、徑向基神經網路、遞歸神經網路和模糊神經網路。第6章介紹交通與物流系統優化,主要描述了智能優化演算法在物流配送、城市公交路線網路和公共交通調度等方面的應用。

⑶ 遺傳演算法的優缺點

優點:

1、遺傳演算法是以決策變數的編碼作為運算對象,可以直接對集合、序列、矩陣、樹、圖等結構對象進行操作。這樣的方式一方面有助於模擬生物的基因、染色體和遺傳進化的過程,方便遺傳操作運算元的運用。

另一方面也使得遺傳演算法具有廣泛的應用領域,如函數優化、生產調度、自動控制、圖像處理、機器學習、數據挖掘等領域。

2、遺傳演算法直接以目標函數值作為搜索信息。它僅僅使用適應度函數值來度量個體的優良程度,不涉及目標函數值求導求微分的過程。因為在現實中很多目標函數是很難求導的,甚至是不存在導數的,所以這一點也使得遺傳演算法顯示出高度的優越性。

3、遺傳演算法具有群體搜索的特性。它的搜索過程是從一個具有多個個體的初始群體P(0)開始的,一方面可以有效地避免搜索一些不必搜索的點。

另一方面由於傳統的單點搜索方法在對多峰分布的搜索空間進行搜索時很容易陷入局部某個單峰的極值點,而遺傳演算法的群體搜索特性卻可以避免這樣的問題,因而可以體現出遺傳演算法的並行化和較好的全局搜索性。

4、遺傳演算法基於概率規則,而不是確定性規則。這使得搜索更為靈活,參數對其搜索效果的影響也盡可能的小。

5、遺傳演算法具有可擴展性,易於與其他技術混合使用。以上幾點便是遺傳演算法作為優化演算法所具備的優點。

缺點:

1、遺傳演算法在進行編碼時容易出現不規范不準確的問題。

2、由於單一的遺傳演算法編碼不能全面將優化問題的約束表示出來,因此需要考慮對不可行解採用閾值,進而增加了工作量和求解時間。

3、遺傳演算法效率通常低於其他傳統的優化方法。

4、遺傳演算法容易出現過早收斂的問題。

(3)協同進化演算法擴展閱讀

遺傳演算法的機理相對復雜,在Matlab中已經由封裝好的工具箱命令,通過調用就能夠十分方便的使用遺傳演算法。

函數ga:[x, fval,reason]= ga(@fitnessfun, nvars, options)x是最優解,fval是最優值,@fitnessness是目標函數,nvars是自變數個數,options是其他屬性設置。系統默認求最小值,所以在求最大值時應在寫函數文檔時加負號。

為了設置options,需要用到下面這個函數:options=gaoptimset('PropertyName1', 'PropertyValue1', 'PropertyName2', 'PropertyValue2','PropertyName3', 'PropertyValue3', ...)通過這個函數就能夠實現對部分遺傳演算法的參數的設置。

⑷ 請大家介紹一下遺傳演算法的書籍

王小平的《遺傳演算法——理論、應用與軟體實現》屬於較為經典的書,很多人都是看這本書入門的

焦李成等主編的《協同進化計算與多智能體系統》是一本非常好的書,內容不但新穎實用,後面的參考資料也非常豐富,而且大都是這方面的研究前沿和研究熱點。這本書還是國家863和973計劃資助的,很值得學習。

論文方面國內的你可以搜一下鍾偉才的論文,他應該是焦肆搏的學生(我猜的),他們都是西安電子科技大學雷達信號處理國家重點實驗室的專家。

多智能體系統,櫻雹緩免疫進化計算,協同進化,粒子群遺傳演算法應該是這幾年比較熱的題目

如果你是做數值優化或者是多目標計算,你重點要弄清實數編碼的遺傳演算法,如果是TSP或者是背包問題,則要深入了解二進制編碼的遺傳演算法。

向你脊模推薦兩篇文章:
《An Orthogonal Genetic Algorithm with Quantization for Global Numerical optimition》
《A Fast Elitist Non-Dominated Sorting Genetic Algorithm for Multi-Objective Optimization: NSGA-II》

第一篇主要解決超高維(幾百甚至上千維,不過我給你推薦的第二本書已經將這個紀錄推到了上萬維)問題。
第二篇主要講了一下利用協同進化的方法,求解多目標優化的問題,在實際應用價值很大。

我的郵箱[email protected]

熱點內容
三菱人機界面編程實例 發布:2025-01-31 03:13:04 瀏覽:237
des加密畢業論文 發布:2025-01-31 02:57:01 瀏覽:711
ip跨網段訪問 發布:2025-01-31 02:44:42 瀏覽:709
演算法帶頭人 發布:2025-01-31 02:42:25 瀏覽:552
方舟上傳數據 發布:2025-01-31 02:42:25 瀏覽:836
鈴木uy比uu多了什麼配置 發布:2025-01-31 02:34:11 瀏覽:677
蝦米音樂緩存文件夾 發布:2025-01-31 02:34:04 瀏覽:887
主播用什麼我的世界啟動器玩伺服器 發布:2025-01-31 02:32:37 瀏覽:644
做電腦硬體需要哪些配置 發布:2025-01-31 02:30:53 瀏覽:440
小米智能門鎖驗證密碼是多少 發布:2025-01-31 02:30:50 瀏覽:534