當前位置:首頁 » 操作系統 » 大數據挖掘的演算法研究與應用

大數據挖掘的演算法研究與應用

發布時間: 2023-08-25 11:02:21

① 大數據研究常用軟體工具與應用場景

大數據研究常用軟體工具與應用場景

如今,大數據日益成為研究行業的重要研究目標。面對其高數據量、多維度與異構化的特點,以及分析方法思路的擴展,傳統統計工具已經難以應對。

工欲善其事,必先利其器。眾多新的軟體分析工具作為深入大數據洞察研究的重要助力, 也成為數據科學家所必須掌握的知識技能。

然而,現實情況的復雜性決定了並不存在解決一切問題的終極工具。實際研究過程中,需要根據實際情況靈活選擇最合適的工具(甚至多種工具組合使用),才能更好的完成研究探索。

為此,本文針對研究人員(非技術人員)的實際情況,介紹當前大數據研究涉及的一些主要工具軟體(因為相關軟體眾多,只介紹常用的),並進一步闡述其應用特點和適合的場景,以便於研究人員能有的放矢的學習和使用。

基礎篇

傳統分析/商業統計

Excel、SPSS、SAS 這三者對於研究人員而言並不陌生。

Excel 作為電子表格軟體,適合簡單統計(分組/求和等)需求,由於其方便好用,功能也能滿足很多場景需要,所以實際成為研究人員最常用的軟體工具。其缺點在於功能單一,且可處理數據規模小(這一點讓很多研究人員尤為頭疼)。這兩年Excel在大數據方面(如地理可視化和網路關系分析)上也作出了一些增強,但應用能力有限。

SPSS(SPSS Statistics)和SAS作為商業統計軟體,提供研究常用的經典統計分析(如回歸、方差、因子、多變數分析等)處理。
SPSS 輕量、易於使用,但功能相對較少,適合常規基本統計分析
SAS 功能豐富而強大(包括繪圖能力),且支持編程擴展其分析能力,適合復雜與高要求的統計性分析。

上述三個軟體在面對大數據環境出現了各種不適,具體不再贅述。但這並不代表其沒有使用價值。如果使用傳統研究方法論分析大數據時,海量原始數據資源經過前期處理(如降維和統計匯總等)得到的中間研究結果,就很適合使用它們進行進一步研究。

數據挖掘

數據挖掘作為大數據應用的重要領域,在傳統統計分析基礎上,更強調提供機器學習的方法,關注高維空間下復雜數據關聯關系和推演能力。代表是SPSS Modeler(注意不是SPSS Statistics,其前身為Clementine)

SPSS Modeler 的統計功能相對有限, 主要是提供面向商業挖掘的機器學習演算法(決策樹、神經元網路、分類、聚類和預測等)的實現。同時,其數據預處理和結果輔助分析方面也相當方便,這一點尤其適合商業環境下的快速挖掘。不過就處理能力而言,實際感覺難以應對億級以上的數據規模。

另一個商業軟體 Matlab 也能提供大量數據挖掘的演算法,但其特性更關注科學與工程計算領域。而著名的開源數據挖掘軟體Weka,功能較少,且數據預處理和結果分析也比較麻煩,更適合學術界或有數據預處理能力的使用者。

中級篇

1、通用大數據可視化分析

近兩年來出現了許多面向大數據、具備可視化能力的分析工具,在商業研究領域,TableAU無疑是卓越代表。

TableAU 的優勢主要在於支持多種大數據源/格式,眾多的可視化圖表類型,加上拖拽式的使用方式,上手快,非常適合研究員使用,能夠涵蓋大部分分析研究的場景。不過要注意,其並不能提供經典統計和機器學習演算法支持, 因此其可以替代Excel, 但不能代替統計和數據挖掘軟體。另外,就實際處理速度而言,感覺面對較大數據(實例超過3000萬記錄)時,並沒有官方介紹的那麼迅速。

2 、關系分析

關系分析是大數據環境下的一個新的分析熱點(比如信息傳播圖、社交關系網等),其本質計算的是點之間的關聯關系。相關工具中,適合數據研究人員的是一些可視化的輕量桌面型工具,最常用的是Gephi。

