當前位置:首頁 » 操作系統 » matlab遺傳演算法代碼

matlab遺傳演算法代碼

發布時間: 2023-09-07 23:08:01

Ⅰ matlab的遺傳演算法求解0-1整數規劃的程序

x = intlinprog(f,intcon,A,b,Aeq,beq)就可以了毀梁
用法團余培舉例:塌唯
Write the objective function vector and vector of integervariables.
f = [-3;-2;-1];
intcon = 3;
Write the linear inequality constraints.
A = [1,1,1];
b = 7;
Write the linear equality constraints.
Aeq = [4,2,1];
beq = 12;
Write the bound constraints.
lb = zeros(3,1);
ub = [Inf;Inf;1]; % Enforces x(3) is binary
Call intlinprog.
x = intlinprog(f,intcon,A,b,Aeq,beq,lb,ub)

Ⅱ 在matlab中如何用遺傳演算法求解函數和的最小值

用遺傳演算法求已知函數的最小值點的方法:1、首先建立自定義函數,f(x)ga_fun=@(x)11*sin(6*x)+7*cos(5*x);2、其二用ga()函數求解最小值[x,fval,exitflag]=ga(ga_fun,1,[],[],[],[],lb) 3、然後用ezplot()函數或plot()函數,繪出其函數f(x)的圖形及最小值點4、運行結果5、執行代碼

Ⅲ matlab,遺傳演算法,求大佬幫忙

用遺傳演算法求最大值問題,可以這樣來解決。

1、將最大值問題轉換為最小值問題,即 max Z =- min Z;

2、建立其自定義函數,即

z=-(f1*40^1.5/1+f2*30^1.5/2+f2*20^1.5/2+。。。+f12*127^1.5/2+f12*5^1.5/4)

其中:f1,f2,f3,。。。f11,f12為0,1變數,可以用sign()符號函數來處理。

3、用遺傳演算法ga()函數求解,使用方法

objectivef=@ga_func;

nvars=12;

[x, fval] =ga(objectivef,nvars)

4、編程運行後得到

f1=1,f2=1,f3=1,f4=0,f5=1,f6=0,f7=1,f8=1,f9=1,f10=1,f11=1,f12=1

Zmax=27329.5018

Ⅳ 遺傳演算法的matlab代碼實現是什麼

遺傳演算法我懂,我的論文就是用著這個演算法,具體到你要遺傳演算法是做什麼?優化什麼的。。。我給你一個標准遺傳演算法程序供你參考:
該程序是遺傳演算法優化BP神經網路函數極值尋優:
%% 該代碼為基於神經網路遺傳演算法的系統極值尋優
%% 清空環境變數
clc
clear

%% 初始化遺傳演算法參數
%初始化參數
maxgen=100; %進化代數,即迭代次數
sizepop=20; %種群規模
pcross=[0.4]; %交叉概率選擇,0和1之間
pmutation=[0.2]; %變異概率選擇,0和1之間

lenchrom=[1 1]; %每個變數的字串長度,如果是浮點變數,則長度都為1
bound=[-5 5;-5 5]; %數據范圍

indivials=struct('fitness',zeros(1,sizepop), 'chrom',[]); %將種群信息定義為一個結構體
avgfitness=[]; %每一代種群的平均適應度
bestfitness=[]; %每一代種群的最佳適應度
bestchrom=[]; %適應度最好的染色體

%% 初始化種群計算適應度值
% 初始化種群
for i=1:sizepop
%隨機產生一個種群
indivials.chrom(i,:)=Code(lenchrom,bound);
x=indivials.chrom(i,:);
%計算適應度
indivials.fitness(i)=fun(x); %染色體的適應度
end
%找最好的染色體
[bestfitness bestindex]=min(indivials.fitness);
bestchrom=indivials.chrom(bestindex,:); %最好的染色體
avgfitness=sum(indivials.fitness)/sizepop; %染色體的平均適應度
% 記錄每一代進化中最好的適應度和平均適應度
trace=[avgfitness bestfitness];

