linux的同步機制
1. linux逆向同步需要同系統嗎
需要。
因為為了確保系統高效穩定有序地運行,linux必須要採用同步機制。
互斥與同步機制是計算機系統中,用於控制進程對某些特定資源的訪問的機制。而同步是指用於實現控制多個進程按照一定的規則或順序訪問某些系統資源的機制。
2. Linux多進程和線程同步的幾種方式
Linux 線程同步的三種方法
線程的最大特點是資源的共享性,但資源共享中的同步問題是多線程編程的難點。linux下提供了多種方式來處理線程同步,最常用的是互斥鎖、條件變數和信號量。
一、互斥鎖(mutex)
通過鎖機制實現線程間的同步。
初始化鎖。在Linux下,線程的互斥量數據類型是pthread_mutex_t。在使用前,要對它進行初始化。
靜態分配:pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
動態分配:int pthread_mutex_init(pthread_mutex_t *mutex, const pthread_mutex_attr_t *mutexattr);
加鎖。對共享資源的訪問,要對互斥量進行加鎖,如果互斥量已經上了鎖,調用線程會阻塞,直到互斥量被解鎖。
int pthread_mutex_lock(pthread_mutex *mutex);
int pthread_mutex_trylock(pthread_mutex_t *mutex);
解鎖。在完成了對共享資源的訪問後,要對互斥量進行解鎖。
int pthread_mutex_unlock(pthread_mutex_t *mutex);
銷毀鎖。鎖在是使用完成後,需要進行銷毀以釋放資源。
int pthread_mutex_destroy(pthread_mutex *mutex);
[csharp] view plain
#include <cstdio>
#include <cstdlib>
#include <unistd.h>
#include <pthread.h>
#include "iostream"
using namespace std;
pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
int tmp;
void* thread(void *arg)
{
cout << "thread id is " << pthread_self() << endl;
pthread_mutex_lock(&mutex);
tmp = 12;
cout << "Now a is " << tmp << endl;
pthread_mutex_unlock(&mutex);
return NULL;
}
int main()
{
pthread_t id;
cout << "main thread id is " << pthread_self() << endl;
tmp = 3;
cout << "In main func tmp = " << tmp << endl;
if (!pthread_create(&id, NULL, thread, NULL))
{
cout << "Create thread success!" << endl;
}
else
{
cout << "Create thread failed!" << endl;
}
pthread_join(id, NULL);
pthread_mutex_destroy(&mutex);
return 0;
}
//編譯:g++ -o thread testthread.cpp -lpthread
二、條件變數(cond)
互斥鎖不同,條件變數是用來等待而不是用來上鎖的。條件變數用來自動阻塞一個線程,直到某特殊情況發生為止。通常條件變數和互斥鎖同時使用。條件變數分為兩部分: 條件和變數。條件本身是由互斥量保護的。線程在改變條件狀態前先要鎖住互斥量。條件變數使我們可以睡眠等待某種條件出現。條件變數是利用線程間共享的全局變數進行同步的一種機制,主要包括兩個動作:一個線程等待"條件變數的條件成立"而掛起;另一個線程使"條件成立"(給出條件成立信號)。條件的檢測是在互斥鎖的保護下進行的。如果一個條件為假,一個線程自動阻塞,並釋放等待狀態改變的互斥鎖。如果另一個線程改變了條件,它發信號給關聯的條件變數,喚醒一個或多個等待它的線程,重新獲得互斥鎖,重新評價條件。如果兩進程共享可讀寫的內存,條件變數可以被用來實現這兩進程間的線程同步。
初始化條件變數。
靜態態初始化,pthread_cond_t cond = PTHREAD_COND_INITIALIER;
動態初始化,int pthread_cond_init(pthread_cond_t *cond, pthread_condattr_t *cond_attr);
等待條件成立。釋放鎖,同時阻塞等待條件變數為真才行。timewait()設置等待時間,仍未signal,返回ETIMEOUT(加鎖保證只有一個線程wait)
int pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mutex);
int pthread_cond_timewait(pthread_cond_t *cond,pthread_mutex *mutex,const timespec *abstime);
激活條件變數。pthread_cond_signal,pthread_cond_broadcast(激活所有等待線程)
int pthread_cond_signal(pthread_cond_t *cond);
int pthread_cond_broadcast(pthread_cond_t *cond); //解除所有線程的阻塞
清除條件變數。無線程等待,否則返回EBUSY
int pthread_cond_destroy(pthread_cond_t *cond);
[cpp] view plain
#include <stdio.h>
#include <pthread.h>
#include "stdlib.h"
#include "unistd.h"
pthread_mutex_t mutex;
pthread_cond_t cond;
void hander(void *arg)
{
free(arg);
(void)pthread_mutex_unlock(&mutex);
}
void *thread1(void *arg)
{
pthread_cleanup_push(hander, &mutex);
while(1)
{
printf("thread1 is running\n");
pthread_mutex_lock(&mutex);
pthread_cond_wait(&cond, &mutex);
printf("thread1 applied the condition\n");
pthread_mutex_unlock(&mutex);
sleep(4);
}
pthread_cleanup_pop(0);
}
void *thread2(void *arg)
{
while(1)
{
printf("thread2 is running\n");
pthread_mutex_lock(&mutex);
pthread_cond_wait(&cond, &mutex);
printf("thread2 applied the condition\n");