Gephi 是免費軟體,擅長解決圖網路分析的很多需求,其插件眾多,功能強且易用。我們經常看到的各種社交關系/傳播譜圖, 很多都是基於其力導向圖(Force directed graph)功能生成。但由於其由java編寫,限制了處理性能(感覺處理超過10萬節點/邊時常陷入假死),如分析百萬級節點(如微博熱點傳播路徑)關系時,需先做平滑和剪枝處理。 而要處理更大規模(如億級以上)的關系網路(如社交網路關系)數據,則需要專門的圖關系資料庫(如GraphLab/GraphX)來支撐了,其技術要求較高,此處不再介紹。

3、時空數據分析

當前很多軟體(包括TableAU)都提供了時空數據的可視化分析功能。但就使用感受來看,其大都只適合較小規模(萬級)的可視化展示分析,很少支持不同粒度的快速聚合探索。

如果要分析千萬級以上的時空數據,比如新浪微博上億用戶發文的時間與地理分布(從省到街道多級粒度的探索)時,推薦使用 NanoCubes(http://www.nanocubes.net/)。該開源軟體可在日常的辦公電腦上提供對億級時空數據的快速展示和多級實時鑽取探索分析。下圖是對芝加哥犯罪時間地點的分析,網站有更多的實時分析的演示例子

4、文本/非結構化分析

基於自然語言處理(NLP)的文本分析,在非結構化內容(如互聯網/社交媒體/電商評論)大數據的分析方面(甚至調研開放題結果分析)有重要用途。其應用處理涉及分詞、特徵抽取、情感分析、多主題模型等眾多內容。

由於實現難度與領域差異,當前市面上只有一些開源函數包或者雲API(如BosonNLP)提供一些基礎處理功能,尚未看到適合商業研究分析中文文本的集成化工具軟體(如果有誰知道煩請通知我)。在這種情況下,各商業公司(如HCR)主要依靠內部技術實力自主研發適合業務所需的分析功能。

高級篇

前面介紹的各種大數據分析工具,可應對的數據都在億級以下,也以結構化數據為主。當實際面臨以下要求: 億級以上/半實時性處理/非標准化復雜需求 ,通常就需要藉助編程(甚至藉助於Hadoop/Spark等分布式計算框架)來完成相關的分析。 如果能掌握相關的編程語言能力,那研究員的分析能力將如虎添翼。

當前適合大數據處理的編程語言,包括:

R語言——最適合統計研究背景的人員學習,具有豐富的統計分析功能庫以及可視化繪圖函數可以直接調用。通過Hadoop-R更可支持處理百億級別的數據。 相比SAS,其計算能力更強,可解決更復雜更大數據規模的問題。

Python語言——最大的優勢是在文本處理以及大數據量處理場景,且易於開發。在相關分析領域,Python代替R的勢頭越來越明顯。

Java語言——通用性編程語言,能力最全面,擁有最多的開源大數據處理資源(統計、機器學習、NLP等等)直接使用。也得到所有分布式計算框架(Hadoop/Spark)的支持。

前面的內容介紹了面向大數據研究的不同工具軟體/語言的特點和適用場景。 這些工具能夠極大增強研究員在大數據環境下的分析能力,但更重要的是研究員要發揮自身對業務的深入理解,從數據結果中洞察發現有深度的結果,這才是最有價值的。

