各種排序演算法比較
『壹』 各種排序演算法實現和比較
1、 堆排序定義
n個關鍵字序列Kl,K2,…,Kn稱為堆,當且僅當該序列滿足如下性質(簡稱為堆性質):
(1) ki≤K2i且ki≤K2i+1 或(2)Ki≥K2i且ki≥K2i+1(1≤i≤ )
若將此序列所存儲的向量R[1..n]看做是一棵完全二叉樹的存儲結構,則堆實質上是滿足如下性質的完全二叉樹:樹中任一非葉結點的關鍵字均不大於(或不小於)其左右孩子(若存在)結點的關鍵字。
關鍵字序列(10,15,56,25,30,70)和(70,56,30,25,15,10)分別滿足堆性質(1)和(2),故它們均是堆,其對應的完全二叉樹分別如小根堆示例和大根堆示例所示。
2、大根堆和小根堆
根結點(亦稱為堆頂)的關鍵字是堆里所有結點關鍵字中最小者的堆稱為小根堆。
根結點(亦稱為堆頂)的關鍵字是堆里所有結點關鍵字中最大者,稱為大根堆。
注意:
①堆中任一子樹亦是堆。
②以上討論的堆實際上是二叉堆(Binary Heap),類似地可定義k叉堆。
3、堆排序特點
堆排序(HeapSort)是一樹形選擇排序。
堆排序的特點是:在排序過程中,將R[l..n]看成是一棵完全二叉樹的順序存儲結構,利用完全二叉樹中雙親結點和孩子結點之間的內在關系,在當前無序區中選擇關鍵字最大(或最小)的記錄。
4、堆排序與直接插入排序的區別
直接選擇排序中,為了從R[1..n]中選出關鍵字最小的記錄,必須進行n-1次比較,然後在R[2..n]中選出關鍵字最小的記錄,又需要做n-2次比較。事實上,後面的n-2次比較中,有許多比較可能在前面的n-1次比較中已經做過,但由於前一趟排序時未保留這些比較結果,所以後一趟排序時又重復執行了這些比較操作。
堆排序可通過樹形結構保存部分比較結果,可減少比較次數。
5、堆排序
堆排序利用了大根堆(或小根堆)堆頂記錄的關鍵字最大(或最小)這一特徵,使得在當前無序區中選取最大(或最小)關鍵字的記錄變得簡單。
(1)用大根堆排序的基本思想
① 先將初始文件R[1..n]建成一個大根堆,此堆為初始的無序區
② 再將關鍵字最大的記錄R[1](即堆頂)和無序區的最後一個記錄R[n]交換,由此得到新的無序區R[1..n-1]和有序區R[n],且滿足R[1..n-1].keys≤R[n].key
③ 由於交換後新的根R[1]可能違反堆性質,故應將當前無序區R[1..n-1]調整為堆。然後再次將R[1..n-1]中關鍵字最大的記錄R[1]和該區間的最後一個記錄R[n-1]交換,由此得到新的無序區R[1..n-2]和有序區R[n-1..n],且仍滿足關系R[1..n-2].keys≤R[n-1..n].keys,同樣要將R[1..n-2]調整為堆。
……
直到無序區只有一個元素為止。
(2)大根堆排序演算法的基本操作:
① 初始化操作:將R[1..n]構造為初始堆;
② 每一趟排序的基本操作:將當前無序區的堆頂記錄R[1]和該區間的最後一個記錄交換,然後將新的無序區調整為堆(亦稱重建堆)。
注意:
①只需做n-1趟排序,選出較大的n-1個關鍵字即可以使得文件遞增有序。
②用小根堆排序與利用大根堆類似,只不過其排序結果是遞減有序的。堆排序和直接選擇排序相反:在任何時刻,堆排序中無序區總是在有序區之前,且有序區是在原向量的尾部由後往前逐步擴大至整個向量為止。
(3)堆排序的演算法:
void HeapSort(SeqIAst R)
{ //對R[1..n]進行堆排序,不妨用R[0]做暫存單元
int i;
BuildHeap(R); //將R[1-n]建成初始堆
for(i=n;i1;i--){ //對當前無序區R[1..i]進行堆排序,共做n-1趟。
R[0]=R[1];R[1]=R[i];R[i]=R[0]; //將堆頂和堆中最後一個記錄交換
Heapify(R,1,i-1); //將R[1..i-1]重新調整為堆,僅有R[1]可能違反堆性質
} //endfor
} //HeapSort
(4) BuildHeap和Heapify函數的實現
