當前位置:首頁 » 操作系統 » 人工蜂群演算法

人工蜂群演算法

發布時間: 2022-02-07 22:24:20

A. 人工蜂群演算法matlab蜂群種群大小怎麼設定

%/* ABC algorithm coded using MATLAB language */

%/* Artificial Bee Colony (ABC) is one of the most recently defined algorithms by Dervis Karaboga in 2005, motivated by the intelligent behavior of honey bees. */

%/* Referance Papers*/

%/*D. Karaboga, AN IDEA BASED ON HONEY BEE SWARM FOR NUMERICAL OPTIMIZATION,TECHNICAL REPORT-TR06, Erciyes University, Engineering Faculty, Computer Engineering Department 2005.*/

%/*D. Karaboga, B. Basturk, A powerful and Efficient Algorithm for Numerical Function Optimization: Artificial Bee Colony (ABC) Algorithm, Journal of Global Optimization, Volume:39, Issue:3,pp:459-171, November 2007,ISSN:0925-5001 , doi: 10.1007/s10898-007-9149-x */

%/*D. Karaboga, B. Basturk, On The Performance Of Artificial Bee Colony (ABC) Algorithm, Applied Soft Computing,Volume 8, Issue 1, January 2008, Pages 687-697. */

%/*D. Karaboga, B. Akay, A Comparative Study of Artificial Bee Colony Algorithm, Applied Mathematics and Computation, 214, 108-132, 2009. */

%/*Copyright ?2009 Erciyes University, Intelligent Systems Research Group, The Dept. of Computer Engineering*/

%/*Contact:
%Dervis Karaboga ([email protected] )
%Bahriye Basturk Akay ([email protected])
%*/

clear all
close all
clc

%/* Control Parameters of ABC algorithm*/
NP=20; %/* The number of colony size (employed bees+onlooker bees)*/
FoodNumber=NP/2; %/*The number of food sources equals the half of the colony size*/
limit=100; %/*A food source which could not be improved through "limit" trials is abandoned by its employed bee*/
maxCycle=2500; %/*The number of cycles for foraging {a stopping criteria}*/

%/* Problem specific variables*/
objfun='Sphere'; %cost function to be optimized
D=100; %/*The number of parameters of the problem to be optimized*/
ub=ones(1,D)*100; %/*lower bounds of the parameters. */
lb=ones(1,D)*(-100);%/*upper bound of the parameters.*/

runtime=1;%/*Algorithm can be run many times in order to see its robustness*/

%Foods [FoodNumber][D]; /*Foods is the population of food sources. Each row of Foods matrix is a vector holding D parameters to be optimized. The number of rows of Foods matrix equals to the FoodNumber*/
%ObjVal[FoodNumber]; /*f is a vector holding objective function values associated with food sources */
%Fitness[FoodNumber]; /*fitness is a vector holding fitness (quality) values associated with food sources*/
%trial[FoodNumber]; /*trial is a vector holding trial numbers through which solutions can not be improved*/
%prob[FoodNumber]; /*prob is a vector holding probabilities of food sources (solutions) to be chosen*/
%solution [D]; /*New solution (neighbour) proced by v_{ij}=x_{ij}+\phi_{ij}*(x_{kj}-x_{ij}) j is a randomly chosen parameter and k is a randomlu chosen solution different from i*/
%ObjValSol; /*Objective function value of new solution*/
%FitnessSol; /*Fitness value of new solution*/
%neighbour, param2change; /*param2change corrresponds to j, neighbour corresponds to k in equation v_{ij}=x_{ij}+\phi_{ij}*(x_{kj}-x_{ij})*/
%GlobalMin; /*Optimum solution obtained by ABC algorithm*/
%GlobalParams[D]; /*Parameters of the optimum solution*/
%GlobalMins[runtime]; /*GlobalMins holds the GlobalMin of each run in multiple runs*/

GlobalMins=zeros(1,runtime);

for r=1:runtime

% /*All food sources are initialized */
%/*Variables are initialized in the range [lb,ub]. If each parameter has different range, use arrays lb[j], ub[j] instead of lb and ub */

Range = repmat((ub-lb),[FoodNumber 1]);
Lower = repmat(lb, [FoodNumber 1]);
Foods = rand(FoodNumber,D) .* Range + Lower;

ObjVal=feval(objfun,Foods);
Fitness=calculateFitness(ObjVal);

%reset trial counters
trial=zeros(1,FoodNumber);

%/*The best food source is memorized*/
BestInd=find(ObjVal==min(ObjVal));
BestInd=BestInd(end);
GlobalMin=ObjVal(BestInd);
GlobalParams=Foods(BestInd,:);

iter=1;
while ((iter <= maxCycle)),

%%%%%%%%% EMPLOYED BEE PHASE %%%%%%%%%%%%%%%%%%%%%%%%
for i=1:(FoodNumber)