以上是小編為大家分享的關於大數據研究常用軟體工具與應用場景的相關內容,更多信息可以關注環球青藤分享更多干貨

② 大數據挖掘常用的方法有哪些

1、分類。分類是找出資料庫中一組數據對象的共同特點並按照分類模式將其劃分為不同的類,其目的是通過分類模型,將資料庫中的數據項映射到某個給定的類別。
它可以應用到客戶的分類、客戶的屬性和特徵分析、客戶滿意度分析、客戶的購買趨勢預測等,如一個汽車零售商將客戶按照對汽車的喜好劃分成不同的類,這樣營銷人員就可以將新型汽車的廣告手冊直接郵寄到有這種喜好的客戶手中,從而大大增加了商業機會。
2、回歸分析。回歸分析方法反映的是事務資料庫中屬性值在時間上的特徵,產生一個將數據項映射到一個實值預測變數的函數,發現變數或屬性間的依賴關系,其主要研究問題包括數據序列的趨勢特徵、數據序列的預測以及數據間的相關關系等。
它可以應用到市場營銷的各個方面,如客戶尋求、保持和預防客戶流失活動、產品生命周期分析、銷售趨勢預測及有針對性的促銷活動等。
3、聚類。聚類分析是把一組數據按照相似性和差異性分為幾個類別,其目的是使得屬於同一類別的數據間的相似性盡可能大,不同類別中的數據間的相似性盡可能小。
它可以應用到客戶群體的分類、客戶背景分析、客戶購買趨勢預測、市場的細分等。
4、關聯規則。關聯規則是描述資料庫中數據項之間所存在的關系的規則,即根據一個事務中某些項的出現可導出另一些項在同一事務中也出現,即隱藏在數據間的關聯或相互關系。
在客戶關系管理中,通過對企業的客戶資料庫里的大量數據進行挖掘,可以從大量的記錄中發現有趣的關聯關系,找出影響市場營銷效果的關鍵因素,為產品定位、定價與定製客戶群,客戶尋求、細分與保持,市場營銷與推銷,營銷風險評估和詐騙預測等決策支持提供參考依據。
5、特徵。特徵分析是從資料庫中的一組數據中提取出關於這些數據的特徵式,這些特徵式表達了該數據集的總體特徵。如營銷人員通過對客戶流失因素的特徵提取,可以得到導致客戶流失的一系列原因和主要特徵,利用這些特徵可以有效地預防客戶的流失。
6、變化和偏差分析。偏差包括很大一類潛在有趣的知識,如分類中的反常實例,模式的例外,觀察結果對期望的偏差等,其目的是尋找觀察結果與參照量之間有意義的差別。在企業危機管理及其預警中,管理者更感興趣的是那些意外規則。意外規則的挖掘可以應用到各種異常信息的發現、分析、識別、評價和預警等方面。

③ 大數據挖掘的演算法有哪些

大數據挖掘的演算法:
1.樸素貝葉斯,超級簡單,就像做一些數數的工作。如果條件獨立假設成立的話,NB將比鑒別模型收斂的更快,所以你只需要少量的訓練數據。即使條件獨立假設不成立,NB在實際中仍然表現出驚人的好。
2. Logistic回歸,LR有很多方法來對模型正則化。比起NB的條件獨立性假設,LR不需要考慮樣本是否是相關的。與決策樹與支持向量機不同,NB有很好的概率解釋,且很容易利用新的訓練數據來更新模型。如果你想要一些概率信息或者希望將來有更多數據時能方便的更新改進模型,LR是值得使用的。
3.決策樹,DT容易理解與解釋。DT是非參數的,所以你不需要擔心野點(或離群點)和數據是否線性可分的問題,DT的主要缺點是容易過擬合,這也正是隨機森林等集成學習演算法被提出來的原因。
4.支持向量機,很高的分類正確率,對過擬合有很好的理論保證,選取合適的核函數,面對特徵線性不可分的問題也可以表現得很好。SVM在維數通常很高的文本分類中非常的流行。

如果想要或許更多更詳細的訊息,建議您去參加CDA數據分析課程。大數據分析師現在有專業的國際認證證書了,CDA,即「CDA 數據分析師」,是在數字經濟大背景和人工智慧時代趨勢下,面向全行業的專業權威國際資格認證, 旨在提升全民數字技能,助力企業數字化轉型,推動行業數字化發展。 「CDA 數據分析師」具體指在互聯網、金融、零售、咨詢、電信、醫療、旅遊等行業專門從事數據的採集、清洗、處理、分析並能製作業務報告、 提供決策的新型數據分析人才。點擊預約免費試聽課。

④ 大數據時代的數據怎麼挖掘

3月13日下午,南京郵電大學計算機學院、軟體學院院長、教授李濤在CIO時代APP微講座欄目作了題為《大數據時代的數據挖掘》的主題分享,深度詮釋了大數據及大數據時代下的數據挖掘。

