當前位置:首頁 » 操作系統 » 基本演算法貪心

基本演算法貪心

發布時間: 2023-08-17 14:14:15

A. 貪心演算法的基本思路

1.建立數學模型來描述問題
⒉把求解的問題分成若干個子問題。
⒊對每一子問題求解,得到子問題的局部最優解。
⒋把子問題的解局部最優解合成原來解問題的一個解。
實現該演算法的過程:
從問題的某一初始解出發;
while 能朝給定總目標前進一步
do
求出可行解的一個解元素;
由所有解元素組合成問題的一個可行解。
下面是一個可以試用貪心演算法解的題目,貪心解的確不錯,可惜不是最優解。

B. 程序員演算法基礎——貪心演算法

貪心是人類自帶的能力,貪心演算法是在貪心決策上進行統籌規劃的統稱。

比如一道常見的演算法筆試題---- 跳一跳

我們自然而然能產生一種解法:盡可能的往右跳,看最後是否能到達。
本文即是對這種貪心決策的介紹。

狹義的貪心演算法指的是解最優化問題的一種特殊方法,解決過程中總是做出當下最好的選纖啟擇,因為具有最優子結構的特點,局部最優解可以得到全局最優解;這種貪心演算法是動態規劃的一種特例。 能用貪心解決的問題,也可以用動態規劃解決。

而廣義的貪心指的是一種通用的貪心策略,基於當前局面而進行貪心決策。以 跳一跳 的題目為例:
我們發現的題目的核心在於 向右能到達的最遠距離 ,我們用maxRight來表示;
此時有一種貪心的策略:從第1個盒子開始向右遍歷,對於每個經過的盒子,不斷更新maxRight的值。

貪毀局如心的思考過程類似動態規劃,依舊是兩步: 大事化小 小事化了
大事化小:
一個較大的臘山問題,通過找到與子問題的重疊,把復雜的問題劃分為多個小問題;
小事化了:
從小問題找到決策的核心,確定一種得到最優解的策略,比如跳一跳中的 向右能到達的最遠距離

在證明局部的最優解是否可以推出全局最優解的時候,常會用到數學的證明方式。

如果是動態規劃:
要湊出m元,必須先湊出m-1、m-2、m-5、m-10元,我們用dp[i]表示湊出i元的最少紙幣數;
有 dp[i]=min(dp[i-1], dp[i-2], dp[i-5], dp[i-10]) + 1 ;
容易知道 dp[1]=dp[2]=dp[5]=dp[10]=1 ;
根據以上遞推方程和初始化信息,可以容易推出dp[1~m]的所有值。

似乎有些不對? 平時我們找零錢有這么復雜嗎?
從貪心演算法角度出發,當m>10且我們有10元紙幣,我們優先使用10元紙幣,然後再是5元、2元、1元紙幣。
從日常生活的經驗知道,這么做是正確的,但是為什麼?

假如我們把題目變成這樣,原來的策略還能生效嗎?

接下來我們來分析這種策略:
已知對於m元紙幣,1,2,5元紙幣使用了a,b,c張,我們有a+2b+5c=m;
假設存在一種情況,1、2、5元紙幣使用數是x,y,z張,使用了更少的5元紙幣(z<c),且紙幣張數更少(x+y+z<a+b+c),即是用更少5元紙幣得到最優解。
我們令k=5*(c-z),k元紙幣需要floor(k/2)張2元紙幣,k%2張1元紙幣;(因為如果有2張1元紙幣,可以使用1張2元紙幣來替代,故而1元紙幣只能是0張或者1張)
容易知道,減少(c-z)張5元紙幣,需要增加floor(5*(c-z)/2)張2元紙幣和(5*(c-z))%2張紙幣,而這使得x+y+z必然大於a+b+c。
由此我們知道不可能存在使用更少5元紙幣的更優解。
所以優先使用大額紙幣是一種正確的貪心選擇。

對於1、5、7元紙幣,比如說要湊出10元,如果優先使用7元紙幣,則張數是4;(1+1+1+7)
但如果只使用5元紙幣,則張數是2;(5+5)
在這種情況下,優先使用大額紙幣是不正確的貪心選擇。(但用動態規劃仍能得到最優解)