%/*The parameter to be changed is determined randomly*/
Param2Change=fix(rand*D)+1;

%/*A randomly chosen solution is used in procing a mutant solution of the solution i*/
neighbour=fix(rand*(FoodNumber))+1;

%/*Randomly selected solution must be different from the solution i*/
while(neighbour==i)
neighbour=fix(rand*(FoodNumber))+1;
end;

sol=Foods(i,:);
% /*v_{ij}=x_{ij}+\phi_{ij}*(x_{kj}-x_{ij}) */
sol(Param2Change)=Foods(i,Param2Change)+(Foods(i,Param2Change)-Foods(neighbour,Param2Change))*(rand-0.5)*2;

% /*if generated parameter value is out of boundaries, it is shifted onto the boundaries*/
ind=find(sol<lb);
sol(ind)=lb(ind);
ind=find(sol>ub);
sol(ind)=ub(ind);

%evaluate new solution
ObjValSol=feval(objfun,sol);
FitnessSol=calculateFitness(ObjValSol);

% /*a greedy selection is applied between the current solution i and its mutant*/
if (FitnessSol>Fitness(i)) %/*If the mutant solution is better than the current solution i, replace the solution with the mutant and reset the trial counter of solution i*/
Foods(i,:)=sol;
Fitness(i)=FitnessSol;
ObjVal(i)=ObjValSol;
trial(i)=0;
else
trial(i)=trial(i)+1; %/*if the solution i can not be improved, increase its trial counter*/
end;

end;

%%%%%%%%%%%%%%%%%%%%%%%% CalculateProbabilities %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%/* A food source is chosen with the probability which is proportioal to its quality*/
%/*Different schemes can be used to calculate the probability values*/
%/*For example prob(i)=fitness(i)/sum(fitness)*/
%/*or in a way used in the metot below prob(i)=a*fitness(i)/max(fitness)+b*/
%/*probability values are calculated by using fitness values and normalized by dividing maximum fitness value*/

prob=(0.9.*Fitness./max(Fitness))+0.1;

%%%%%%%%%%%%%%%%%%%%%%%% ONLOOKER BEE PHASE %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

i=1;
t=0;
while(t<FoodNumber)
if(rand<prob(i))
t=t+1;
%/*The parameter to be changed is determined randomly*/
Param2Change=fix(rand*D)+1;

%/*A randomly chosen solution is used in procing a mutant solution of the solution i*/
neighbour=fix(rand*(FoodNumber))+1;

%/*Randomly selected solution must be different from the solution i*/
while(neighbour==i)
neighbour=fix(rand*(FoodNumber))+1;
end;

sol=Foods(i,:);
% /*v_{ij}=x_{ij}+\phi_{ij}*(x_{kj}-x_{ij}) */
sol(Param2Change)=Foods(i,Param2Change)+(Foods(i,Param2Change)-Foods(neighbour,Param2Change))*(rand-0.5)*2;

% /*if generated parameter value is out of boundaries, it is shifted onto the boundaries*/
ind=find(sol<lb);
sol(ind)=lb(ind);
ind=find(sol>ub);
sol(ind)=ub(ind);

%evaluate new solution
ObjValSol=feval(objfun,sol);
FitnessSol=calculateFitness(ObjValSol);

% /*a greedy selection is applied between the current solution i and its mutant*/
if (FitnessSol>Fitness(i)) %/*If the mutant solution is better than the current solution i, replace the solution with the mutant and reset the trial counter of solution i*/
Foods(i,:)=sol;
Fitness(i)=FitnessSol;
ObjVal(i)=ObjValSol;
trial(i)=0;
else
trial(i)=trial(i)+1; %/*if the solution i can not be improved, increase its trial counter*/
end;
end;

i=i+1;
if (i==(FoodNumber)+1)
i=1;
end;
end;

%/*The best food source is memorized*/
ind=find(ObjVal==min(ObjVal));
ind=ind(end);
if (ObjVal(ind)<GlobalMin)
GlobalMin=ObjVal(ind);
GlobalParams=Foods(ind,:);
end;

%%%%%%%%%%%% SCOUT BEE PHASE %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%/*determine the food sources whose trial counter exceeds the "limit" value.
%In Basic ABC, only one scout is allowed to occur in each cycle*/

ind=find(trial==max(trial));
ind=ind(end);
if (trial(ind)>limit)
Bas(ind)=0;
sol=(ub-lb).*rand(1,D)+lb;
ObjValSol=feval(objfun,sol);
FitnessSol=calculateFitness(ObjValSol);
Foods(ind,:)=sol;
Fitness(ind)=FitnessSol;
ObjVal(ind)=ObjValSol;
end;

fprintf('Ýter=%d ObjVal=%g\n',iter,GlobalMin);
iter=iter+1;

end % End of ABC

GlobalMins(r)=GlobalMin;
end; %end of runs

save all

B. 人工蜂群演算法選擇無功補償方式指的是什麼方式

你的提問存在一定的問題,人工蜂群演算法是對一定區域內電網的補償點進行選擇,平時說的無功補償方式指的是靜態投切(接觸器)、動態投切(電子開關)等,是針對具體補償點的技術選擇。