眾所周知,大數據時代的大數據挖掘已成為各行各業的一大熱點。
一、數據挖掘
在大數據時代,數據的產生和收集是基礎,數據挖掘是關鍵,數據挖掘可以說是大數據最關鍵也是最基本的工作。通常而言,數據挖掘也稱為DataMining,或知識發現Knowledge Discovery from Data,泛指從大量數據中挖掘出隱含的、先前未知但潛在的有用信息和模式的一個工程化和系統化的過程。
不同的學者對數據挖掘有著不同的理解,但個人認為,數據挖掘的特性主要有以下四個方面:
1.應用性(A Combination of Theory and Application):數據挖掘是理論演算法和應用實踐的完美結合。數據挖掘源於實際生產生活中應用的需求,挖掘的數據來自於具體應用,同時通過數據挖掘發現的知識又要運用到實踐中去,輔助實際決策。所以,數據挖掘來自於應用實踐,同時也服務於應用實踐,數據是根本,數據挖掘應以數據為導向,其中涉及到演算法的設計與開發都需考慮到實際應用的需求,對問題進行抽象和泛化,將好的演算法應用於實際中,並在實際中得到檢驗。
2.工程性(An Engineering Process):數據挖掘是一個由多個步驟組成的工程化過程。數據挖掘的應用特性決定了數據挖掘不僅僅是演算法分析和應用,而是一個包含數據准備和管理、數據預處理和轉換、挖掘演算法開發和應用、結果展示和驗證以及知識積累和使用的完整過程。而且在實際應用中,典型的數據挖掘過程還是一個交互和循環的過程。
3.集合性(A Collection of Functionalities):數據挖掘是多種功能的集合。常用的數據挖掘功能包括數據探索分析、關聯規則挖掘、時間序列模式挖掘、分類預測、聚類分析、異常檢測、數據可視化和鏈接分析等。一個具體的應用案例往往涉及多個不同的功能。不同的功能通常有不同的理論和技術基礎,而且每一個功能都有不同的演算法支撐。
4.交叉性(An Interdisciplinary Field):數據挖掘是一門交叉學科,它利用了來自統計分析、模式識別、機器學習、人工智慧、信息檢索、資料庫等諸多不同領域的研究成果和學術思想。同時一些其他領域如隨機演算法、資訊理論、可視化、分布式計算和最優化也對數據挖掘的發展起到重要的作用。數據挖掘與這些相關領域的區別可以由前面提到的數據挖掘的3個特性來總結,最重要的是它更側重於應用。
綜上所述,應用性是數據挖掘的一個重要特性,是其區別於其他學科的關鍵,同時,其應用特性與其他特性相輔相成,這些特性在一定程度上決定了數據挖掘的研究與發展,同時,也為如何學習和掌握數據挖掘提出了指導性意見。如從研究發展來看,實際應用的需求是數據挖掘領域很多方法提出和發展的根源。從最開始的顧客交易數據分析(market basket analysis)、多媒體數據挖掘(multimedia data mining)、隱私保護數據挖掘(privacy-preserving data mining)到文本數據挖掘(text mining)和Web挖掘(Web mining),再到社交媒體挖掘(social media mining)都是由應用推動的。工程性和集合性決定了數據挖掘研究內容和方向的廣泛性。其中,工程性使得整個研究過程里的不同步驟都屬於數據挖掘的研究范疇。而集合性使得數據挖掘有多種不同的功能,而如何將多種功能聯系和結合起來,從一定程度上影響了數據挖掘研究方法的發展。比如,20世紀90年代中期,數據挖掘的研究主要集中在關聯規則和時間序列模式的挖掘。到20世紀90年代末,研究人員開始研究基於關聯規則和時間序列模式的分類演算法(如classification based on association),將兩種不同的數據挖掘功能有機地結合起來。21世紀初,一個研究的熱點是半監督學習(semi-supervised learning)和半監督聚類(semi-supervised clustering),也是將分類和聚類這兩種功能有機結合起來。近年來的一些其他研究方向如子空間聚類(subspace clustering)(特徵抽取和聚類的結合)和圖分類(graph classification)(圖挖掘和分類的結合)也是將多種功能聯系和結合在一起。最後,交叉性導致了研究思路和方法設計的多樣化。