pthread_mutex_unlock(&mutex);
sleep(1);
}
}
int main()
{
pthread_t thid1,thid2;
printf("condition variable study!\n");
pthread_mutex_init(&mutex, NULL);
pthread_cond_init(&cond, NULL);
pthread_create(&thid1, NULL, thread1, NULL);
pthread_create(&thid2, NULL, thread2, NULL);
sleep(1);
do
{
pthread_cond_signal(&cond);
}while(1);
sleep(20);
pthread_exit(0);
return 0;
}
[cpp] view plain
#include <pthread.h>
#include <unistd.h>
#include "stdio.h"
#include "stdlib.h"
static pthread_mutex_t mtx = PTHREAD_MUTEX_INITIALIZER;
static pthread_cond_t cond = PTHREAD_COND_INITIALIZER;
struct node
{
int n_number;
struct node *n_next;
}*head = NULL;
static void cleanup_handler(void *arg)
{
printf("Cleanup handler of second thread./n");
free(arg);
(void)pthread_mutex_unlock(&mtx);
}
static void *thread_func(void *arg)
{
struct node *p = NULL;
pthread_cleanup_push(cleanup_handler, p);
while (1)
{
//這個mutex主要是用來保證pthread_cond_wait的並發性
pthread_mutex_lock(&mtx);
while (head == NULL)
{
//這個while要特別說明一下,單個pthread_cond_wait功能很完善,為何
//這里要有一個while (head == NULL)呢?因為pthread_cond_wait里的線
//程可能會被意外喚醒,如果這個時候head != NULL,則不是我們想要的情況。
//這個時候,應該讓線程繼續進入pthread_cond_wait
// pthread_cond_wait會先解除之前的pthread_mutex_lock鎖定的mtx,
//然後阻塞在等待對列里休眠,直到再次被喚醒(大多數情況下是等待的條件成立
//而被喚醒,喚醒後,該進程會先鎖定先pthread_mutex_lock(&mtx);,再讀取資源
//用這個流程是比較清楚的
pthread_cond_wait(&cond, &mtx);
p = head;
head = head->n_next;
printf("Got %d from front of queue/n", p->n_number);
free(p);
}
pthread_mutex_unlock(&mtx); //臨界區數據操作完畢,釋放互斥鎖
}
pthread_cleanup_pop(0);
return 0;
}
int main(void)
{
pthread_t tid;
int i;
struct node *p;
//子線程會一直等待資源,類似生產者和消費者,但是這里的消費者可以是多個消費者,而
//不僅僅支持普通的單個消費者,這個模型雖然簡單,但是很強大
pthread_create(&tid, NULL, thread_func, NULL);
sleep(1);
for (i = 0; i < 10; i++)
{
p = (struct node*)malloc(sizeof(struct node));
p->n_number = i;
pthread_mutex_lock(&mtx); //需要操作head這個臨界資源,先加鎖,
p->n_next = head;
head = p;
pthread_cond_signal(&cond);
pthread_mutex_unlock(&mtx); //解鎖
sleep(1);
}
printf("thread 1 wanna end the line.So cancel thread 2./n");
//關於pthread_cancel,有一點額外的說明,它是從外部終止子線程,子線程會在最近的取消點,退出
//線程,而在我們的代碼里,最近的取消點肯定就是pthread_cond_wait()了。
pthread_cancel(tid);
pthread_join(tid, NULL);
printf("All done -- exiting/n");
return 0;
}
三、信號量(sem)
如同進程一樣,線程也可以通過信號量來實現通信,雖然是輕量級的。信號量函數的名字都以"sem_"打頭。線程使用的基本信號量函數有四個。
信號量初始化。
int sem_init (sem_t *sem , int pshared, unsigned int value);
這是對由sem指定的信號量進行初始化,設置好它的共享選項(linux 只支持為0,即表示它是當前進程的局部信號量),然後給它一個初始值VALUE。
等待信號量。給信號量減1,然後等待直到信號量的值大於0。
int sem_wait(sem_t *sem);
釋放信號量。信號量值加1。並通知其他等待線程。
int sem_post(sem_t *sem);
銷毀信號量。我們用完信號量後都它進行清理。歸還佔有的一切資源。
int sem_destroy(sem_t *sem);
[cpp] view plain
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <pthread.h>
#include <semaphore.h>
#include <errno.h>
#define return_if_fail(p) if((p) == 0){printf ("[%s]:func error!/n", __func__);return;}
typedef struct _PrivInfo
{
sem_t s1;
sem_t s2;
time_t end_time;
}PrivInfo;
static void info_init (PrivInfo* thiz);
static void info_destroy (PrivInfo* thiz);
static void* pthread_func_1 (PrivInfo* thiz);
static void* pthread_func_2 (PrivInfo* thiz);
int main (int argc, char** argv)
{
pthread_t pt_1 = 0;
pthread_t pt_2 = 0;
int ret = 0;
PrivInfo* thiz = NULL;
thiz = (PrivInfo* )malloc (sizeof (PrivInfo));
if (thiz == NULL)
{
printf ("[%s]: Failed to malloc priv./n");