如果是動態規劃:
前i秒的完成的任務數,可以由前面1~i-1秒的任務完成數推過來。
我們用 dp[i]表示前i秒能完成的任務數
在計算前i秒能完成的任務數時,對於第j個任務,我們有兩種決策:
1、不執行這個任務,那麼dp[i]沒有變化;
2、執行這個任務,那麼必須騰出來(Sj, Tj)這段時間,那麼 dp[i] = max(dp[i], dp[ S[j] ] ) + 1 ;
比如說對於任務j如果是第5秒開始第10秒結束,如果i>=10,那麼有 dp[i]=max(dp[i], dp[5] + 1); (相當於把第5秒到第i秒的時間分配給任務j)

再考慮貪心的策略,現實生活中人們是如何安排這種多任務的事情?我換一種描述方式:

我們自然而然會想到一個策略: 先把結束時間早的兼職給做了!
為什麼?
因為先做完這個結束時間早的,能留出更多的時間做其他兼職。
我們天生具備了這種優化決策的能力。

這是一道 LeetCode題目 。
這個題目不能直接用動態規劃去解,比如用dp[i]表示前i個人需要的最少糖果數。
因為(前i個人的最少糖果數)這種狀態表示會收到第i+1個人的影響,如果a[i]>a[i+1],那麼第i個人應該比第i+1個人多。
即是 這種狀態表示不具備無後效性。

如果是我們分配糖果,我們應該怎麼分配?
答案是: 從分數最低的開始。
按照分數排序,從最低開始分,每次判斷是否比左右的分數高。
假設每個人分c[i]個糖果,那麼對於第i個人有 c[i]=max(c[i-1],c[c+1])+1 ; (c[i]默認為0,如果在計算i的時候,c[i-1]為0,表示i-1的分數比i高)
但是,這樣解決的時間復雜度為 O(NLogN) ,主要瓶頸是在排序。
如果提交,會得到 Time Limit Exceeded 的提示。

我們需要對貪心的策略進行優化:
我們把左右兩種情況分開看。
如果只考慮比左邊的人分數高時,容易得到策略:
從左到右遍歷,如果a[i]>a[i-1],則有c[i]=c[i-1]+1;否則c[i]=1。

再考慮比右邊的人分數高時,此時我們要從數組的最右邊,向左開始遍歷:
如果a[i]>a[i+1], 則有c[i]=c[i+1]+1;否則c[i]不變;

這樣講過兩次遍歷,我們可以得到一個分配方案,並且時間復雜度是 O(N)

題目給出關鍵信息:1、兩個人過河,耗時為較長的時間;
還有隱藏的信息:2、兩個人過河後,需要有一個人把船開回去;
要保證總時間盡可能小,這里有兩個關鍵原則: 應該使得兩個人時間差盡可能小(減少浪費),同時船回去的時間也盡可能小(減少等待)。

先不考慮空船回來的情況,如果有無限多的船,那麼應該怎麼分配?
答案: 每次從剩下的人選擇耗時最長的人,再選擇與他耗時最接近的人。

再考慮只有一條船的情況,假設有A/B/C三個人,並且耗時A<B<C。
那麼最快的方案是:A+B去, A回;A+C去;總耗時是A+B+C。(因為A是最快的,讓其他人來回時間只會更長, 減少等待的原則

如果有A/B/C/D四個人,且耗時A<B<C<D,這時有兩種方案:
1、最快的來回送人方式,A+B去;A回;A+C去,A回;A+D去; 總耗時是B+C+D+2A (減少等待原則)
2、最快和次快一起送人方式,A+B先去,A回;C+D去,B回;A+B去;總耗時是 3B+D+A (減少浪費原則)
對比方案1、2的選擇,我們發現差別僅在A+C和2B;
為何方案1、2差別里沒有D?
因為D最終一定要過河,且耗時一定為D。

如果有A/B/C/D/E 5個人,且耗時A<B<C<D<E,這時如何抉擇?
仍是從最慢的E看。(參考我們無限多船的情況)
方案1,減少等待;先送E過去,然後接著考慮四個人的情況;
方案2,減少浪費;先送E/D過去,然後接著考慮A/B/C三個人的情況;(4人的時候的方案2)

到5個人的時候,我們已經明顯發了一個特點:問題是重復,且可以由子問題去解決。
根據5個人的情況,我們可以推出狀態轉移方程 dp[i] = min(dp[i - 1] + a[i] + a[1], dp[i - 2] + a[2] + a[1] + a[i] + a[2]);
再根據我們考慮的1、2、3、4個人的情況,我們分別可以算出dp[i]的初始化值:
dp[1] = a[1];
dp[2] = a[2];
dp[3] = a[2]+a[1]+a[3];
dp[4] = min(dp[3] + a[4] + a[1], dp[2]+a[2]+a[1]+a[4]+a[2]);