前面提到的是數據挖掘的特性對研究發展及研究方法的影響,另外,數據挖掘的這些特性對如何學習和掌握數據挖掘提出了指導性的意見,對培養研究生、本科生均有一些指導意見,如應用性在指導數據挖掘時,應熟悉應用的業務和需求,需求才是數據挖掘的目的,業務和演算法、技術的緊密結合非常重要,了解業務、把握需求才能有針對性地對數據進行分析,挖掘其價值。因此,在實際應用中需要的是一種既懂業務,又懂數據挖掘演算法的人才。工程性決定了要掌握數據挖掘需有一定的工程能力,一個好的數據額挖掘人員首先是一名工程師,有很強大的處理大規模數據和開發原型系統的能力,這相當於在培養數據挖掘工程師時,對數據的處理能力和編程能力很重要。集合性使得在具體應用數據挖掘時,要做好底層不同功能和多種演算法積累。交叉性決定了在學習數據挖掘時要主動了解和學習相關領域的思想和技術。
因此,這些特性均是數據挖掘的特點,通過這四個特性可總結和學習數據挖掘。
二、大數據的特徵
大數據(bigdata)一詞經常被用以描述和指代信息爆炸時代產生的海量信息。研究大數據的意義在於發現和理解信息內容及信息與信息之間的聯系。研究大數據首先要理清和了解大數據的特點及基本概念,進而理解和認識大數據。
研究大數據首先要理解大數據的特徵和基本概念。業界普遍認為,大數據具有標準的「4V」特徵:
1.Volume(大量):數據體量巨大,從TB級別躍升到PB級別。
2.Variety(多樣):數據類型繁多,如網路日誌、視頻、圖片、地理位置信息等。
3.Velocity(高速):處理速度快,實時分析,這也是和傳統的數據挖掘技術有著本質的不同。
4.Value(價值):價值密度低,蘊含有效價值高,合理利用低密度價值的數據並對其進行正確、准確的分析,將會帶來巨大的商業和社會價值。
上述「4V」特點描述了大數據與以往部分抽樣的「小數據」的主要區別。然而,實踐是大數據的最終價值體現的唯一途徑。從實際應用和大數據處理的復雜性看,大數據還具有如下新的「4V」特點:
5.Variability(變化):在不同的場景、不同的研究目標下數據的結構和意義可能會發生變化,因此,在實際研究中要考慮具體的上下文場景(Context)。
6.Veracity(真實性):獲取真實、可靠的數據是保證分析結果准確、有效的前提。只有真實而准確的數據才能獲取真正有意義的結果。
7.Volatility(波動性)/Variance(差異):由於數據本身含有噪音及分析流程的不規范性,導致採用不同的演算法或不同分析過程與手段會得到不穩定的分析結果。
8.Visualization(可視化):在大數據環境下,通過數據可視化可以更加直觀地闡釋數據的意義,幫助理解數據,解釋結果。
綜上所述,以上「8V」特徵在大數據分析與數據挖掘中具有很強的指導意義。
三、大數據時代下的數據挖掘
在大數據時代,數據挖掘需考慮以下四個問題:
大數據挖掘的核心和本質是應用、演算法、數據和平台4個要素的有機結合。
因為數據挖掘是應用驅動的,來源於實踐,海量數據產生於應用之中。需用具體的應用數據作為驅動,以演算法、工具和平台作為支撐,最終將發現的知識和信息應用到實踐中去,從而提供量化的、合理的、可行的、且能產生巨大價值的信息。
挖掘大數據中隱含的有用信息需設計和開發相應的數據挖掘和學習演算法。演算法的設計和開發需以具體的應用數據作為驅動,同時在實際問題中得到應用和驗證,而演算法的實現和應用需要高效的處理平台,這個處理平台可以解決波動性問題。高效的處理平台需要有效分析海量數據,及時對多元數據進行集成,同時有力支持數據化對演算法及數據可視化的執行,並對數據分析的流程進行規范。
總之,應用、演算法、數據、平台這四個方面相結合的思想,是對大數據時代的數據挖掘理解與認識的綜合提煉,體現了大數據時代數據挖掘的本質與核心。這四個方面也是對相應研究方面的集成和架構,這四個架構具體從以下四個層面展開:
應用層(Application):關心的是數據的收集與演算法驗證,關鍵問題是理解與應用相關的語義和領域知識。
數據層(Data):數據的管理、存儲訪問與安全,關心的是如何進行高效的數據使用。
演算法層(Algorithm):主要是數據挖掘、機器學習、近似演算法等演算法的設計與實現。
平台層(Infrastructure):數據的訪問和計算,計算平台處理分布式大規模的數據。
綜上所述,數據挖掘的演算法分為多個層次,在不同的層面有不同的研究內容,可以看到目前在做數據挖掘時的主要研究方向,如利用數據融合技術預處理稀疏、異構、不確定、不完整以及多來源數據;挖掘復雜動態變化的數據;測試通過局部學習和模型融合所得到的全局知識,並反饋相關信息給預處理階段;對數據並行分布化,達到有效使用的目的。
四、大數據挖掘系統的開發
1.背景目標
大數據時代的來臨使得數據的規模和復雜性都出現爆炸式的增長,促使不同應用領域的數據分析人員利用數據挖掘技術對數據進行分析。在應用領域中,如醫療保健、高端製造、金融等,一個典型的數據挖掘任務往往需要復雜的子任務配置,整合多種不同類型的挖掘演算法以及在分布式計算環境中高效運行。因此,在大數據時代進行數據挖掘應用的一個當務之急是要開發和建立計算平台和工具,支持應用領域的數據分析人員能夠有效地執行數據分析任務。