return -1;
}
info_init (thiz);
ret = pthread_create (&pt_1, NULL, (void*)pthread_func_1, thiz);
if (ret != 0)
{
perror ("pthread_1_create:");
}
ret = pthread_create (&pt_2, NULL, (void*)pthread_func_2, thiz);
if (ret != 0)
{
perror ("pthread_2_create:");
}
pthread_join (pt_1, NULL);
pthread_join (pt_2, NULL);
info_destroy (thiz);
return 0;
}
static void info_init (PrivInfo* thiz)
{
return_if_fail (thiz != NULL);
thiz->end_time = time(NULL) + 10;
sem_init (&thiz->s1, 0, 1);
sem_init (&thiz->s2, 0, 0);
return;
}
static void info_destroy (PrivInfo* thiz)
{
return_if_fail (thiz != NULL);
sem_destroy (&thiz->s1);
sem_destroy (&thiz->s2);
free (thiz);
thiz = NULL;
return;
}
static void* pthread_func_1 (PrivInfo* thiz)
{
return_if_fail(thiz != NULL);
while (time(NULL) < thiz->end_time)
{
sem_wait (&thiz->s2);
printf ("pthread1: pthread1 get the lock./n");
sem_post (&thiz->s1);
printf ("pthread1: pthread1 unlock/n");
sleep (1);
}
return;
}
static void* pthread_func_2 (PrivInfo* thiz)
{
return_if_fail (thiz != NULL);
while (time (NULL) < thiz->end_time)
{
sem_wait (&thiz->s1);
printf ("pthread2: pthread2 get the unlock./n");
sem_post (&thiz->s2);
printf ("pthread2: pthread2 unlock./n");
sleep (1);
}
return;
}
3. linux系統中線程同步實現機制有哪些
LinuxThread的線程機制
LinuxThreads是目前Linux平台上使用最為廣泛的線程庫,由Xavier Leroy ([email protected]) 負責開發完成,並已綁定在GLIBC中發行。它所實現的就是基於核心輕量級進程的"一對一"線程模型,一個線程實體對應一個核心輕量級進程,而線程之間的 管理在核外函數庫中實現。
1.線程描述數據結構及實現限制
LinuxThreads定義了一個struct _pthread_descr_struct數據結構來描述線程,並使用全局數組變數 __pthread_handles來描述和引用進程所轄線程。在__pthread_handles中的前兩項,LinuxThreads定義了兩個全 局的系統線程:__pthread_initial_thread和__pthread_manager_thread,並用 __pthread_main_thread表徵__pthread_manager_thread的父線程(初始為 __pthread_initial_thread)。
struct _pthread_descr_struct是一個雙環鏈表結構,__pthread_manager_thread所在的鏈表僅包括它 一個元素,實際上,__pthread_manager_thread是一個特殊線程,LinuxThreads僅使用了其中的errno、p_pid、 p_priority等三個域。而__pthread_main_thread所在的鏈則將進程中所有用戶線程串在了一起。經過一系列 pthread_create()之後形成的__pthread_handles數組將如下圖所示:
圖2 __pthread_handles數組結構
新創建的線程將首先在__pthread_handles數組中占據一項,然後通過數據結構中的鏈指針連入以__pthread_main_thread為首指針的鏈表中。這個鏈表的使用在介紹線程的創建和釋放的時候將提到。
LinuxThreads遵循POSIX1003.1c標准,其中對線程庫的實現進行了一些范圍限制,比如進程最大線程數,線程私有數據區大小等等。在 LinuxThreads的實現中,基本遵循這些限制,但也進行了一定的改動,改動的趨勢是放鬆或者說擴大這些限制,使編程更加方便。這些限定宏主要集中 在sysdeps/unix/sysv/linux/bits/local_lim.h(不同平台使用的文件位置不同)中,包括如下幾個:
每進程的私有數據key數,POSIX定義_POSIX_THREAD_KEYS_MAX為128,LinuxThreads使用 PTHREAD_KEYS_MAX,1024;私有數據釋放時允許執行的操作數,LinuxThreads與POSIX一致,定義 PTHREAD_DESTRUCTOR_ITERATIONS為4;每進程的線程數,POSIX定義為64,LinuxThreads增大到1024 (PTHREAD_THREADS_MAX);線程運行棧最小空間大小,POSIX未指定,LinuxThreads使用 PTHREAD_STACK_MIN,16384(位元組)。
2.管理線程
"一對一"模型的好處之一是線程的調度由核心完成了,而其他諸如線程取消、線程間的同步等工作,都是在核外線程庫中完成的。在LinuxThreads 中,專門為每一個進程構造了一個管理線程,負責處理線程相關的管理工作。當進程第一次調用pthread_create()創建一個線程的時候就會創建 (__clone())並啟動管理線程。
在一個進程空間內,管理線程與其他線程之間通過一對"管理管道(manager_pipe[2])"來通訊,該管道在創建管理線程之前創建,在成功啟動 了管理線程之後,管理管道的讀端和寫端分別賦給兩個全局變數__pthread_manager_reader和 __pthread_manager_request,之後,每個用戶線程都通過__pthread_manager_request向管理線程發請求, 但管理線程本身並沒有直接使用__pthread_manager_reader,管道的讀端(manager_pipe[0])是作為__clone ()的參數之一傳給管理線程的,管理線程的工作主要就是監聽管道讀端,並對從中取出的請求作出反應。
創建管理線程的流程如下所示:
(全局變數pthread_manager_request初值為-1)
圖3 創建管理線程的流程