%% 迭代尋優
% 進化開始
for i=1:maxgen
i
% 選擇
indivials=Select(indivials,sizepop);
avgfitness=sum(indivials.fitness)/sizepop;
%交叉
indivials.chrom=Cross(pcross,lenchrom,indivials.chrom,sizepop,bound);
% 變異
indivials.chrom=Mutation(pmutation,lenchrom,indivials.chrom,sizepop,[i maxgen],bound);

% 計算適應度
for j=1:sizepop
x=indivials.chrom(j,:); %解碼
indivials.fitness(j)=fun(x);
end

%找到最小和最大適應度的染色體及它們在種群中的位置
[newbestfitness,newbestindex]=min(indivials.fitness);
[worestfitness,worestindex]=max(indivials.fitness);
% 代替上一次進化中最好的染色體
if bestfitness>newbestfitness
bestfitness=newbestfitness;
bestchrom=indivials.chrom(newbestindex,:);
end
indivials.chrom(worestindex,:)=bestchrom;
indivials.fitness(worestindex)=bestfitness;

avgfitness=sum(indivials.fitness)/sizepop;

trace=[trace;avgfitness bestfitness]; %記錄每一代進化中最好的適應度和平均適應度
end
%進化結束

%% 結果分析
[r c]=size(trace);
plot([1:r]',trace(:,2),'r-');
title('適應度曲線','fontsize',12);
xlabel('進化代數','fontsize',12);ylabel('適應度','fontsize',12);
axis([0,100,0,1])
disp('適應度 變數');
x=bestchrom;
% 窗口顯示
disp([bestfitness x]);

Ⅳ 遺傳演算法求解超越方程,matlab程序,tanx=1/x, x∈[0,60],需要程序代碼

主程序代碼如下飢姿。主文件其它代碼及調用的其它函數詳見私信壓縮包。
for n=0:19;
x=linspace(0,60);
y1=tan(x);
y2=1./x;
figure(1);
plot(x,y1,'r',x,y2,'b')
title('函數曲線圖')
xlabel('x')
ylabel('y')
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%主程序%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
global BitLength %全局變數,計算如果滿足求解精度至少需要編碼的長度
global boundsbegin %全局變數,自變數的起始點
global boundsend %全局變數,自變數的終止點
bounds=[pi/2*2*n pi/2*(2*n+1)]; %一維自變數的取值范圍棚猛
precision=0.0001; %運算精度
boundsbegin=bounds(:,1);
boundsend=bounds(:,2); %計算如果滿足求解精度至少需要多長的染色體
BitLength=ceil(log2((boundsend-boundsbegin)' ./ precision));
popsize=60; %初始種群大小
Generationnmax=50; %最大代數
pcrossover=0.9999; %交配概率
pmutation=0.0001; %變異概率
population=round(rand(popsize,BitLength)); %初始種群,行代表一個個體,列代表不同個體
%計算適應度
[Fitvalue,cumsump]=fitnessfun(population); %輸入群體population,返回適應度Fitvalue和累積概率cumsump
Generation=1;
while Generation<(Generationnmax+1)
for j=1:2:popsize %1對1對的群體進行如下操作(交叉,變異)
%選擇
seln=selection(population,cumsump);
%交叉
scro=crossover(population,seln,pcrossover);
scnew(j,:)=scro(1,:);
scnew(j+1,:)=scro(2,:);
%變異
smnew(j,:)=mutation(scnew(j,:),pmutation);
smnew(j+1,:)=mutation(scnew(j+1,:),pmutation);
end
%產生了新的種群
population=smnew;