之前提到一個數據挖掘有多種任務、多種功能及不同的挖掘演算法,同時,需要一個高效的平台。因此,大數據時代的數據挖掘和應用的當務之急,便是開發和建立計算平台和工具,支持應用領域的數據分析人員能夠有效地執行數據分析任務。
2.相關產品
現有的數據挖掘工具
有Weka、SPSS和SQLServer,它們提供了友好的界面,方便用戶進行分析,然而這些工具並不適合進行大規模的數據分析,同時,在使用這些工具時用戶很難添加新的演算法程序。
流行的數據挖掘演算法庫
如Mahout、MLC++和MILK,這些演算法庫提供了大量的數據挖掘演算法。但這些演算法庫需要有高級編程技能才能進行任務配置和演算法集成。
最近出現的一些集成的數據挖掘產品
如Radoop和BC-PDM,它們提供友好的用戶界面來快速配置數據挖掘任務。但這些產品是基於Hadoop框架的,對非Hadoop演算法程序的支持非常有限。沒有明確地解決在多用戶和多任務情況下的資源分配。
3.FIU-Miner
為解決現有工具和產品在大數據挖掘中的局限性,我們團隊開發了一個新的平台——FIU-Miner,它代表了A Fast,Integrated,and User-Friendly System for Data Miningin Distributed Environment。它是一個用戶友好並支持在分布式環境中進行高效率計算和快速集成的數據挖掘系統。與現有數據挖掘平台相比,FIU-Miner提供了一組新的功能,能夠幫助數據分析人員方便並有效地開展各項復雜的數據挖掘任務。
與傳統的數據挖掘平台相比,它提供了一些新的功能,主要有以下幾個方面:
A.用戶友好、人性化、快速的數據挖掘任務配置。基於「軟體即服務」這一模式,FIU-Miner隱藏了與數據分析任務無關的低端細節。通過FIU-Miner提供的人性化用戶界面,用戶可以通過將現有演算法直接組裝成工作流,輕松完成一個復雜數據挖掘問題的任務配置,而不需要編寫任何代碼。
B.靈活的多語言程序集成。允許用戶將目前最先進的數據挖掘演算法直接導入系統演算法庫中,以此對分析工具集合進行擴充和管理。同時,由於FIU-Miner能夠正確地將任務分配到有合適運行環境的計算節點上,所以對這些導入的演算法沒有實現語言的限制。
C.異構環境中有效的資源管理。FIU-Miner支持在異構的計算環境中(包括圖形工作站、單個計算機、和伺服器等)運行數據挖掘任務。FIU-Miner綜合考慮各種因素(包括演算法實現、伺服器負載平衡和數據位置)來優化計算資源的利用率。
D.有效的程序調度和執行。
應用架構上包括用戶界面層、任務和系統管理層、邏輯資源層、異構的物理資源層。這種分層架構充分考慮了海量數據的分布式存儲、不同數據挖掘演算法的集成、多重任務的配置及系統用戶的交付功能。一個典型的數據挖掘任務在應用之中需要復雜的主任務配置,整合多種不同類型的挖掘演算法。因此,開發和建立這樣的計算平台和工具,支持應用領域的數據分析人員進行有效的分析是大數據挖掘中的一個重要任務。
FIU-Miner系統用在了不同方面:如高端製造業、倉庫智能管理、空間數據處理等,TerraFly GeoCloud是建立在TerraFly系統之上的、支持多種在線空間數據分析的一個平台。提供了一種類SQL語句的空間數據查詢與挖掘語言MapQL。它不但支持類SQL語句,更重要的是可根據用戶的不同要求,進行空間數據挖掘,渲染和畫圖查詢得到空間數據。通過構建空間數據分析的工作流來優化分析流程,提高分析效率。
製造業是指大規模地把原材料加工成成品的工業生產過程。高端製造業是指製造業中新出現的具有高技術含量、高附加值、強競爭力的產業。典型的高端製造業包括電子半導體生產、精密儀器製造、生物制葯等。這些製造領域往往涉及嚴密的工程設計、復雜的裝配生產線、大量的控制加工設備與工藝參數、精確的過程式控制制和材料的嚴格規范。產量和品質極大地依賴流程管控和優化決策。因此,製造企業不遺餘力地採用各種措施優化生產流程、調優控制參數、提高產品品質和產量,從而提高企業的競爭力。
在空間數據處理方面,TerraFly GeoCloud對多種在線空間數據分析。對傳統數據分析而言,其難點在於MapQL語句比較難寫,任務之間的關系比較復雜,順序執行之間空間數據分許效率較低。而FIU-Miner可有效解決以上三個難點。
總結而言,大數據的復雜特徵對數據挖掘在理論和演算法研究方面提出了新的要求和挑戰。大數據是現象,核心是挖掘數據中蘊含的潛在信息,並使它們發揮價值。數據挖掘是理論技術和實際應用的完美結合。數據挖掘是理論和實踐相結合的一個例子。