初始化結束後,在__pthread_manager_thread中記錄了輕量級進程號以及核外分配和管理的線程id, 2*PTHREAD_THREADS_MAX+1這個數值不會與任何常規用戶線程id沖突。管理線程作為pthread_create()的調用者線程的 子線程運行,而pthread_create()所創建的那個用戶線程則是由管理線程來調用clone()創建,因此實際上是管理線程的子線程。(此處子 線程的概念應該當作子進程來理解。)
__pthread_manager()就是管理線程的主循環所在,在進行一系列初始化工作後,進入while(1)循環。在循環中,線程以2秒為 timeout查詢(__poll())管理管道的讀端。在處理請求前,檢查其父線程(也就是創建manager的主線程)是否已退出,如果已退出就退出 整個進程。如果有退出的子線程需要清理,則調用pthread_reap_children()清理。
然後才是讀取管道中的請求,根據請求類型執行相應操作(switch-case)。具體的請求處理,源碼中比較清楚,這里就不贅述了。
3.線程棧
在LinuxThreads中,管理線程的棧和用戶線程的棧是分離的,管理線程在進程堆中通過malloc()分配一個THREAD_MANAGER_STACK_SIZE位元組的區域作為自己的運行棧。
用戶線程的棧分配辦法隨著體系結構的不同而不同,主要根據兩個宏定義來區分,一個是NEED_SEPARATE_REGISTER_STACK,這個屬 性僅在IA64平台上使用;另一個是FLOATING_STACK宏,在i386等少數平台上使用,此時用戶線程棧由系統決定具體位置並提供保護。與此同 時,用戶還可以通過線程屬性結構來指定使用用戶自定義的棧。因篇幅所限,這里只能分析i386平台所使用的兩種棧組織方式:FLOATING_STACK 方式和用戶自定義方式。
在FLOATING_STACK方式下,LinuxThreads利用mmap()從內核空間中分配8MB空間(i386系統預設的最大棧空間大小,如 果有運行限制(rlimit),則按照運行限制設置),使用mprotect()設置其中第一頁為非訪問區。該8M空間的功能分配如下圖:
圖4 棧結構示意
低地址被保護的頁面用來監測棧溢出。
對於用戶指定的棧,在按照指針對界後,設置線程棧頂,並計算出棧底,不做保護,正確性由用戶自己保證。
不論哪種組織方式,線程描述結構總是位於棧頂緊鄰堆棧的位置。
4.線程id和進程id
每個LinuxThreads線程都同時具有線程id和進程id,其中進程id就是內核所維護的進程號,而線程id則由LinuxThreads分配和維護。
4. Linux下線程同步的幾種方法
Linux 線程同步的三種方法
線程的最大特點是資源的共享性,但資源共享中的同步問題是多線程編程的難點。linux下提供了多種方式來處理線程同步,最常用的是互斥鎖、條件變數和信號量。
一、互斥鎖(mutex)
通過鎖機制實現線程間的同步。
初始化鎖。在Linux下,線程的互斥量數據類型是pthread_mutex_t。在使用前,要對它進行初始化。
靜態分配:pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
動態分配:int pthread_mutex_init(pthread_mutex_t *mutex, const pthread_mutex_attr_t *mutexattr);
加鎖。對共享資源的訪問,要對互斥量進行加鎖,如果互斥量已經上了鎖,調用線程會阻塞,直到互斥量被解鎖。
int pthread_mutex_lock(pthread_mutex *mutex);
int pthread_mutex_trylock(pthread_mutex_t *mutex);
解鎖。在完成了對共享資源的訪問後,要對互斥量進行解鎖。
int pthread_mutex_unlock(pthread_mutex_t *mutex);
銷毀鎖。鎖在是使用完成後,需要進行銷毀以釋放資源。
int pthread_mutex_destroy(pthread_mutex *mutex);
[csharp] view plain
#include <cstdio>
#include <cstdlib>
#include <unistd.h>
#include <pthread.h>
#include "iostream"
using namespace std;
pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
int tmp;
void* thread(void *arg)
{
cout << "thread id is " << pthread_self() << endl;
pthread_mutex_lock(&mutex);
tmp = 12;
cout << "Now a is " << tmp << endl;
pthread_mutex_unlock(&mutex);
return NULL;
}
int main()
{
pthread_t id;
cout << "main thread id is " << pthread_self() << endl;
tmp = 3;
cout << "In main func tmp = " << tmp << endl;
if (!pthread_create(&id, NULL, thread, NULL))
{
cout << "Create thread success!" << endl;
}
else
{
cout << "Create thread failed!" << endl;
}
pthread_join(id, NULL);
pthread_mutex_destroy(&mutex);
return 0;
}
//編譯:g++ -o thread testthread.cpp -lpthread
二、條件變數(cond)
互斥鎖不同,條件變數是用來等待而不是用來上鎖的。條件變數用來自動阻塞一個線程,直到某特殊情況發生為止。通常條件變數和互斥鎖同時使用。條件變數分為兩部分: 條件和變數。條件本身是由互斥量保護的。線程在改變條件狀態前先要鎖住互斥量。條件變數使我們可以睡眠等待某種條件出現。條件變數是利用線程間共享的全局變數進行同步的一種機制,主要包括兩個動作:一個線程等待"條件變數的條件成立"而掛起;另一個線程使"條件成立"(給出條件成立信號)。條件的檢測是在互斥鎖的保護下進行的。如果一個條件為假,一個線程自動阻塞,並釋放等待狀態改變的互斥鎖。如果另一個線程改變了條件,它發信號給關聯的條件變數,喚醒一個或多個等待它的線程,重新獲得互斥鎖,重新評價條件。如果兩進程共享可讀寫的內存,條件變數可以被用來實現這兩進程間的線程同步。
初始化條件變數。
靜態態初始化,pthread_cond_t cond = PTHREAD_COND_INITIALIER;
動態初始化,int pthread_cond_init(pthread_cond_t *cond, pthread_condattr_t *cond_attr);
等待條件成立。釋放鎖,同時阻塞等待條件變數為真才行。timewait()設置等待時間,仍未signal,返回ETIMEOUT(加鎖保證只有一個線程wait)
int pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mutex);
int pthread_cond_timewait(pthread_cond_t *cond,pthread_mutex *mutex,const timespec *abstime);
