動態路徑演算法
❶ 求幫演算法作業!用動態規劃法求解最長路徑問題
先對圖進行拓撲排序 一個結果為s b a c d t 拓撲排序的時候初始化dist[i] 表示從s到i的距離
dist[i]=max{dist[u]+edge[u][i], dist[i]}.
i從s取到t 最終得結果
❷ C++演算法 動態規劃 最短路徑問題
d[i][j][k]表示第i列 左邊的第j個到右邊的第k個的距離(第i個和第k個均表示圖中這一列的第i,k個,不是左邊第j個指向的第k個),d[2][2][2]就表示B2到C2的距離就是8,d[2][2][4]表示B2到C4為4
望採納
❸ 路由器的路徑選擇演算法是什麼
是一種動態的路由選擇演算法,就是通過各種參數(例如跳數,成本,帶寬等等)作為度量值來決定應該選擇哪條路徑作為到達目的網路的線路。
不同的動態路由協議有不同的參考值,例如RIP就是跳數(hop),IGRP,EIGRP是帶寬,延遲等等,OSPF是路徑成本
路由器是接到網路供應商(ISP)的路由器上的啊!然後他們又會通過路由器連接其他網路的路由器的!所以其實Internet就是不同的網路組成的,也就說說Internet是由多個路由組成的網路!所以就必須進行路徑的選擇
而且動態路由協議主要用於LAN和WAN網路的,Internet自己會利用外部網關協議(BGP)來進行路由選擇
❹ 計算機網路的最短路徑演算法有哪些對應哪些協議
用於解決最短路徑問題的演算法被稱做「最短路徑演算法」,有時被簡稱作「路徑演算法」。最常用的路徑演算法有:
Dijkstra演算法、A*演算法、SPFA演算法、Bellman-Ford演算法和Floyd-Warshall演算法,本文主要介紹其中的三種。
最短路徑問題是圖論研究中的一個經典演算法問題,旨在尋找圖(由結點和路徑組成的)中兩結點之間的最短路徑。
演算法具體的形式包括:
確定起點的最短路徑問題:即已知起始結點,求最短路徑的問題。
確定終點的最短路徑問題:與確定起點的問題相反,該問題是已知終結結點,求最短路徑的問題。在無向圖中該問題與確定起點的問題完全等同,在有向圖中該問題等同於把所有路徑方向反轉的確定起點的問題。
確定起點終點的最短路徑問題:即已知起點和終點,求兩結點之間的最短路徑。
全局最短路徑問題:求圖中所有的最短路徑。
Floyd
求多源、無負權邊的最短路。用矩陣記錄圖。時效性較差,時間復雜度O(V^3)。
Floyd-Warshall演算法(Floyd-Warshall algorithm)是解決任意兩點間的最短路徑的一種演算法,可以正確處理有向圖或負權的最短路徑問題。
Floyd-Warshall演算法的時間復雜度為O(N^3),空間復雜度為O(N^2)。
Floyd-Warshall的原理是動態規劃:
設Di,j,k為從i到j的只以(1..k)集合中的節點為中間節點的最短路徑的長度。
若最短路徑經過點k,則Di,j,k = Di,k,k-1 + Dk,j,k-1;
若最短路徑不經過點k,則Di,j,k = Di,j,k-1。
因此,Di,j,k = min(Di,k,k-1 + Dk,j,k-1 , Di,j,k-1)。
在實際演算法中,為了節約空間,可以直接在原來空間上進行迭代,這樣空間可降至二維。
Floyd-Warshall演算法的描述如下:
for k ← 1 to n do
for i ← 1 to n do
for j ← 1 to n do
if (Di,k + Dk,j < Di,j) then
Di,j ← Di,k + Dk,j;
其中Di,j表示由點i到點j的代價,當Di,j為 ∞ 表示兩點之間沒有任何連接。
Dijkstra
求單源、無負權的最短路。時效性較好,時間復雜度為O(V*V+E),可以用優先隊列進行優化,優化後時間復雜度變為0(v*lgn)。