⑤ 大數據挖掘方法有哪些

數據挖掘是指人們從事先不知道的大量不完整、雜亂、模糊和隨機數據中提取潛在隱藏的有用信息和知識的過程。下面說下我們在挖掘大數據的時候,都會用到的幾種方法:
方法1.(可視化分析)無論是日誌數據分析專家還是普通用戶,數據可視化都是數據分析工具的最基本要求。可視化可以直觀地顯示數據,讓數據自己說話,讓聽眾看到結果。
方法2.(數據挖掘演算法)如果說可視化用於人們觀看,那麼數據挖掘就是給機器看的。集群、分割、孤立點分析和其他演算法使我們能夠深入挖掘數據並挖掘價值。這些演算法不僅要處理大量數據,還必須盡量縮減處理大數據的速度。
方法3.(預測分析能力)數據挖掘使分析師可以更好地理解數據,而預測分析則使分析師可以根據可視化分析和數據挖掘的結果做出一些預測性判斷。
方法4.(語義引擎)由於非結構化數據的多樣性給數據分析帶來了新挑戰,因此需要一系列工具來解析,提取和分析數據。需要將語義引擎設計成從「文檔」中智能地提取信息。
方法5.(數據質量和主數據管理)數據質量和數據管理是一些管理方面的最佳實踐。通過標准化流程和工具處理數據可確保獲得預定義的高質量分析結果。

想要了解更多有關大數據挖掘的信息,可以了解一下CDA數據分析師的課程。課程內容兼顧培養解決數據挖掘流程問題的橫向能力以及解決數據挖掘演算法問題的縱向能力。要求學生在使用演算法解決微觀根因分析、預測分析的問題上,根據業務場景來綜合判斷,洞察數據規律,使用正確的數據清洗與特徵工程方法,綜合使用統計分析方法、統計模型、運籌學、機器學習、文本挖掘演算法,而非單一的機器學習演算法。真正給企業提出可行性的價值方案和價值業務結果。點擊預約免費試聽課。

熱點內容
編譯系統自動生成函數條件 發布:2025-03-05 22:45:20 瀏覽:364
存儲鏡像雙活 發布:2025-03-05 22:44:42 瀏覽:185
sql怎麼建資料庫 發布:2025-03-05 22:39:18 瀏覽:890
javawindows服務 發布:2025-03-05 22:39:16 瀏覽:243
安卓手機如何調和平精英幀數 發布:2025-03-05 22:38:30 瀏覽:909
dnf多玩腳本 發布:2025-03-05 22:31:19 瀏覽:876
如何解鎖sim卡pin密碼 發布:2025-03-05 22:24:47 瀏覽:730
怎麼查看網頁的伺服器 發布:2025-03-05 22:13:05 瀏覽:371
sql解決方案 發布:2025-03-05 22:09:25 瀏覽:563
網吧電腦配置被盜怎麼處理 發布:2025-03-05 21:54:14 瀏覽:500