激活條件變數。pthread_cond_signal,pthread_cond_broadcast(激活所有等待線程)
int pthread_cond_signal(pthread_cond_t *cond);
int pthread_cond_broadcast(pthread_cond_t *cond); //解除所有線程的阻塞
清除條件變數。無線程等待,否則返回EBUSY
int pthread_cond_destroy(pthread_cond_t *cond);
[cpp] view plain
#include <stdio.h>
#include <pthread.h>
#include "stdlib.h"
#include "unistd.h"
pthread_mutex_t mutex;
pthread_cond_t cond;
void hander(void *arg)
{
free(arg);
(void)pthread_mutex_unlock(&mutex);
}
void *thread1(void *arg)
{
pthread_cleanup_push(hander, &mutex);
while(1)
{
printf("thread1 is running\n");
pthread_mutex_lock(&mutex);
pthread_cond_wait(&cond, &mutex);
printf("thread1 applied the condition\n");
pthread_mutex_unlock(&mutex);
sleep(4);
}
pthread_cleanup_pop(0);
}
void *thread2(void *arg)
{
while(1)
{
printf("thread2 is running\n");
pthread_mutex_lock(&mutex);
pthread_cond_wait(&cond, &mutex);
printf("thread2 applied the condition\n");
pthread_mutex_unlock(&mutex);
sleep(1);
}
}
int main()
{
pthread_t thid1,thid2;
printf("condition variable study!\n");
pthread_mutex_init(&mutex, NULL);
pthread_cond_init(&cond, NULL);
pthread_create(&thid1, NULL, thread1, NULL);
pthread_create(&thid2, NULL, thread2, NULL);
sleep(1);
do
{
pthread_cond_signal(&cond);
}while(1);
sleep(20);
pthread_exit(0);
return 0;
}
[cpp] view plain
#include <pthread.h>
#include <unistd.h>
#include "stdio.h"
#include "stdlib.h"
static pthread_mutex_t mtx = PTHREAD_MUTEX_INITIALIZER;
static pthread_cond_t cond = PTHREAD_COND_INITIALIZER;
struct node
{
int n_number;
struct node *n_next;
}*head = NULL;
static void cleanup_handler(void *arg)
{
printf("Cleanup handler of second thread./n");
free(arg);
(void)pthread_mutex_unlock(&mtx);
}
static void *thread_func(void *arg)
{
struct node *p = NULL;
pthread_cleanup_push(cleanup_handler, p);
while (1)
{
//這個mutex主要是用來保證pthread_cond_wait的並發性
pthread_mutex_lock(&mtx);
while (head == NULL)
{
//這個while要特別說明一下,單個pthread_cond_wait功能很完善,為何
//這里要有一個while (head == NULL)呢?因為pthread_cond_wait里的線
//程可能會被意外喚醒,如果這個時候head != NULL,則不是我們想要的情況。
//這個時候,應該讓線程繼續進入pthread_cond_wait
// pthread_cond_wait會先解除之前的pthread_mutex_lock鎖定的mtx,
//然後阻塞在等待對列里休眠,直到再次被喚醒(大多數情況下是等待的條件成立
//而被喚醒,喚醒後,該進程會先鎖定先pthread_mutex_lock(&mtx);,再讀取資源
//用這個流程是比較清楚的
pthread_cond_wait(&cond, &mtx);
p = head;
head = head->n_next;
printf("Got %d from front of queue/n", p->n_number);
free(p);
}
pthread_mutex_unlock(&mtx); //臨界區數據操作完畢,釋放互斥鎖
}
pthread_cleanup_pop(0);
return 0;
}
int main(void)
{
pthread_t tid;
int i;
struct node *p;
//子線程會一直等待資源,類似生產者和消費者,但是這里的消費者可以是多個消費者,而
//不僅僅支持普通的單個消費者,這個模型雖然簡單,但是很強大
pthread_create(&tid, NULL, thread_func, NULL);
sleep(1);
for (i = 0; i < 10; i++)
{
p = (struct node*)malloc(sizeof(struct node));
p->n_number = i;
pthread_mutex_lock(&mtx); //需要操作head這個臨界資源,先加鎖,
p->n_next = head;
head = p;
pthread_cond_signal(&cond);
pthread_mutex_unlock(&mtx); //解鎖
sleep(1);
}
printf("thread 1 wanna end the line.So cancel thread 2./n");
//關於pthread_cancel,有一點額外的說明,它是從外部終止子線程,子線程會在最近的取消點,退出
//線程,而在我們的代碼里,最近的取消點肯定就是pthread_cond_wait()了。
pthread_cancel(tid);
pthread_join(tid, NULL);
printf("All done -- exiting/n");
return 0;
}
三、信號量(sem)
如同進程一樣,線程也可以通過信號量來實現通信,雖然是輕量級的。信號量函數的名字都以"sem_"打頭。線程使用的基本信號量函數有四個。
信號量初始化。
int sem_init (sem_t *sem , int pshared, unsigned int value);