這兩個內容本來就不是一回事,打個比方,我們國家需要在若干城市設置軍用機場用以防空,人工蜂群理論告訴你機場選在哪個城市合適。假如按照該理論有一個軍用機場選在了連雲港,而補償方式好比是這個機場到底是作為轟炸機的基地還是作為以戰斗機基地,配置防空火炮還是地空導彈。
可以說一個是大范圍的選擇,一個是具體做法。

C. 人工蜂群演算法的蜜蜂采蜜機理

蜜蜂是一種群居昆蟲,雖然單個昆蟲的行為極其簡單,但是由單個簡單的個體所組成的群體卻表現出極其復雜的行為。真實的蜜蜂種群能夠在任何環境下,以極高的效率從食物源(花朵)中採集花蜜;同時,它們能適應環境的改變。
蜂群產生群體智慧的最小搜索模型包含基本的三個組成要素:食物源、被僱傭的蜜蜂(employed foragers)和未被僱傭的蜜蜂(unemployed foragers);兩種最為基本的行為模型:為食物源招募(recruit)蜜蜂和放棄(abandon)某個食物源。
(1)食物源:食物源的價值由多方面的因素決定,如:它離蜂巢的遠近,包含花蜜的豐富程度和獲得花蜜的難易程度。使用單一的參數,食物源的「收益率」(profitability),來代表以上各個因素。
(2)被僱用的蜜蜂:也稱引領蜂(Leader),其與所採集的食物源一一對應。引領蜂儲存有某一個食物源的相關信息(相對於蜂巢的距離、方向、食物源的豐富程度等)並且將這些信息以一定的概率與其他蜜蜂分享。
(3)未被僱用的蜜蜂:其主要任務是尋找和開採食物源。有兩種未被僱用的蜜蜂:偵查蜂(Scouter)和跟隨蜂(Follower)。偵察蜂搜索蜂巢附近的新食物源;跟隨蜂等在蜂巢裡面並通過與引領蜂分享相關信息找到食物源。一般情況下,偵察蜂的平均數目是蜂群的5%-20%。
在群體智慧的形成過程中,蜜蜂間交換信息是最為重要的一環。舞蹈區是蜂巢中最為重要的信息交換地。蜜蜂的舞蹈叫做搖擺舞。食物源的信息在舞蹈區通過搖擺舞的形式與其他蜜蜂共享,引領蜂通過搖擺舞的持續時間等來表現食物源的收益率,故跟隨蜂可以觀察到大量的舞蹈並依據收益率來選擇到哪個食物源采蜜。收益率與食物源被選擇的可能性成正比。因而,蜜蜂被招募到某一個食物源的概率與食物源的收益率成正比。
初始時刻,蜜蜂以偵察蜂的身份搜索。其搜索可以由系統提供的先驗知識決定,也可以完全隨機。經過一輪偵查後,若蜜蜂找到食物源,蜜蜂利用它本身的存儲能力記錄位置信息並開始采蜜。此時,蜜蜂將成為「被僱用者」。蜜蜂在食物源采蜜後回到蜂巢卸下蜂蜜然後將有如下選擇:
(1)放棄食物源而成為非僱傭蜂。
(2)跳搖擺舞為所對應的食物源招募更多的蜜蜂,然後回到食物源采蜜。
(3)繼續在同一個食物源采蜜而不進行招募。
對於非僱傭蜂有如下選擇:
(1)轉變成為偵察蜂並搜索蜂巢附近的食物源。其搜索可以由先驗知識決定,也可以完全隨機。
(2)在觀察完搖擺舞後被僱用成為跟隨蜂,開始搜索對應食物源鄰域並采蜜。

D. 蜂群演算法與人工蜂群演算法有什麼的區別嗎

都是一樣的,為什麼有的會帶上「人工」呢?只是因為這些只能演算法都是「人」仿照動物行為而創造的,所以有時候才會帶上「人工」兩個字.但是指的是一個東西.
例如神經網路,也有人喜歡說是人工神經網路