%計算新種群的適應度
[Fitvalue,cumsump]=fitnessfun(population); %記錄當前代最好的適應度和平均適應度
[fmax,nmax]=max(Fitvalue); %最好的適應度為fmax(即函數值最大),其對應的個體為nmax
fmean=mean(Fitvalue); %平均適應度為fmean
ymax(Generation)=fmax; %每代中最好的適應度
ymean(Generation)=fmean; %每代中的平均鏈肢橋適應度
%記錄當前代的最佳染色體個體
x=transform2to10(population(nmax,:));%population(nmax,:)為最佳染色體個體
xx=boundsbegin+x*(boundsend-boundsbegin)/(power(2,BitLength)-1);
xmax(Generation)=xx;
Generation=Generation+1;
end
Generation=Generation-1;%Generation加1、減1的操作是為了能記錄各代中的最佳函數值xmax(Generation)
targetfunvalue=targetfun(xmax);
[Besttargetfunvalue,nmax]=max(targetfunvalue);
Bestpopulation=xmax(nmax)
%繪制經過遺傳運算後的適應度曲線
figure(2);
hand1=plot(1:Generation,ymax);
set(hand1,'linestyle','-','linewidth',1,'marker','*','markersize',8)
hold on;
hand2=plot(1:Generation,ymean);
set(hand2,'color','k','linestyle','-','linewidth',1, 'marker','h','markersize',8)
xlabel('進化代數');
ylabel('最大和平均適應度');
xlim([1 Generationnmax]);
legend('最大適應度','平均適應度');
box off;
hold off;
end
%%%%%%%%%%%計算適應度函數%%%%%%%%%%%%%%%%%%%%%%%%
[Fitvalue,cumsump]=fitnessfun(population);
global BitLength
global boundsbegin
global boundsend
popsize=size(population,1); %計算個體個數
for i=1:popsize
x=transform2to10(population(i,:)); %將二進制轉換為十進制
%轉化為[-2,2]區間的實數
xx=boundsbegin+x*(boundsend-boundsbegin)/(power(2,BitLength)-1);
Fitvalue(i)=targetfun(xx); %計算函數值,即適應度
end
%給適應度函數加上一個大小合理的數以便保證種群適應值為正數
Fitvalue=Fitvalue'+230; %該處還有一個作用就是決定適應度是有利於選取幾個有利個體(加強競爭),海深減弱競爭
%計算選擇概率
fsum=sum(Fitvalue) ;
Pperpopulation=Fitvalue/fsum ; %適應度歸一化,及被復制的概率
%計算累積概率
cumsump(1)=Pperpopulation(1) ;
for i=2:popsize
cumsump(i)=cumsump(i-1)+Pperpopulation(i); %求累計概率
end
cumsump=cumsump' ; %累計概率