這是對由sem指定的信號量進行初始化,設置好它的共享選項(linux 只支持為0,即表示它是當前進程的局部信號量),然後給它一個初始值VALUE。
等待信號量。給信號量減1,然後等待直到信號量的值大於0。
int sem_wait(sem_t *sem);
釋放信號量。信號量值加1。並通知其他等待線程。
int sem_post(sem_t *sem);
銷毀信號量。我們用完信號量後都它進行清理。歸還佔有的一切資源。
int sem_destroy(sem_t *sem);
[cpp] view plain
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <pthread.h>
#include <semaphore.h>
#include <errno.h>
#define return_if_fail(p) if((p) == 0){printf ("[%s]:func error!/n", __func__);return;}
typedef struct _PrivInfo
{
sem_t s1;
sem_t s2;
time_t end_time;
}PrivInfo;
static void info_init (PrivInfo* thiz);
static void info_destroy (PrivInfo* thiz);
static void* pthread_func_1 (PrivInfo* thiz);
static void* pthread_func_2 (PrivInfo* thiz);
int main (int argc, char** argv)
{
pthread_t pt_1 = 0;
pthread_t pt_2 = 0;
int ret = 0;
PrivInfo* thiz = NULL;
thiz = (PrivInfo* )malloc (sizeof (PrivInfo));
if (thiz == NULL)
{
printf ("[%s]: Failed to malloc priv./n");
return -1;
}
info_init (thiz);
ret = pthread_create (&pt_1, NULL, (void*)pthread_func_1, thiz);
if (ret != 0)
{
perror ("pthread_1_create:");
}
ret = pthread_create (&pt_2, NULL, (void*)pthread_func_2, thiz);
if (ret != 0)
{
perror ("pthread_2_create:");
}
pthread_join (pt_1, NULL);
pthread_join (pt_2, NULL);
info_destroy (thiz);
return 0;
}
static void info_init (PrivInfo* thiz)
{
return_if_fail (thiz != NULL);
thiz->end_time = time(NULL) + 10;
sem_init (&thiz->s1, 0, 1);
sem_init (&thiz->s2, 0, 0);
return;
}
static void info_destroy (PrivInfo* thiz)
{
return_if_fail (thiz != NULL);
sem_destroy (&thiz->s1);
sem_destroy (&thiz->s2);
free (thiz);
thiz = NULL;
return;
}
static void* pthread_func_1 (PrivInfo* thiz)
{
return_if_fail(thiz != NULL);
while (time(NULL) < thiz->end_time)
{
sem_wait (&thiz->s2);
printf ("pthread1: pthread1 get the lock./n");
sem_post (&thiz->s1);
printf ("pthread1: pthread1 unlock/n");
sleep (1);
}
return;
}
static void* pthread_func_2 (PrivInfo* thiz)
{
return_if_fail (thiz != NULL);
while (time (NULL) < thiz->end_time)
{
sem_wait (&thiz->s1);
printf ("pthread2: pthread2 get the unlock./n");
sem_post (&thiz->s2);
printf ("pthread2: pthread2 unlock./n");
sleep (1);
}
return;
}
5. Linux線程及同步
linux多線程
1.線程概述
線程是一個進程內的基本調度單位,也可以稱為輕量級進程。線程是在共享內存空間中並發的多道執行路徑,它們共享一個進程的資源,如文件描述和信號處理。因此,大大減少了上下文切換的開銷。一個進程可以有多個線程,也就
是有多個線程式控制製表及堆棧寄存器,但卻共享一個用戶地址空間。
2.線程實現
線程創建pthread_create()
所需頭文件#include
<pthread.h>
函數原型int
pthread_create
((pthread_t
*thread,
pthread_attr_t
*attr,
thread:線程標識符
attr:線程屬性設置
start_routine:線程函數的起始地址
arg:傳遞給start_routine的參數
函數返回值
成功:0
出錯:-1
線程退出pthread_exit();
所需頭文件#include
<pthread.h>
函數原型void
pthread_exit(void
*retval)
函數傳入值retval:pthread_exit()調用者線程的返回值,可由其他函數如pthread_join
來檢索獲取
等待線程退出並釋放資源pthread_join()
所需頭文件#include
<pthread.h>
函數原型int
pthread_join
((pthread_t
th,
void
**thread_return))
函數傳入值
th:等待線程的標識符
thread_return:用戶定義的指針,用來存儲被等待線程的返回值(不為NULL時)
函數返回值
成功:0
出錯:-1
代碼舉例
1.
#include<pthread.h>
2.
#include<stdio.h>
3.
#include<errno.h>
4.
5.
/*線程1*/
6.
void
thread1()
7.
{
8.
int
i=0;
9.
10.
while(1)
11.
{
12.
printf(thread1:%d/n,i);
13.
if(i>3)
14.
pthread_exit(0);
15.
i++;
16.
sleep(1);
17.
}
18.
}
19.
20.
/*線程2*/
21.
void
thread2()
22.
{
23.
int
i=0;
24.
25.
while(1)
26.
{
27.
printf(thread2:%d/n,i);
28.
if(i>5)
29.
pthread_exit(0);
30.
i++;
31.
sleep(1);
32.
}
33.
}
34.