源點可達的話,O(V*lgV+E*lgV)=>O(E*lgV)。
當是稀疏圖的情況時,此時E=V*V/lgV,所以演算法的時間復雜度可為O(V^2) 。可以用優先隊列進行優化,優化後時間復雜度變為0(v*lgn)。
Bellman-Ford
求單源最短路,可以判斷有無負權迴路(若有,則不存在最短路),時效性較好,時間復雜度O(VE)。
Bellman-Ford演算法是求解單源最短路徑問題的一種演算法。
單源點的最短路徑問題是指:給定一個加權有向圖G和源點s,對於圖G中的任意一點v,求從s到v的最短路徑。
與Dijkstra演算法不同的是,在Bellman-Ford演算法中,邊的權值可以為負數。設想從我們可以從圖中找到一個環
路(即從v出發,經過若干個點之後又回到v)且這個環路中所有邊的權值之和為負。那麼通過這個環路,環路中任意兩點的最短路徑就可以無窮小下去。如果不處理這個負環路,程序就會永遠運行下去。 而Bellman-Ford演算法具有分辨這種負環路的能力。
SPFA
是Bellman-Ford的隊列優化,時效性相對好,時間復雜度O(kE)。(k< 與Bellman-ford演算法類似,SPFA演算法採用一系列的鬆弛操作以得到從某一個節點出發到達圖中其它所有節點的最短路徑。所不同的是,SPFA演算法通過維護一個隊列,使得一個節點的當前最短路徑被更新之後沒有必要立刻去更新其他的節點,從而大大減少了重復的操作次數。
SPFA演算法可以用於存在負數邊權的圖,這與dijkstra演算法是不同的。
與Dijkstra演算法與Bellman-ford演算法都不同,SPFA的演算法時間效率是不穩定的,即它對於不同的圖所需要的時間有很大的差別。
在最好情形下,每一個節點都只入隊一次,則演算法實際上變為廣度優先遍歷,其時間復雜度僅為O(E)。另一方面,存在這樣的例子,使得每一個節點都被入隊(V-1)次,此時演算法退化為Bellman-ford演算法,其時間復雜度為O(VE)。
SPFA演算法在負邊權圖上可以完全取代Bellman-ford演算法,另外在稀疏圖中也表現良好。但是在非負邊權圖中,為了避免最壞情況的出現,通常使用效率更加穩定的Dijkstra演算法,以及它的使用堆優化的版本。通常的SPFA。
❺ floyd演算法 是動態規劃的思想嗎
1.定義概覽
Floyd-Warshall演算法(Floyd-Warshall
algorithm)是解決任意兩點間的最短路徑的一種演算法,可以正確處理有向圖或負權的最短路徑問題,同時也被用於計算有向圖的傳遞閉包。Floyd-Warshall演算法的時間復雜度為O(N3),空間復雜度為O(N2)。
2.演算法描述
1)演算法思想原理:
Floyd演算法是一個經典的動態規劃演算法。用通俗的語言來描述的話,首先我們的目標是尋找從點i到點j的最短路徑。從動態規劃的角度看問題,我們需要為這個目標重新做一個詮釋(這個詮釋正是動態規劃最富創造力的精華所在)
從任意節點i到任意節點j的最短路徑不外乎2種可能,1是直接從i到j,2是從i經過若干個節點k到j。所以,我們假設Dis(i,j)為節點u到節點v的最短路徑的距離,對於每一個節點k,我們檢查Dis(i,k)
+
Dis(k,j)
<
Dis(i,j)是否成立,如果成立,證明從i到k再到j的路徑比i直接到j的路徑短,我們便設置Dis(i,j)
=
Dis(i,k)
+
Dis(k,j),這樣一來,當我們遍歷完所有節點k,Dis(i,j)中記錄的便是i到j的最短路徑的距離。
2).演算法描述:
a.從任意一條單邊路徑開始。所有兩點之間的距離是邊的權,如果兩點之間沒有邊相連,則權為無窮大。
b.對於每一對頂...