Ⅵ 急求matlab車輛調度遺傳演算法代碼,需求車輛行駛最優路徑。

function [path,lmin]=ga(data,d) %data為點集,d為距離矩陣,即賦權圖
tic
%======================
sj0=data;%開環最短路線
%=================================
% sj0=[data;data(1,:)]; %閉環最短路線
%=========================
x=sj0(:,1);y=sj0(:,2);
N=length(x);
%=========================
% d(N,:)=d(1,:);%閉環最短路線
% d(:,N)=d(:,1);%距離矩陣d
%======================
L=N; %sj0的長度
w=800;dai=1000;
%通過改良圈演算法選取優良父代A
for k=1:w
c=randperm(L-2);
c1=[1,c+1,L];
flag=1;
while flag>0
flag=0;
for m=1:L-3
for n=m+2:L-1
if d(c1(m),c1(n))+d(c1(m+1),c1(n+1))<d(c1(m),c1(m+1))+d(c1(n),c1(n+1))
flag=1;
c1(m+1:n)=c1(n:-1:m+1);
<a href="https://www..com/s?wd=end&tn=44039180_cpr&fenlei=-CEQLGCpyw9Uz4Bmy-bIi4WUvYETgN-" target="_blank" class="-highlight">end</a>
<a href="https://www..com/s?wd=end&tn=44039180_cpr&fenlei=-CEQLGCpyw9Uz4Bmy-bIi4WUvYETgN-" target="_blank" class="-highlight">end</a>
<a href="https://www..com/s?wd=end&tn=44039180_cpr&fenlei=-CEQLGCpyw9Uz4Bmy-bIi4WUvYETgN-" target="_blank" class="-highlight">end</a>
end
J(k,c1)=1:L;
end
J=J/L;
J(:,1)=0;J(:,L)=1;
rand('state',sum(clock));
%遺傳演算法實現過程
A=J;
for k=1:dai %產生0~1 間隨機數列進行編碼
B=A;
c=randperm(w);
%交配產生子代B
for i=1:2:w
F=2+floor(100*rand(1));
temp=B(c(i),F:L);
B(c(i),F:L)=B(c(i+1),F:L);
B(c(i+1),F:L)=temp;
end;
%變異產生子代C
by=find(rand(1,w)<0.1);
if length(by)==0
by=floor(w*rand(1))+1;
end
C=A(by,:);
L3=length(by);
for j=1:L3
<a href="https://www..com/s?wd=bw&tn=44039180_cpr&fenlei=-CEQLGCpyw9Uz4Bmy-bIi4WUvYETgN-" target="_blank" class="-highlight">bw</a>=floor(1+fix(rand(1,3)*N)); %產生1-N的3個隨機數
<a href="https://www..com/s?wd=bw&tn=44039180_cpr&fenlei=-CEQLGCpyw9Uz4Bmy-bIi4WUvYETgN-" target="_blank" class="-highlight">bw</a>=sort(<a href="https://www..com/s?wd=bw&tn=44039180_cpr&fenlei=-CEQLGCpyw9Uz4Bmy-bIi4WUvYETgN-" target="_blank" class="-highlight">bw</a>);
C(j,:)=C(j,[1:bw(1)-1,bw(2)+1:bw(3),bw(1):bw(2),bw(3)+1:L]);
end
G=[A;B;C];
<a href="https://www..com/s?wd=TL&tn=44039180_cpr&fenlei=-CEQLGCpyw9Uz4Bmy-bIi4WUvYETgN-" target="_blank" class="-highlight">TL</a>=size(G,1);
%在父代和子代中選擇優良品種作為新的父代
[<a href="https://www..com/s?wd=dd&tn=44039180_cpr&fenlei=-CEQLGCpyw9Uz4Bmy-bIi4WUvYETgN-" target="_blank" class="-highlight">dd</a>,IX]=sort(G,2);
temp=[];
temp(1:<a href="https://www..com/s?wd=TL&tn=44039180_cpr&fenlei=-CEQLGCpyw9Uz4Bmy-bIi4WUvYETgN-" target="_blank" class="-highlight">TL</a>)=0;
for j=1:<a href="https://www..com/s?wd=TL&tn=44039180_cpr&fenlei=-CEQLGCpyw9Uz4Bmy-bIi4WUvYETgN-" target="_blank" class="-highlight">TL</a>
for i=1:L-1
temp(j)=temp(j)+d(IX(j,i),IX(j,i+1));
end
end
[DZ,IZ]=sort(temp);
A=G(IZ(1:w),:);
end
path=IX(IZ(1),:)
% for i=1:length(path)
% path(i)=path(i)-1;
% end
% path=path(2:end-1);
lmin=0;l=0;
for j=1:(length(path)-1)
<a href="https://www..com/s?wd=t1&tn=44039180_cpr&fenlei=-CEQLGCpyw9Uz4Bmy-bIi4WUvYETgN-" target="_blank" class="-highlight">t1</a>=path(j);t2=path(j+1);
l=d(<a href="https://www..com/s?wd=t1&tn=44039180_cpr&fenlei=-CEQLGCpyw9Uz4Bmy-bIi4WUvYETgN-" target="_blank" class="-highlight">t1</a>,t2);
lmin=lmin+l;
end
xx=sj0(path,1);yy=sj0(path,2);
plot(xx,yy,'r-o');
axis equal
toc

Ⅶ MATLAB遺傳演算法

function ret=Code(lenchrom,bound)
%本函數將變數編碼成染色體,用於隨機初始化一個種群
% lenchrom input : 染色體長度
% bound input : 變數的取值范圍
% ret output: 染色體的編碼值

flag=0;
while flag==0
pick=rand(1,length(lenchrom));
ret=bound(:,1)'+(bound(:,2)-bound(:,1))'.*pick; %線性插值
flag=test(lenchrom,bound,ret); %檢驗染色體的可行性
end
function ret=Cross(pcross,lenchrom,chrom,sizepop,bound)
%本函數完成交叉操作
% pcorss input : 交叉概率
% lenchrom input : 染色體的長度
% chrom input : 染色體群
% sizepop input : 種群規模
% ret output : 交叉後的染色體