35.
int
main()
36.
{
37.
pthread_t
t1,t2;
38.
39.
/*創建線程*/
40.
pthread_create(&t1,NULL,(void
*)thread1,NULL);
41.
pthread_create(&t2,NULL,(void
*)thread2,NULL);
42.
/*等待線程退出*/
43.
pthread_join(t1,NULL);
44.
pthread_join(t2,NULL);
45.
return
0;
46.
}
3同步與互斥
<1>互斥鎖
互斥鎖的操作主要包括以下幾個步驟。
•
互斥鎖初始化:pthread_mutex_init
•
互斥鎖上鎖:pthread_mutex_lock
•
互斥鎖判斷上鎖:pthread_mutex_trylock
•
互斥鎖接鎖:pthread_mutex_unlock
•
消除互斥鎖:pthread_mutex_destroy
1.
#include<pthread.h>
2.
#include<stdio.h>
3.
#include<errno.h>
4.
5.
int
i=0;/*共享變數*/
6.
pthread_mutex_t
mutex=PTHREAD_MUTEX_INITIALIZER;/*互斥鎖*/
7.
8.
void
thread1()
9.
{
10.
int
ret;
11.
while(1)
12.
{
13.
14.
15.
ret=pthread_mutex_trylock(&mutex);/*判斷上鎖*/
16.
17.
if(ret!=EBUSY)
18.
{
19.
pthread_mutex_lock(&mutex);/*上鎖*/
20.
printf(This
is
thread1:%d/n,i);
21.
i++;
22.
pthread_mutex_unlock(&mutex);/*解鎖*/
23.
}
24.
sleep(1);
25.
}
26.
}
27.
28.
void
thread2()
29.
{int
ret;
30.
while(1)
31.
{
32.
33.
ret=pthread_mutex_trylock(&mutex);
34.
if(ret!=EBUSY)
35.
{
36.
pthread_mutex_lock(&mutex);
37.
printf(This
is
thread2:%d/n,i);
38.
i++;
39.
pthread_mutex_unlock(&mutex);
40.
}
41.
sleep(1);
42.
}
43.
}
44.
int
main()
45.
{
46.
pthread_t
t1,t2;
47.
pthread_mutex_init(&mutex,NULL);
48.
pthread_create(&t1,NULL,(void
*)thread1,NULL);
49.
pthread_create(&t2,NULL,(void
*)thread2,NULL);
50.
51.
pthread_join(t1,NULL);
52.
pthread_join(t2,NULL);
53.
54.
pthread_mutex_destroy(&mutex);
55.
return
0;
56.
}
<2>信號量
未進行同步處理的兩個線程
1.
#include<pthread.h>
2.
#include<stdio.h>
3.
#include<errno.h>
4.
5.
int
i=0;
6.
void
thread1()
7.
{
8.
9.
while(1)
10.
{
11.
printf(This
is
thread1:%d/n,i);
12.
i++;
13.
sleep(1);
14.
}
15.
}
16.
17.
18.
void
thread2()
19.
{
20.
21.
while(1)
22.
{
23.
printf(This
is
thread2:%d/n,i);
24.
i++;
25.
sleep(1);
26.
}
27.
}
28.
29.
int
main()
30.
{
31.
pthread_t
t1,t2;
32.
33.
pthread_create(&t1,NULL,(void
*)thread1,NULL);
34.
pthread_create(&t2,NULL,(void
*)thread2,NULL);
6. linux內核同步問題
Linux內核設計與實現 十、內核同步方法
手把手教Linux驅動5-自旋鎖、信號量、互斥體概述
== 基礎概念: ==
並發 :多個執行單元同時進行或多個執行單元微觀串列執行,宏觀並行執行
競態 :並發的執行單元對共享資源(硬體資源和軟體上的全局變數)的訪問而導致的竟態狀態。
臨界資源 :多個進程訪問的資源
臨界區 :多個進程訪問的代碼段
== 並發場合: ==
1、單CPU之間進程間的並發 :時間片輪轉,調度進程。 A進程訪問列印機,時間片用完,OS調度B進程訪問列印機。
2、單cpu上進程和中斷之間並發 :CPU必須停止當前進程的執行中斷;
3、多cpu之間
4、單CPU上中斷之間的並發
== 使用偏向: ==
==信號量用於進程之間的同步,進程在信號量保護的臨界區代碼裡面是可以睡眠的(需要進行進程調度),這是與自旋鎖最大的區別。==
信號量又稱為信號燈,它是用來協調不同進程間的數據對象的,而最主要的應用是共享內存方式的進程間通信。本質上,信號量是一個計數器,它用來記錄對某個資源(如共享內存)的存取狀況。它負責協調各個進程,以保證他們能夠正確、合理的使用公共資源。它和spin lock最大的不同之處就是:無法獲取信號量的進程可以睡眠,因此會導致系統調度。
1、==用於進程與進程之間的同步==
2、==允許多個進程進入臨界區代碼執行,臨界區代碼允許睡眠;==
3、信號量本質是==基於調度器的==,在UP和SMP下沒有區別;進程獲取不到信號量將陷入休眠,並讓出CPU;
4、不支持進程和中斷之間的同步
5、==進程調度也是會消耗系統資源的,如果一個int型共享變數就需要使用信號量,將極大的浪費系統資源==
6、信號量可以用於多個線程,用於資源的計數(有多種狀態)
==信號量加鎖以及解鎖過程:==