因為構造初始堆必須使用到調整堆的操作,先討論Heapify的實現。
① Heapify函數思想方法
每趟排序開始前R[l..i]是以R[1]為根的堆,在R[1]與R[i]交換後,新的無序區R[1..i-1]中只有R[1]的值發生了變化,故除R[1]可能違反堆性質外,其餘任何結點為根的子樹均是堆。因此,當被調整區間是R[low..high]時,只須調整以R[low]為根的樹即可。
"篩選法"調整堆
R[low]的左、右子樹(若存在)均已是堆,這兩棵子樹的根R[2low]和R[2low+1]分別是各自子樹中關鍵字最大的結點。若R[low].key不小於這兩個孩子結點的關鍵字,則R[low]未違反堆性質,以R[low]為根的樹已是堆,無須調整;否則必須將R[low]和它的兩個孩子結點中關鍵字較大者進行交換,即R[low]與R[large](R[large].key=max(R[2low].key,R[2low+1].key))交換。交換後又可能使結點R[large]違反堆性質,同樣由於該結點的兩棵子樹(若存在)仍然是堆,故可重復上述的調整過程,對以R[large]為根的樹進行調整。此過程直至當前被調整的結點已滿足堆性質,或者該結點已是葉子為止。上述過程就象過篩子一樣,把較小的關鍵字逐層篩下去,而將較大的關鍵字逐層選上來。因此,有人將此方法稱為"篩選法"。
具體的演算法
②BuildHeap的實現
要將初始文件R[l..n]調整為一個大根堆,就必須將它所對應的完全二叉樹中以每一結點為根的子樹都調整為堆。
顯然只有一個結點的樹是堆,而在完全二叉樹中,所有序號 的結點都是葉子,因此以這些結點為根的子樹均已是堆。這樣,我們只需依次將以序號為 , -1,…,1的結點作為根的子樹都調整為堆即可。
具體演算法。
5、大根堆排序實例
對於關鍵字序列(42,13,24,91,23,16,05,88),在建堆過程中完全二叉樹及其存儲結構的變化情況參見。
6、 演算法分析
堆排序的時間,主要由建立初始堆和反復重建堆這兩部分的時間開銷構成,它們均是通過調用Heapify實現的。
堆排序的最壞時間復雜度為O(nlgn)。堆排序的平均性能較接近於最壞性能。
由於建初始堆所需的比較次數較多,所以堆排序不適宜於記錄數較少的文件。
堆排序是就地排序,輔助空間為O(1),
它是不穩定的排序方法。
『貳』 數據結構中比較各種排序演算法 求詳解 ,,,,,,,,,,
排序演算法包括:插入排序、交換排序、選擇排序以及合並排序。
其中插入排序包括直接插入排序和Shell排序,交換排序包括冒泡排序和分化交換排序,選擇排序包括直接選擇排序和堆排序。
這些排序演算法中,直接插入排序、冒泡排序和直接選擇排序這三種排序的演算法平均時間復雜度是O(n的平方);分化交換排序、堆排序和合並排序這三種排序的演算法平均時間復雜度是
『叄』 各種排序演算法最好和最壞情況比較
最壞情況下比較次數最少的為D)堆排序:
A)冒泡排序 需要比較O(n^2)次(n(n - 1)/2次),即序列逆序的情況
B)簡單選擇排序,無論是否最壞都需要O(n^2)次(n(n - 1)/2次)
C)直接插入排序,最壞情況需要比較O(n^2)次(n(n - 1)/2次)
D)堆排序,無論是否最壞比較O(nlog2n)次
E)快速排序,最壞情況退化為冒泡排序,需要比較O(n^2)次(n(n - 1)/2次)
『肆』 幾種排序演算法的比較
一、八大排序演算法的總體比較
4.3、堆的插入:
每次插入都是將新數據放在數組最後。可以發現從這個新數據的父結點到根結點必然為一個有序的數列,然後將這個新數據插入到這個有序數據中
(1)用大根堆排序的基本思想
先將初始數組建成一個大根堆,此對為初始的無序區;
再將最大的元素和無序區的最後一個記錄交換,由此得到新的無序區和有序區,且滿足<=的值;
由於交換後新的根可能違反堆性質,故將當前無序區調整為堆。然後再次將其中最大的元素和該區間的最後一個記錄交換,由此得到新的無序區和有序區,且仍滿足關系的值<=的值,同樣要將其調整為堆;
..........