E. 人工蜂群演算法limit怎麼確定

可以通過保持其他參數不變,選擇不同的limit值進行實驗,看哪個效果好來確定。不知道你的問題是不是這個意思。

F. java人工蜂群演算法求解TSP問題

一、人工蜂群演算法的介紹

人工蜂群演算法(Artificial Bee Colony, ABC)是由Karaboga於2005年提出的一種新穎的基於群智能的全局優化演算法,其直觀背景來源於蜂群的采蜜行為,蜜蜂根據各自的分工進行不同的活動,並實現蜂群信息的共享和交流,從而找到問題的最優解。人工蜂群演算法屬於群智能演算法的一種。

二、人工蜂群演算法的原理

1、原理

標準的ABC演算法通過模擬實際蜜蜂的采蜜機制將人工蜂群分為3類: 采蜜蜂、觀察蜂和偵察蜂。整個蜂群的目標是尋找花蜜量最大的蜜源。在標準的ABC演算法中,采蜜蜂利用先前的蜜源信息尋找新的蜜源並與觀察蜂分享蜜源信息;觀察蜂在蜂房中等待並依據采蜜蜂分享的信息尋找新的蜜源;偵查蜂的任務是尋找一個新的有價值的蜜源,它們在蜂房附近隨機地尋找蜜源。

假設問題的解空間是

代碼:

[cpp]view plain

  • #include<iostream>

  • #include<time.h>

  • #include<stdlib.h>

  • #include<cmath>

  • #include<fstream>

  • #include<iomanip>

  • usingnamespacestd;

  • constintNP=40;//種群的規模,采蜜蜂+觀察蜂

  • constintFoodNumber=NP/2;//食物的數量,為采蜜蜂的數量

  • constintlimit=20;//限度,超過這個限度沒有更新采蜜蜂變成偵查蜂

  • constintmaxCycle=10000;//停止條件

  • /*****函數的特定參數*****/

  • constintD=2;//函數的參數個數

  • constdoublelb=-100;//函數的下界

  • constdoubleub=100;//函數的上界

  • doubleresult[maxCycle]={0};

  • /*****種群的定義****/

  • structBeeGroup

  • {

  • doublecode[D];//函數的維數

  • doubletrueFit;//記錄真實的最小值

  • doublefitness;

  • doublerfitness;//相對適應值比例

  • inttrail;//表示實驗的次數,用於與limit作比較

  • }Bee[FoodNumber];

  • BeeGroupNectarSource[FoodNumber];//蜜源,注意:一切的修改都是針對蜜源而言的

  • BeeGroupEmployedBee[FoodNumber];//采蜜蜂

  • BeeGroupOnLooker[FoodNumber];//觀察蜂

  • BeeGroupBestSource;//記錄最好蜜源

  • /*****函數的聲明*****/

  • doublerandom(double,double);//產生區間上的隨機數

  • voidinitilize();//初始化參數

  • doublecalculationTruefit(BeeGroup);//計算真實的函數值

  • doublecalculationFitness(double);//計算適應值

  • voidCalculateProbabilities();//計算輪盤賭的概率

  • voidevalueSource();//評價蜜源

  • voidsendEmployedBees();

  • voidsendOnlookerBees();

  • voidsendScoutBees();

  • voidMemorizeBestSource();

  • /*******主函數*******/

  • intmain()

  • {

  • ofstreamoutput;

  • output.open("dataABC.txt");

  • srand((unsigned)time(NULL));

  • initilize();//初始化

  • MemorizeBestSource();//保存最好的蜜源

  • //主要的循環

  • intgen=0;

  • while(gen<maxCycle)

  • {

  • sendEmployedBees();

  • CalculateProbabilities();

  • sendOnlookerBees();

  • MemorizeBestSource();

  • sendScoutBees();

  • MemorizeBestSource();

  • output<<setprecision(30)<<BestSource.trueFit<<endl;

  • gen++;

  • }

  • output.close();

  • cout<<"運行結束!!"<<endl;

  • return0;

  • }

  • /*****函數的實現****/

  • doublerandom(doublestart,doubleend)//隨機產生區間內的隨機數

  • {

  • returnstart+(end-start)*rand()/(RAND_MAX+1.0);

  • }

  • voidinitilize()//初始化參數

  • {

  • inti,j;

  • for(i=0;i<FoodNumber;i++)

  • {

  • for(j=0;j<D;j++)

  • {

  • NectarSource[i].code[j]=random(lb,ub);

  • EmployedBee[i].code[j]=NectarSource[i].code[j];

  • OnLooker[i].code[j]=NectarSource[i].code[j];

  • BestSource.code[j]=NectarSource[0].code[j];

  • }

  • /****蜜源的初始化*****/

  • NectarSource[i].trueFit=calculationTruefit(NectarSource[i]);

  • NectarSource[i].fitness=calculationFitness(NectarSource[i].trueFit);

  • NectarSource[i].rfitness=0;

  • NectarSource[i].trail=0;