1.定義概覽
Floyd-Warshall演算法(Floyd-Warshall
algorithm)是解決任意兩點間的最短路徑的一種演算法,可以正確處理有向圖或負權的最短路徑問題,同時也被用於計算有向圖的傳遞閉包。Floyd-Warshall演算法的時間復雜度為O(N3),空間復雜度為O(N2)。
2.演算法描述
1)演算法思想原理:
Floyd演算法是一個經典的動態規劃演算法。用通俗的語言來描述的話,首先我們的目標是尋找從點i到點j的最短路徑。從動態規劃的角度看問題,我們需要為這個目標重新做一個詮釋(這個詮釋正是動態規劃最富創造力的精華所在)
從任意節點i到任意節點j的最短路徑不外乎2種可能,1是直接從i到j,2是從i經過若干個節點k到j。所以,我們假設Dis(i,j)為節點u到節點v的最短路徑的距離,對於每一個節點k,我們檢查Dis(i,k)
+
Dis(k,j)
<
Dis(i,j)是否成立,如果成立,證明從i到k再到j的路徑比i直接到j的路徑短,我們便設置Dis(i,j)
=
Dis(i,k)
+
Dis(k,j),這樣一來,當我們遍歷完所有節點k,Dis(i,j)中記錄的便是i到j的最短路徑的距離。
2).演算法描述:
a.從任意一條單邊路徑開始。所有兩點之間的距離是邊的權,如果兩點之間沒有邊相連,則權為無窮大。
b.對於每一對頂點
u
和
v,看看是否存在一個頂點
w
使得從
u
到
w
再到
v
比己知的路徑更短。如果是更新它。
3).Floyd演算法過程矩陣的計算----十字交叉法
方法:兩條線,從左上角開始計算一直到右下角
如下所示
給出矩陣,其中矩陣A是鄰接矩陣,而矩陣Path記錄u,v兩點之間最短路徑所必須經過的點
❻ 從原點出發,遍歷50個點,再回到原點的最短路徑,求matlab程序
據 Drew 所知最短路經演算法現在重要的應用有計算機網路路由演算法,機器人探路,交通路線導航,人工智慧,游戲設計等等。美國火星探測器核心的尋路演算法就是採用的D*(D Star)演算法。
最短路經計算分靜態最短路計算和動態最短路計算。
靜態路徑最短路徑演算法是外界環境不變,計算最短路徑。主要有Dijkstra演算法,A*(A Star)演算法。
動態路徑最短路是外界環境不斷發生變化,即不能計算預測的情況下計算最短路。如在游戲中敵人或障礙物不斷移動的情況下。典型的有D*演算法。這是Drew程序實現的10000個節點的隨機路網三條互不相交最短路真實路網計算K條路徑示例:節點5696到節點3006,三條最快速路,可以看出路徑基本上走環線或主幹路。黑線為第一條,蘭線為第二條,紅線為第三條。約束條件系數為1.2。共享部分路段。 顯示計算部分完全由Drew自己開發的程序完成。 參見 K條路演算法測試程序
Dijkstra演算法求最短路徑:
Dijkstra演算法是典型最短路演算法,用於計算一個節點到其他所有節點的最短路徑。主要特點是以起始點為中心向外層層擴展,直到擴展到終點為止。Dijkstra演算法能得出最短路徑的最優解,但由於它遍歷計算的節點很多,所以效率低。
Dijkstra演算法是很有代表性的最短路演算法,在很多專業課程中都作為基本內容有詳細的介紹,如數據結構,圖論,運籌學等等。
Dijkstra一般的表述通常有兩種方式,一種用永久和臨時標號方式,一種是用OPEN, CLOSE表方式,Drew為了和下面要介紹的 A* 演算法和 D* 演算法表述一致,這里均採用OPEN,CLOSE表的方式。
大概過程:
創建兩個表,OPEN, CLOSE。
OPEN表保存所有已生成而未考察的節點,CLOSED表中記錄已訪問過的節點。