for i=1:sizepop

% 隨機選擇兩個染色體進行交叉
pick=rand(1,2);
while prod(pick)==0
pick=rand(1,2);
end
index=ceil(pick.*sizepop);
% 交叉概率決定是否進行交叉
pick=rand;
while pick==0
pick=rand;
end
if pick>pcross
continue;
end
flag=0;
while flag==0
% 隨機選擇交叉位置
pick=rand;
while pick==0
pick=rand;
end
pos=ceil(pick.*sum(lenchrom)); %隨機選擇進行交叉的位置,即選擇第幾個變數進行交叉,注意:兩個染色體交叉的位置相同
pick=rand; %交叉開始
v1=chrom(index(1),pos);
v2=chrom(index(2),pos);
chrom(index(1),pos)=pick*v2+(1-pick)*v1;
chrom(index(2),pos)=pick*v1+(1-pick)*v2; %交叉結束
flag1=test(lenchrom,bound,chrom(index(1),:)); %檢驗染色體1的可行性
flag2=test(lenchrom,bound,chrom(index(2),:)); %檢驗染色體2的可行性
if flag1*flag2==0
flag=0;
else flag=1;
end %如果兩個染色體不是都可行,則重新交叉
end
end
ret=chrom;

clc
clear all
% warning off

%% 遺傳演算法參數
maxgen=50; %進化代數
sizepop=100; %種群規模
pcross=[0.6]; %交叉概率
pmutation=[0.1]; %變異概率
lenchrom=[1 1]; %變數字串長度
bound=[-5 5;-5 5]; %變數范圍

%% 個體初始化
indivials=struct('fitness',zeros(1,sizepop), 'chrom',[]); %種群結構體
avgfitness=[]; %種群平均適應度
bestfitness=[]; %種群最佳適應度
bestchrom=[]; %適應度最好染色體
% 初始化種群
for i=1:sizepop
indivials.chrom(i,:)=Code(lenchrom,bound); %隨機產生個體
x=indivials.chrom(i,:);
indivials.fitness(i)= (x(1)*exp(-(x(1)^2 + x(2)^2)));
%-20*exp(-0.2*sqrt((x(1)^2+x(2)^2)/2))-exp((cos(2*pi*x(1))+cos(2*pi*x(2)))/2)+20+2.71289
% 這個是我的測試函數
% 如果有這個函數的話,可以得到最優值

end
%找最好的染色體
[bestfitness bestindex]=min(indivials.fitness);
bestchrom=indivials.chrom(bestindex,:); %最好的染色體
avgfitness=sum(indivials.fitness)/sizepop; %染色體的平均適應度
% 記錄每一代進化中最好的適應度和平均適應度
trace=[];

%% 進化開始
for i=1:maxgen

% 選擇操作
indivials=Select(indivials,sizepop);
avgfitness=sum(indivials.fitness)/sizepop;
% 交叉操作
indivials.chrom=Cross(pcross,lenchrom,indivials.chrom,sizepop,bound);
% 變異操作
indivials.chrom=Mutation(pmutation,lenchrom,indivials.chrom,sizepop,[i maxgen],bound);

% 計算適應度
for j=1:sizepop
x=indivials.chrom(j,:);
indivials.fitness(j)=(x(1)*exp(-(x(1)^2 + x(2)^2)));
%-20*exp(-0.2*sqrt((x(1)^2+x(2)^2)/2))-exp((cos(2*pi*x(1))+cos(2*pi*x(2)))/2)+20+2.71289
% -20*exp(-0.2*sqrt((x(1)^2+x(2)^2)/2))-exp((cos(2*pi*x(1))+cos(2*pi*x(2)))/2)+20+2.71289;

end

%找到最小和最大適應度的染色體及它們在種群中的位置
[newbestfitness,newbestindex]=min(indivials.fitness);
[worestfitness,worestindex]=max(indivials.fitness);
% 代替上一次進化中最好的染色體
if bestfitness>newbestfitness
bestfitness=newbestfitness;
bestchrom=indivials.chrom(newbestindex,:);
end
indivials.chrom(worestindex,:)=bestchrom;
indivials.fitness(worestindex)=bestfitness;

avgfitness=sum(indivials.fitness)/sizepop;

trace=[trace;avgfitness bestfitness]; %記錄每一代進化中最好的適應度和平均適應度
end
%進化結束

%% 結果顯示
[r c]=size(trace);
figure
plot([1:r]',trace(:,1),'r-',[1:r]',trace(:,2),'b--');
title(['函數值曲線 ' '終止代數=' num2str(maxgen)],'fontsize',12);
xlabel('進化代數','fontsize',12);ylabel('函數值','fontsize',12);
legend('各代平均值','各代最佳值','fontsize',12);
ylim([-0.5 5])
disp('函數值 變數');
% 窗口顯示
disp([bestfitness x]);