  • /****采蜜蜂的初始化*****/

  • EmployedBee[i].trueFit=NectarSource[i].trueFit;

  • EmployedBee[i].fitness=NectarSource[i].fitness;

  • EmployedBee[i].rfitness=NectarSource[i].rfitness;

  • EmployedBee[i].trail=NectarSource[i].trail;

  • /****觀察蜂的初始化****/

  • OnLooker[i].trueFit=NectarSource[i].trueFit;

  • OnLooker[i].fitness=NectarSource[i].fitness;

  • OnLooker[i].rfitness=NectarSource[i].rfitness;

  • OnLooker[i].trail=NectarSource[i].trail;

  • }

  • /*****最優蜜源的初始化*****/

  • BestSource.trueFit=NectarSource[0].trueFit;

  • BestSource.fitness=NectarSource[0].fitness;

  • BestSource.rfitness=NectarSource[0].rfitness;

  • BestSource.trail=NectarSource[0].trail;

  • }

  • doublecalculationTruefit(BeeGroupbee)//計算真實的函數值

  • {

  • doubletruefit=0;

  • /******測試函數1******/

  • truefit=0.5+(sin(sqrt(bee.code[0]*bee.code[0]+bee.code[1]*bee.code[1]))*sin(sqrt(bee.code[0]*bee.code[0]+bee.code[1]*bee.code[1]))-0.5)

  • /((1+0.001*(bee.code[0]*bee.code[0]+bee.code[1]*bee.code[1]))*(1+0.001*(bee.code[0]*bee.code[0]+bee.code[1]*bee.code[1])));

  • returntruefit;

  • }

  • doublecalculationFitness(doubletruefit)//計算適應值

  • {

  • doublefitnessResult=0;

  • if(truefit>=0)

  • {

  • fitnessResult=1/(truefit+1);

  • }else

  • {

  • fitnessResult=1+abs(truefit);

  • }

  • returnfitnessResult;

  • }

  • voidsendEmployedBees()//修改采蜜蜂的函數

  • {

  • inti,j,k;

  • intparam2change;//需要改變的維數

  • doubleRij;//[-1,1]之間的隨機數

  • for(i=0;i<FoodNumber;i++)

  • {

  • param2change=(int)random(0,D);//隨機選取需要改變的維數

  • /******選取不等於i的k********/

  • while(1)

  • {

  • k=(int)random(0,FoodNumber);

  • if(k!=i)

  • {

  • break;

  • }

  • }

  • for(j=0;j<D;j++)

  • {

  • EmployedBee[i].code[j]=NectarSource[i].code[j];

  • }

  • /*******采蜜蜂去更新信息*******/

  • Rij=random(-1,1);

  • EmployedBee[i].code[param2change]=NectarSource[i].code[param2change]+Rij*(NectarSource[i].code[param2change]-NectarSource[k].code[param2change]);

  • /*******判斷是否越界********/

  • if(EmployedBee[i].code[param2change]>ub)

  • {

  • EmployedBee[i].code[param2change]=ub;

  • }

  • if(EmployedBee[i].code[param2change]<lb)

  • {

  • EmployedBee[i].code[param2change]=lb;

  • }

  • EmployedBee[i].trueFit=calculationTruefit(EmployedBee[i]);

  • EmployedBee[i].fitness=calculationFitness(EmployedBee[i].trueFit);

  • /******貪婪選擇策略*******/

  • if(EmployedBee[i].trueFit<NectarSource[i].trueFit)

  • {

  • for(j=0;j<D;j++)

  • {

  • NectarSource[i].code[j]=EmployedBee[i].code[j];

  • }

  • NectarSource[i].trail=0;

  • NectarSource[i].trueFit=EmployedBee[i].trueFit;

  • NectarSource[i].fitness=EmployedBee[i].fitness;

  • }else

  • {

  • NectarSource[i].trail++;

  • }

  • }

  • }

  • voidCalculateProbabilities()//計算輪盤賭的選擇概率

  • {

  • inti;

  • doublemaxfit;

  • maxfit=NectarSource[0].fitness;

  • for(i=1;i<FoodNumber;i++)

  • {

  • if(NectarSource[i].fitness>maxfit)

  • maxfit=NectarSource[i].fitness;

  • }

  • for(i=0;i<FoodNumber;i++)

  • {

  • NectarSource[i].rfitness=(0.9*(NectarSource[i].fitness/maxfit))+0.1;

  • }

  • }

  • voidsendOnlookerBees()//采蜜蜂與觀察蜂交流信息,觀察蜂更改信息

  • {

  • inti,j,t,k;

  • doubleR_choosed;//被選中的概率

  • intparam2change;//需要被改變的維數

  • doubleRij;//[-1,1]之間的隨機數

  • i=0;