1. 訪問路網中里起始點最近且沒有被檢查過的點,把這個點放入OPEN組中等待檢查。
2. 從OPEN表中找出距起始點最近的點,找出這個點的所有子節點,把這個點放到CLOSE表中。
3. 遍歷考察這個點的子節點。求出這些子節點距起始點的距離值,放子節點到OPEN表中。
4. 重復2,3,步。直到OPEN表為空,或找到目標點。
這是在drew 程序中4000個節點的隨機路網上Dijkstra演算法搜索最短路的演示,黑色圓圈表示經過遍歷計算過的點由圖中可以看到Dijkstra演算法從起始點開始向周圍層層計算擴展,在計算大量節點後,到達目標點。所以速度慢效率低。
提高Dijkstra搜索速度的方法很多,據Drew所知,常用的有數據結構採用Binary heap的方法,和用Dijkstra從起始點和終點同時搜索的方法。
推薦網頁:http://www.cs.ecnu.e.cn/assist/js04/ZJS045/ZJS04505/zjs045050a.htm
簡明扼要介紹Dijkstra演算法,有圖解顯示和源碼下載。
A*(A Star)演算法:啟發式(heuristic)演算法
A*(A-Star)演算法是一種靜態路網中求解最短路最有效的方法。
公式表示為: f(n)=g(n)+h(n),
其中f(n) 是節點n從初始點到目標點的估價函數,
g(n) 是在狀態空間中從初始節點到n節點的實際代價,
h(n)是從n到目標節點最佳路徑的估計代價。
保證找到最短路徑(最優解的)條件,關鍵在於估價函數h(n)的選取:
估價值h(n)<= n到目標節點的距離實際值,這種情況下,搜索的點數多,搜索范圍大,效率低。但能得到最優解。
如果 估價值>實際值, 搜索的點數少,搜索范圍小,效率高,但不能保證得到最優解。
估價值與實際值越接近,估價函數取得就越好。
例如對於幾何路網來說,可以取兩節點間歐幾理德距離(直線距離)做為估價值,即f=g(n)+sqrt((dx-nx)*(dx-nx)+(dy-ny)*(dy-ny));這樣估價函數f在g值一定的情況下,會或多或少的受估價值h的制約,節點距目標點近,h值小,f值相對就小,能保證最短路的搜索向終點的方向進行。明顯優於Dijstra演算法的毫無無方向的向四周搜索。
conditions of heuristic
Optimistic (must be less than or equal to the real cost)
As close to the real cost as possible
主要搜索過程:
創建兩個表,OPEN表保存所有已生成而未考察的節點,CLOSED表中記錄已訪問過的節點。
遍歷當前節點的各個節點,將n節點放入CLOSE中,取n節點的子節點X,->算X的估價值->
While(OPEN!=NULL)
{
從OPEN表中取估價值f最小的節點n;
if(n節點==目標節點) break;
else
{
if(X in OPEN) 比較兩個X的估價值f //注意是同一個節點的兩個不同路徑的估價值
if( X的估價值小於OPEN表的估價值 )
更新OPEN表中的估價值; //取最小路徑的估價值
if(X in CLOSE) 比較兩個X的估價值 //注意是同一個節點的兩個不同路徑的估價值
if( X的估價值小於CLOSE表的估價值 )
更新CLOSE表中的估價值; 把X節點放入OPEN //取最小路徑的估價值
if(X not in both)
求X的估價值;
並將X插入OPEN表中;//還沒有排序
}
將n節點插入CLOSE表中;
按照估價值將OPEN表中的節點排序; //實際上是比較OPEN表內節點f的大小,從最小路徑的節點向下進行。
}