由上述的狀態轉移方程和初始化值,我們可以推出dp[n]的值。

貪心的學習過程,就是對自己的思考進行優化。
是把握已有信息,進行最優化決策。
這里還有一些收集的 貪心練習題 ,可以實踐練習。
這里 還有在線分享,歡迎報名。

C. 貪心演算法

平面點集三角剖分的貪心演算法要求三角剖分後邊的總長度盡可能小。演算法的基本思想是將所有的兩點間距離從小到大排序,依次序每次取一條三角剖分的邊,直至達到要求的邊數。以下是兩種貪心演算法的主要步驟。

3.2.2.1 貪心演算法1

第一步:設置一個記錄三角剖分中邊的數組T。

第二步:計算點集S中所有點對之間的距離d(pi,pj),1≤i,j≤n,i≠j,並且對距離從小到大進行排序,設為d1,d2,…,dn(n-1)/2,相應的線段記為e1,e2,…,en(n-1)/2,將這些線段存儲在數組E中。

第三步:從線段集E中取出長度最短的邊e1存到T中作為三角剖分的第一條邊,此時k=1。

第四步:依次從E中取出長度最短的邊ek,與T中已有的邊進行求交運算,如果不相交則存到T中,並從E中刪除ek。這一步運行到S中沒有邊為止,即至k=n(n-1)/2。

第五步:輸出T。

該演算法中,第二步需要計算n(n-1)/2次距離,另外距離排序需要O(n2lgn)次比較。T中元素隨第四步循環次數的增加而增加,因此向T中加入一條新邊所需要的判定兩條線段是否相交的次數也隨之增加。如果第四步的前3n-6次循環後已經構成點集的三角剖分,那麼第四步循環所需要的判定兩條線段是否相交的次數為

1+2+…+3n-7+(3n-6)×(n(n-1)/2-(3n-6))=O(n3)

在常數時間內可以判定兩條線段是否相交,因此該演算法的時間復雜性為O(n3)。

3.2.2.2 貪心演算法2

第一步:求點集的凸殼,設凸殼頂點為p1,p2,…,pm,凸殼的邊為e1,e2,…,em。並將凸殼頂點按順序連接成邊的ei加入T(三角剖分的邊集合),並且ei的權值被賦為1。凸殼內點的集合為S1={pm+1,pm+2,…,pn}。

第二步:從內部點S1中任取一點pi,求與pi距離最近的點pj,將線段 存入T。

第三步:求與pj距離最近的點(除點pi外),設為pk,並將線段 加入T,並將這些邊的權值設為1,而wij、wjk和wki的值加1,即為2。邊的權值為2則表示該邊為兩個三角形共有。

第五步:對權值為1的邊(除e1,e2,…,em外)的兩個端點分別求與其距離最近的點,並將其連線(得到新的三角形)加入T,新三角形邊的權值加1。

第六步:對權值為1的邊重復上一步,當一條邊被使用一次其權值增加1,直到所有邊的權值均為2為止(除e1,e2,…,em外)。

貪心演算法2中,第一步耗費O(nlgn);第二步需要計算n-1次距離與n-2次比較;第三步求pk要計算n-2次的距離與n-3次比較;第四步要進行(n-3)×3次的距離計算及(n-4)×3次比較;第五步至多進行n-6次的距離計算與n-7次比較;第六步到第五步的循環次數不超過3n-9;因此整個貪心演算法2的時間復雜性為

O(nlgn)+O(n)+O(n)+O(n)+(n-6)×(3n-9)=O(n2)

D. 五大常用演算法之一:貪心演算法

所謂貪心選擇性質是指所求問題的整體最優解可以通過一系列局部最優的選擇,換句話說,當考慮做何種選擇的時候,我們只考慮對當前問題最佳的選擇而不考慮子問題的結果。這是貪心演算法可行的第一個基本要素。貪心演算法以迭代的方式作出相繼的貪心選擇,每作一次貪心選擇就將所求問題簡化為規模更小的子問題。 對於一個具體問題,要確定它是否具有貪心選擇性質,必須證明每一步所作的貪心選擇最終導致問題的整體最優解。
當一個問題的最優解包含其子問題的最優解時,稱此問題具有最優子結構性質。問題的最優子結構性質是該問題可用貪心演算法求解的關鍵特徵。