  • t=0;

  • while(t<FoodNumber)

  • {

  • R_choosed=random(0,1);

  • if(R_choosed<NectarSource[i].rfitness)//根據被選擇的概率選擇

  • {

  • t++;

  • param2change=(int)random(0,D);

  • /******選取不等於i的k********/

  • while(1)

  • {

  • k=(int)random(0,FoodNumber);

  • if(k!=i)

  • {

  • break;

  • }

  • }

  • for(j=0;j<D;j++)

  • {

  • OnLooker[i].code[j]=NectarSource[i].code[j];

  • }

  • /****更新******/

  • Rij=random(-1,1);

  • OnLooker[i].code[param2change]=NectarSource[i].code[param2change]+Rij*(NectarSource[i].code[param2change]-NectarSource[k].code[param2change]);

  • /*******判斷是否越界*******/

  • if(OnLooker[i].code[param2change]<lb)

  • {

  • OnLooker[i].code[param2change]=lb;

  • }

  • if(OnLooker[i].code[param2change]>ub)

  • {

  • OnLooker[i].code[param2change]=ub;

  • }

  • OnLooker[i].trueFit=calculationTruefit(OnLooker[i]);

  • OnLooker[i].fitness=calculationFitness(OnLooker[i].trueFit);

  • /****貪婪選擇策略******/

  • if(OnLooker[i].trueFit<NectarSource[i].trueFit)

  • {

  • for(j=0;j<D;j++)

  • {

  • NectarSource[i].code[j]=OnLooker[i].code[j];

  • }

  • NectarSource[i].trail=0;

  • NectarSource[i].trueFit=OnLooker[i].trueFit;

  • NectarSource[i].fitness=OnLooker[i].fitness;

  • }else

  • {

  • NectarSource[i].trail++;

  • }

  • }

  • i++;

  • if(i==FoodNumber)

  • {

  • i=0;

  • }

  • }

  • }

  • G. 人工蜂群演算法可以用在推薦演算法當中嗎

    蜜蜂是一種群居昆蟲,雖然單個昆蟲的行為極其簡單,但是由單個簡單的個體所組成的群體卻表現出極其復雜的行為。真實的蜜蜂種群能夠在任何環境下,以極高的效率從食物源(花朵)中採集花蜜;同時,它們能適應環境的改變。
    蜂群產生群體智慧的最小搜索模型包含基本的三個組成要素:食物源、被僱傭的蜜蜂(employed foragers)和未被僱傭的蜜蜂(unemployed foragers);兩種最為基本的行為模型:為食物源招募(recruit)蜜蜂和放棄(abandon)某個食物源。
    (1)食物源:食物源的價值由多方面的因素決定,如:它離蜂巢的遠近,包含花蜜的豐富程度和獲得花蜜的難易程度。使用單一的參數,食物源的「收益率」(profitability),來代表以上各個因素。
    (2)被僱用的蜜蜂:也稱引領蜂(Leader),其與所採集的食物源一一對應。引領蜂儲存有某一個食物源的相關信息(相對於蜂巢的距離、方向、食物源的豐富程度等)並且將這些信息以一定的概率與其他蜜蜂分享。

    H. 有沒有人有多目標人工蜂群演算法的MATLAB代碼。發我一份 不勝感激!!

    http://emuch.net/bbs/attachment.php?tid=3808850&aid=11221&pay=yes
    裡面有多個文件
    其中之一
    %/* ABC algorithm coded using MATLAB language */

    %/* Artificial Bee Colony (ABC) is one of the most recently defined algorithms by Dervis Karaboga in 2005, motivated by the intelligent behavior of honey bees. */

    %/* Referance Papers*/

    %/*D. Karaboga, AN IDEA BASED ON HONEY BEE SWARM FOR NUMERICAL OPTIMIZATION,TECHNICAL REPORT-TR06, Erciyes University, Engineering Faculty, Computer Engineering Department 2005.*/

    %/*D. Karaboga, B. Basturk, A powerful and Efficient Algorithm for Numerical Function Optimization: Artificial Bee Colony (ABC) Algorithm, Journal of Global Optimization, Volume:39, Issue:3,pp:459-171, November 2007,ISSN:0925-5001 , doi: 10.1007/s10898-007-9149-x */

    %/*D. Karaboga, B. Basturk, On The Performance Of Artificial Bee Colony (ABC) Algorithm, Applied Soft Computing,Volume 8, Issue 1, January 2008, Pages 687-697. */

    %/*D. Karaboga, B. Akay, A Comparative Study of Artificial Bee Colony Algorithm, Applied Mathematics and Computation, 214, 108-132, 2009. */

    %/*Copyright ?2009 Erciyes University, Intelligent Systems Research Group, The Dept. of Computer Engineering*/