Ⅷ matlab 遺傳演算法

function m_main()
clear
clc
Max_gen=100;% 運行代數
pop_size=100;%種群大小
chromsome=10;%染色體的長度
pc=0.9;%交叉概率
pm=0.25;%變異概率
gen=0;%統計代數
%初始化
init=40*rand(pop_size,chromsome)-20;
pop=init;
fit=obj_fitness(pop);
[max_fit,index_max]=max(fit);maxfit=max_fit;
[min_fit,index_min]=min(fit);best_indiv=pop(index_max,:);
%迭代操作
while gen<Max_gen
gen=gen+1; bt(gen)=max_fit;
if maxfit<max_fit;maxfit=max_fit;pop(index_min,:)=pop(index_max,:);best_indiv=pop(index_max,:);end
best_indiv_tmp(gen)=pop(index_max);
newpop=ga(pop,pc,pm,chromsome,fit);
fit=obj_fitness(newpop);
[max_fit,index_max]=max(fit);
[min_fit,index_min]=min(fit);
pop=newpop;
trace(1,gen)=max_fit;
trace(2,gen)=sum(fit)./length(fit);
end
%運行結果
[f_max gen_ct]=max(bt)%求的最大值以及代數
maxfit
best_indiv
%畫圖
% bt
hold on
plot(trace(1,:),'.g:');
plot( trace(2,:),'.r-');
title('實驗結果圖')
xlabel('迭代次數/代'),ylabel('最佳適應度(最大值)');%坐標標注
plot(gen_ct-1,0:0.1:f_max+1,'c-');%畫出最大值
text(gen_ct,f_max+1, '最大值')
hold off

function [fitness]=obj_fitness(pop)
%適應度計算函數
[r c]=size(pop);
x=pop;
fitness=zeros(r,1);
for i=1:r
for j=1:c
fitness(i,1)=fitness(i,1)+sin(sqrt(abs(40*x(i))))+1-abs(x(i))/20.0;
end
end

function newpop=ga(pop,pc,pm,chromsome,fit);
pop_size=size(pop,1);
%輪盤賭選擇
ps=fit/sum(fit);
pscum=cumsum(ps);%size(pscum)
r=rand(1,pop_size);qw=pscum*ones(1,pop_size);
selected=sum(pscum*ones(1,pop_size)<ones(pop_size,1)*r)+1;
newpop=pop(selected,:);
%交叉
if pop_size/2~=0
pop_size=pop_size-1;
end

for i=1:2:pop_size-1
while pc>rand
c_pt=round(8*rand+1);
pop_tp1=newpop(i,:);pop_tp2=newpop(i+1,:);
newpop(i+1,1:c_pt)=pop_tp1(1,1:c_pt);
newpop(i,c_pt+1:chromsome)=pop_tp2(1,c_pt+1:chromsome);
end

end
% 變異
for i=1:pop_size
if pm>rand
m_pt=1+round(9*rand);
newpop(i,m_pt)=40*rand-20;
end
end

熱點內容
requestdatapython 發布:2025-01-31 08:02:01 瀏覽:44
javades加密工具 發布:2025-01-31 07:54:04 瀏覽:243
電話如何配置ip 發布:2025-01-31 07:48:48 瀏覽:300
2021賓士e300l哪個配置性價比高 發布:2025-01-31 07:47:14 瀏覽:656
sqlserver2008光碟 發布:2025-01-31 07:32:13 瀏覽:578
sql查詢小時 發布:2025-01-31 07:23:00 瀏覽:423
新車鑒別時怎麼查看汽車配置 發布:2025-01-31 07:19:37 瀏覽:880
linux驅動程序開發 發布:2025-01-31 06:56:03 瀏覽:770
nlms演算法 發布:2025-01-31 06:55:56 瀏覽:899
結束伺服器怎麼操作 發布:2025-01-31 06:54:17 瀏覽:394