值得注意的是,貪心演算法並不是完全不可以使用,貪心策略一旦經過證明成立後,它就是一種高效的演算法。比如, 求最小生成樹的Prim演算法和Kruskal演算法都是漂亮的貪心演算法
貪心演算法還是很常見的演算法之一,這是由於它簡單易行,構造貪心策略不是很困難。
可惜的是,它需要證明後才能真正運用到題目的演算法中。
一般來說,貪心演算法的證明圍繞著:整個問題的最優解一定由在貪心策略中存在的子問題的最優解得來的。
對於例題中的3種貪心策略,都是無法成立(無法被證明)的,解釋如下:
貪心策略:選取價值最大者。反例:

W=30

物品:A B C

重量:28 12 12

價值:30 20 20

根據策略,首先選取物品A,接下來就無法再選取了,可是,選取B、C則更好。

(2)貪心策略:選取重量最小。它的反例與第一種策略的反例差不多。

(3)貪心策略:選取單位重量價值最大的物品。反例:

W=30

物品:A B C

重量:28 20 10

價值:28 20 10

根據策略,三種物品單位重量價值一樣,程序無法依據現有策略作出判斷,如果選擇A,則答案錯誤。但是果在條件中加一句當遇見單位價值相同的時候,優先裝重量小的,這樣的問題就可以解決.

所以需要說明的是,貪心演算法可以與隨機化演算法一起使用,具體的例子就不再多舉了。(因為這一類演算法普及性不高,而且技術含量是非常高的,需要通過一些反例確定隨機的對象是什麼,隨機程度如何,但也是不能保證完全正確,只能是極大的幾率正確)。

E. 分治、貪心五大演算法

1、分治
分治(即分而治喊孫之),把一個復雜的問題分成多鄭激鏈個相同或相似的子問題,再把子問題分成更小的子問題……直到最後子問題可以簡單的直接求解,原問題的解即子問題的解的合並。
適用場景:二分搜索、歸並排序、快速排序、大整數乘法、第K小元素、最近點對、快速傅里葉變換等。

2、動態規劃
動態規劃法也是把問題一層一層地分解為規模逐漸減小的同類型的子問題。動態規劃通常用來求最優化問題。此類問題可以有很多可行解,我們求出的是一個最優解,可能存在多個最優解。(最優子結構、公共子問題)
與分治法的區別是:分治的子問題是相互獨立的,動態規劃最好解決有公共子問題的,子問題相關性很大。
使用場景:矩陣連乘、鋼條切割、最長公共子序列、最優二叉搜索樹、流水作業調度、0/1背包問題等。

維特比演算法是動態規劃在HMM中的應用,維特比演算法用於解決HMM的預測或者叫解碼問題。
viterbi有最優解是因為HMM每一步是條件獨立的!既然後面的概率和前面的沒關系,那前面選最大的概率就行了。
而beam search時後面的概率依賴於前面所有的詞,相當於n-gram是滿的,viterbi的n-gram是2

背包問題:
https://blog.csdn.net/wind__chaser/article/details/89457771
https://blog.csdn.net/qq_38410730/article/details/81667885

3、貪心
通過局部最優選擇達鉛吵到全局最優選擇。貪心演算法不一定總產生最優解,貪心演算法是否產生優化解,需嚴格證明貪心演算法產生最優解的條件:(最優子結構、貪心選擇性)
貪心選擇性:當一個問題的全局最優解可以通過局部最優解得到,稱這個問題具有貪心選擇性。
適用場景:活動選擇問題、哈夫曼編碼問題、最小生成樹問題、單源最短路徑問題等。

貪心演算法:softmax之後取最大概率。與之對應的是,Beam Search演算法
http://www.360doc.com/content/18/0618/09/17563728_763230413.shtml
https://blog.csdn.net/qq_16234613/article/details/83012046
https://www.hu.com/question/54356960

分治和動態規劃的區別:
動態規劃也是一種分治思想(比如其狀態轉移方程就是一種分治),但與分治演算法不同的是,分治演算法是把原問題分解為若干個子問題,
自頂向下求解子問題,合並子問題的解,從而得到原問題的解。動態規劃也是把原始問題分解為若干個子問題,然後自底向上,
先求解最小的子問題,把結果存在表格中,在求解大的子問題時,直接從表格中查詢小的子問題的解,避免重復計算,從而提高演算法效率。

動態規劃和分治法有些相像,都是把一個問題分成了很多子問題來求解,但是不同的是動態規劃會記憶之前解決的子問題的結果,
避免了重復計算。判斷一個問題是否能用動態規劃求解,要看它是否能劃分成合適的子問題,然後寫出遞推關系式。
動態規劃得到的解一定是最優解。