    %/*Contact:
    %Dervis Karaboga ([email protected] )
    %Bahriye Basturk Akay ([email protected])
    %*/

    clear all
    close all
    clc

    %/* Control Parameters of ABC algorithm*/
    NP=20; %/* The number of colony size (employed bees+onlooker bees)*/
    FoodNumber=NP/2; %/*The number of food sources equals the half of the colony size*/
    limit=100; %/*A food source which could not be improved through "limit" trials is abandoned by its employed bee*/
    maxCycle=2500; %/*The number of cycles for foraging {a stopping criteria}*/

    %/* Problem specific variables*/
    objfun='Sphere'; %cost function to be optimized
    D=100; %/*The number of parameters of the problem to be optimized*/
    ub=ones(1,D)*100; %/*lower bounds of the parameters. */
    lb=ones(1,D)*(-100);%/*upper bound of the parameters.*/

    runtime=1;%/*Algorithm can be run many times in order to see its robustness*/

    %Foods [FoodNumber][D]; /*Foods is the population of food sources. Each row of Foods matrix is a vector holding D parameters to be optimized. The number of rows of Foods matrix equals to the FoodNumber*/
    %ObjVal[FoodNumber]; /*f is a vector holding objective function values associated with food sources */
    %Fitness[FoodNumber]; /*fitness is a vector holding fitness (quality) values associated with food sources*/
    %trial[FoodNumber]; /*trial is a vector holding trial numbers through which solutions can not be improved*/
    %prob[FoodNumber]; /*prob is a vector holding probabilities of food sources (solutions) to be chosen*/
    %solution [D]; /*New solution (neighbour) proced by v_{ij}=x_{ij}+\phi_{ij}*(x_{kj}-x_{ij}) j is a randomly chosen parameter and k is a randomlu chosen solution different from i*/
    %ObjValSol; /*Objective function value of new solution*/
    %FitnessSol; /*Fitness value of new solution*/
    %neighbour, param2change; /*param2change corrresponds to j, neighbour corresponds to k in equation v_{ij}=x_{ij}+\phi_{ij}*(x_{kj}-x_{ij})*/
    %GlobalMin; /*Optimum solution obtained by ABC algorithm*/
    %GlobalParams[D]; /*Parameters of the optimum solution*/
    %GlobalMins[runtime]; /*GlobalMins holds the GlobalMin of each run in multiple runs*/

    GlobalMins=zeros(1,runtime);

    for r=1:runtime

    % /*All food sources are initialized */
    %/*Variables are initialized in the range [lb,ub]. If each parameter has different range, use arrays lb[j], ub[j] instead of lb and ub */

    Range = repmat((ub-lb),[FoodNumber 1]);
    Lower = repmat(lb, [FoodNumber 1]);
    Foods = rand(FoodNumber,D) .* Range + Lower;

    ObjVal=feval(objfun,Foods);
    Fitness=calculateFitness(ObjVal);

    %reset trial counters
    trial=zeros(1,FoodNumber);

    %/*The best food source is memorized*/
    BestInd=find(ObjVal==min(ObjVal));
    BestInd=BestInd(end);
    GlobalMin=ObjVal(BestInd);
    GlobalParams=Foods(BestInd,:);

    iter=1;
    while ((iter <= maxCycle)),

    %%%%%%%%% EMPLOYED BEE PHASE %%%%%%%%%%%%%%%%%%%%%%%%
    for i=1:(FoodNumber)

    %/*The parameter to be changed is determined randomly*/
    Param2Change=fix(rand*D)+1;

    %/*A randomly chosen solution is used in procing a mutant solution of the solution i*/
    neighbour=fix(rand*(FoodNumber))+1;

    %/*Randomly selected solution must be different from the solution i*/
    while(neighbour==i)
    neighbour=fix(rand*(FoodNumber))+1;
    end;

    sol=Foods(i,:);
    % /*v_{ij}=x_{ij}+\phi_{ij}*(x_{kj}-x_{ij}) */
    sol(Param2Change)=Foods(i,Param2Change)+(Foods(i,Param2Change)-Foods(neighbour,Param2Change))*(rand-0.5)*2;

    % /*if generated parameter value is out of boundaries, it is shifted onto the boundaries*/
    ind=find(sol<lb);
    sol(ind)=lb(ind);
    ind=find(sol>ub);
    sol(ind)=ub(ind);

    %evaluate new solution
    ObjValSol=feval(objfun,sol);
    FitnessSol=calculateFitness(ObjValSol);