直到無序區只有一個元素為止;
4.4:應用
尋找M個數中的前K個最小的數並保持有序;
時間復雜度:O(K)[創建K個元素最大堆的時間復雜度] +(M-K)*log(K)[對剩餘M-K個數據進行比較並每次對最大堆進行從新最大堆化]
5.希爾排序
(1)基本思想
先將整個待排序元素序列分割成若乾子序列(由相隔某個「增量」的元素組成的)分別進行直接插入排序,然後依次縮減增量再進行排序,待整個序列中的元素基本有序(增量足夠小)時,再對全體元素進行一次直接插入排序(因為直接插入排序在元素基本有序的情況下,效率很高);
(2)適用場景
比較在希爾排序中是最主要的操作,而不是交換。用已知最好的步長序列的希爾排序比直接插入排序要快,甚至在小數組中比快速排序和堆排序還快,但在涉及大量數據時希爾排序還是不如快排;
6.歸並排序
(1)基本思想
首先將初始序列的n個記錄看成是n個有序的子序列,每個子序列的長度為1,然後兩兩歸並,得到n/2個長度為2的有序子序列,在此基礎上,再對長度為2的有序子序列進行兩兩歸並,得到若干個長度為4的有序子序列,以此類推,直到得到一個長度為n的有序序列為止;
(2)適用場景
若n較大,並且要求排序穩定,則可以選擇歸並排序;
7.簡單選擇排序
(1)基本思想
第一趟:從第一個記錄開始,將後面n-1個記錄進行比較,找到其中最小的記錄和第一個記錄進行交換;
第二趟:從第二個記錄開始,將後面n-2個記錄進行比較,找到其中最小的記錄和第2個記錄進行交換;
...........
第i趟:從第i個記錄開始,將後面n-i個記錄進行比較,找到其中最小的記錄和第i個記錄進行交換;
以此類推,經過n-1趟比較,將n-1個記錄排到位,剩下一個最大記錄直接排在最後;
『伍』 常見的幾種排序演算法總結
對於非科班生的我來說,演算法似乎對我來說是個難點,查閱了一些資料,趁此來了解一下幾種排序演算法。
首先了解一下,什麼是程序
關於排序演算法通常我們所說的往往指的是內部排序演算法,即數據記錄在內存中進行排序。
排序演算法大體可分為兩種:
一種是比較排序,時間復雜度O(nlogn) ~ O(n^2),主要有:冒泡排序,選擇排序,插入排序,歸並排序,堆排序,快速排序等。
另一種是非比較排序,時間復雜度可以達到O(n),主要有:計數排序,基數排序,桶排序等
冒泡排序它重復地走訪過要排序的元素,一次比較相鄰兩個元素,如果他們的順序錯誤就把他們調換過來,直到沒有元素再需要交換,排序完成。這個演算法的名字由來是因為越小(或越大)的元素會經由交換慢慢「浮」到數列的頂端。
選擇排序類似於冒泡排序,只不過選擇排序是首先在未排序的序列中找到最小值(最大值),放到序列的起始位置,然後再從剩餘未排序元素中繼續尋找最小(大)元素,放到已排序序列的末尾,以此類推,直到所有元素均排序完畢。
插入排序比冒泡排序和選擇排序更有效率,插入排序類似於生活中抓撲克牌來。
插入排序具體演算法描述,以數組[3, 2, 4, 5, 1]為例。
前面三種排序演算法只有教學價值,因為效率低,很少實際使用。歸並排序(Merge sort)則是一種被廣泛使用的排序方法。
它的基本思想是,將兩個已經排序的數組合並,要比從頭開始排序所有元素來得快。因此,可以將數組拆開,分成n個只有一個元素的數組,然後不斷地兩兩合並,直到全部排序完成。
以對數組[3, 2, 4, 5, 1] 進行從小到大排序為例,步驟如下:
有了merge函數,就可以對任意數組排序了。基本方法是將數組不斷地拆成兩半,直到每一半隻包含零個元素或一個元素為止,然後就用merge函數,將拆成兩半的數組不斷合並,直到合並成一整個排序完成的數組。
快速排序(quick sort)是公認最快的排序演算法之一,有著廣泛的應用。
快速排序演算法步驟
參考:
常用排序演算法總結(一)
阮一峰-演算法總結