F. 貪心演算法的本質

1. 貪心法(Greedy Algorithm)定義

求解最優化問題的演算法通常需要經過一系列的步驟,在每個步驟都面臨多種選擇;

貪心法就是這樣的演算法:它在每個決策點作出在當時看來最佳的選擇,即總是遵循某種規則,做出局部最優的選擇,以推導出全局最優解(局部最優解->全局最優解)

2. 對貪心法的深入理解

(1)原理:一種啟發式策略,在每個決策點作出在當時看來最佳的選擇

(2)求解最優化問題的兩個關鍵要素:貪心選擇性質+最優子結構

①貪心選擇性質:進行選擇時,直接做出在當前問題中看來最優的選擇,而不必考慮子問題的解;

②最優子結構:如果一個問題的最優解包含其子問題的最優解,則稱此問題具有最優子結構性質

(3)解題關鍵:貪心策略的選擇

貪心演算法不是對所有問題都能得到整體最優解的,因此選擇的貪心策略必須具備無後效性,即某個狀態以前的過程不會影響以後的狀態,只與當前狀態有關。

(4)一般步驟:

①建立數學模型來描述最優化問題;

②把求解的最優化問題轉化為這樣的形式:對其做出一次選擇後,只剩下一個子問題需要求解;

③證明做出貪心選擇後:

1°原問題總是存在全局最優解,即貪心選擇始終安全;

2°剩餘子問題的局部最優解與貪心選擇組合,即可得到原問題的全局最優解。

並完成2°

3. 貪心法與動態規劃

最優解問題大部分都可以拆分成一個個的子問題,把解空間的遍歷視作對子問題樹的遍歷,則以某種形式對樹整個的遍歷一遍就可以求出最優解,大部分情況下這是不可行的。貪心演算法和動態規劃本質上是對子問題樹的一種修剪,兩種演算法要求問題都具有的一個性質就是子問題最優性(組成最優解的每一個子問題的解,對於這個子問題本身肯定也是最優的)。動態規劃方法代表了這一類問題的一般解法,我們自底向上構造子問題的解,對每一個子樹的根,求出下面每一個葉子的值,並且以其中的最優值作為自身的值,其它的值舍棄。而貪心演算法是動態規劃方法的一個特例,可以證明每一個子樹的根的值不取決於下面葉子的值,而只取決於當前問題的狀況。換句話說,不需要知道一個節點所有子樹的情況,就可以求出這個節點的值。由於貪心演算法的這個特性,它對解空間樹的遍歷不需要自底向上,而只需要自根開始,選擇最優的路,一直走到底就可以了。

G. 貪心演算法的基本思想

貪心演算法的基本思想就是分級處理。

貪心演算法是一種分級處理的方法。用貪心法設計演算法的特點是一步一步的進行,根據某個優化測度(可能是目標函數,也可能不是目標函數),每一步上都要保證能獲得局部最優解。每一步只考慮一個數據,它的選取應滿足局部優化條件。若下一個數據與部分最優解連在一起不再是可行解時,就不把該數據添加到部分解中,直到把所有數據枚舉完,或者不能再添加為止。

3、還有一個函數檢查是否一個候選對象的集合是可行的,也即是否可能往該集合上添加更多的候選對象以獲得一個解。和上一個函數一樣,此時不考慮解決方法的最優性。

4、選擇函數可以指出哪一個剩餘的候選對象最有希望構成問題的解。

5、最後,目標函數給出解的值。

熱點內容
資料庫查不到數據 發布:2025-03-10 18:52:16 瀏覽:481
php碼農 發布:2025-03-10 18:45:45 瀏覽:790
centos7編譯安裝php 發布:2025-03-10 18:32:48 瀏覽:493
電腦上什麼安卓模擬器 發布:2025-03-10 18:32:47 瀏覽:21
公司ftp傳輸文件 發布:2025-03-10 18:24:54 瀏覽:387
aspsql注入過濾 發布:2025-03-10 18:19:37 瀏覽:464
編譯表頻率 發布:2025-03-10 18:02:59 瀏覽:776
寶馬330多哪些配置 發布:2025-03-10 18:01:33 瀏覽:765
我的世界神奇寶貝最良心的伺服器 發布:2025-03-10 18:01:29 瀏覽:238
6有資料庫 發布:2025-03-10 17:55:05 瀏覽:31