    % /*a greedy selection is applied between the current solution i and its mutant*/
    if (FitnessSol>Fitness(i)) %/*If the mutant solution is better than the current solution i, replace the solution with the mutant and reset the trial counter of solution i*/
    Foods(i,:)=sol;
    Fitness(i)=FitnessSol;
    ObjVal(i)=ObjValSol;
    trial(i)=0;
    else
    trial(i)=trial(i)+1; %/*if the solution i can not be improved, increase its trial counter*/
    end;

    end;

    %%%%%%%%%%%%%%%%%%%%%%%% CalculateProbabilities %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    %/* A food source is chosen with the probability which is proportioal to its quality*/
    %/*Different schemes can be used to calculate the probability values*/
    %/*For example prob(i)=fitness(i)/sum(fitness)*/
    %/*or in a way used in the metot below prob(i)=a*fitness(i)/max(fitness)+b*/
    %/*probability values are calculated by using fitness values and normalized by dividing maximum fitness value*/

    prob=(0.9.*Fitness./max(Fitness))+0.1;

    %%%%%%%%%%%%%%%%%%%%%%%% ONLOOKER BEE PHASE %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

    i=1;
    t=0;
    while(t<FoodNumber)
    if(rand<prob(i))
    t=t+1;
    %/*The parameter to be changed is determined randomly*/
    Param2Change=fix(rand*D)+1;

    %/*A randomly chosen solution is used in procing a mutant solution of the solution i*/
    neighbour=fix(rand*(FoodNumber))+1;

    %/*Randomly selected solution must be different from the solution i*/
    while(neighbour==i)
    neighbour=fix(rand*(FoodNumber))+1;
    end;

    sol=Foods(i,:);
    % /*v_{ij}=x_{ij}+\phi_{ij}*(x_{kj}-x_{ij}) */
    sol(Param2Change)=Foods(i,Param2Change)+(Foods(i,Param2Change)-Foods(neighbour,Param2Change))*(rand-0.5)*2;

    % /*if generated parameter value is out of boundaries, it is shifted onto the boundaries*/
    ind=find(sol<lb);
    sol(ind)=lb(ind);
    ind=find(sol>ub);
    sol(ind)=ub(ind);

    %evaluate new solution
    ObjValSol=feval(objfun,sol);
    FitnessSol=calculateFitness(ObjValSol);

    % /*a greedy selection is applied between the current solution i and its mutant*/
    if (FitnessSol>Fitness(i)) %/*If the mutant solution is better than the current solution i, replace the solution with the mutant and reset the trial counter of solution i*/
    Foods(i,:)=sol;
    Fitness(i)=FitnessSol;
    ObjVal(i)=ObjValSol;
    trial(i)=0;
    else
    trial(i)=trial(i)+1; %/*if the solution i can not be improved, increase its trial counter*/
    end;
    end;

    i=i+1;
    if (i==(FoodNumber)+1)
    i=1;
    end;
    end;

    %/*The best food source is memorized*/
    ind=find(ObjVal==min(ObjVal));
    ind=ind(end);
    if (ObjVal(ind)<GlobalMin)
    GlobalMin=ObjVal(ind);
    GlobalParams=Foods(ind,:);
    end;

    %%%%%%%%%%%% SCOUT BEE PHASE %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

    %/*determine the food sources whose trial counter exceeds the "limit" value.
    %In Basic ABC, only one scout is allowed to occur in each cycle*/

    ind=find(trial==max(trial));
    ind=ind(end);
    if (trial(ind)>limit)
    Bas(ind)=0;
    sol=(ub-lb).*rand(1,D)+lb;
    ObjValSol=feval(objfun,sol);
    FitnessSol=calculateFitness(ObjValSol);
    Foods(ind,:)=sol;
    Fitness(ind)=FitnessSol;
    ObjVal(ind)=ObjValSol;
    end;

    fprintf('Ýter=%d ObjVal=%g\n',iter,GlobalMin);
    iter=iter+1;

    end % End of ABC

    GlobalMins(r)=GlobalMin;
    end; %end of runs

    save all

    熱點內容
    打卡機資料庫 發布:2025-01-11 04:18:36 瀏覽:914
    製作產業項目視頻腳本 發布:2025-01-11 04:10:14 瀏覽:185
    編程是天賦嗎 發布:2025-01-11 04:10:04 瀏覽:257
    軟體編程培訓學院 發布:2025-01-11 04:00:18 瀏覽:846
    路虎攬運配置怎麼查詢 發布:2025-01-11 03:42:51 瀏覽:393
    仿站源碼 發布:2025-01-11 03:42:05 瀏覽:40
    騰訊的雲伺服器 發布:2025-01-11 03:40:47 瀏覽:569
    百分之十的演算法 發布:2025-01-11 03:34:30 瀏覽:642
    java16進制tostring 發布:2025-01-11 03:24:21 瀏覽:721
    mql4c語言 發布:2025-01-11 03:24:20 瀏覽:255