sema_init(&sp->dead_sem, 0); / 初始化 /
down(&sema);
臨界區代碼
up(&sema);
==信號量定義:==
==信號量初始化:==
==dowm函數實現:==
==up函數實現:==
信號量一般可以用來標記可用資源的個數。
舉2個生活中的例子:
==dowm函數實現原理解析:==
(1)down
判斷sem->count是否 > 0,大於0則說明系統資源夠用,分配一個給該進程,否則進入__down(sem);
(2)__down
調用__down_common(sem, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);其中TASK_UNINTERRUPTIBLE=2代表進入睡眠,且不可以打斷;MAX_SCHEDULE_TIMEOUT休眠最長LONG_MAX時間;
(3)list_add_tail(&waiter.list, &sem->wait_list);
把當前進程加入到sem->wait_list中;
(3)先解鎖後加鎖;
進入__down_common前已經加鎖了,先把解鎖,調用schele_timeout(timeout),當waiter.up=1後跳出for循環;退出函數之前再加鎖;
Linux內核ARM構架中原子變數的底層實現研究
rk3288 原子操作和原子位操作
原子變數適用於只共享一個int型變數;
1、原子操作是指不被打斷的操作,即它是最小的執行單位。
2、最簡單的原子操作就是一條條的匯編指令(不包括一些偽指令,偽指令會被匯編器解釋成多條匯編指令)
==常見函數:==
==以atomic_inc為例介紹實現過程==
在Linux內核文件archarmincludeasmatomic.h中。 執行atomic_read、atomic_set這些操作都只需要一條匯編指令,所以它們本身就是不可打斷的。 需要特別研究的是atomic_inc、atomic_dec這類讀出、修改、寫回的函數。
所以atomic_add的原型是下面這個宏:
atomic_add等效於:
result(%0) tmp(%1) (v->counter)(%2) (&v->counter)(%3) i(%4)
注意:根據內聯匯編的語法,result、tmp、&v->counter對應的數據都放在了寄存器中操作。如果出現上下文切換,切換機制會做寄存器上下文保護。
(1)ldrex %0, [%3]
意思是將&v->counter指向的數據放入result中,並且(分別在Local monitor和Global monitor中)設置獨占標志。
(2)add %0, %0, %4
result = result + i
(3)strex %1, %0, [%3]
意思是將result保存到&v->counter指向的內存中, 此時 Exclusive monitors會發揮作用,將保存是否成功的標志放入tmp中。
(4) teq %1, #0
測試strex是否成功(tmp == 0 ??)
(5)bne 1b
如果發現strex失敗,從(1)再次執行。
Spinlock 是內核中提供的一種比較常見的鎖機制,==自旋鎖是「原地等待」的方式解決資源沖突的==,即,一個線程獲取了一個自旋鎖後,另外一個線程期望獲取該自旋鎖,獲取不到,只能夠原地「打轉」(忙等待)。由於自旋鎖的這個忙等待的特性,註定了它使用場景上的限制 —— 自旋鎖不應該被長時間的持有(消耗 CPU 資源),一般應用在==中斷上下文==。
1、spinlock是一種死等機制
2、信號量可以允許多個執行單元進入,spinlock不行,一次只能允許一個執行單元獲取鎖,並且進入臨界區,其他執行單元都是在門口不斷的死等
3、由於不休眠,因此spinlock可以應用在中斷上下文中;
4、由於spinlock死等的特性,因此臨界區執行代碼盡可能的短;
==spinlock加鎖以及解鎖過程:==
spin_lock(&devices_lock);
臨界區代碼
spin_unlock(&devices_lock);
==spinlock初始化==
==進程和進程之間同步==
==本地軟中斷之間同步==
==本地硬中斷之間同步==
==本地硬中斷之間同步並且保存本地中斷狀態==
==嘗試獲取鎖==
== arch_spinlock_t結構體定義如下: ==
== arch_spin_lock的實現如下: ==
lockval(%0) newval(%1) tmp(%2) &lock->slock(%3) 1 << TICKET_SHIFT(%4)
(1)ldrex %0, [%3]
把lock->slock的值賦值給lockval;並且(分別在Local monitor和Global monitor中)設置獨占標志。
(2)add %1, %0, %4
newval =lockval +(1<<16); 相當於next+1;
(3)strex %2, %1, [%3]
newval =lockval +(1<<16); 相當於next+1;
意思是將newval保存到 &lock->slock指向的內存中, 此時 Exclusive monitors會發揮作用,將保存是否成功的標志放入tmp中。
(4) teq %2, #0
測試strex是否成功
(5)bne 1b
如果發現strex失敗,從(1)再次執行。
通過上面的分析,可知關鍵在於strex的操作是否成功的判斷上。而這個就歸功於ARM的Exclusive monitors和ldrex/strex指令的機制。
(6)while (lockval.tickets.next != lockval.tickets.owner)
如何lockval.tickets的next和owner是否相等。相同則跳出while循環,否則在循環內等待判斷;
* (7)wfe()和smp_mb() 最終調用#define barrier() asm volatile ("": : :"memory") *
阻止編譯器重排,保證編譯程序時在優化屏障之前的指令不會在優化屏障之後執行。
== arch_spin_unlock的實現如下: ==
退出鎖時:tickets.owner++
== 出現死鎖的情況: ==
1、擁有自旋鎖的進程A在內核態阻塞了,內核調度B進程,碰巧B進程也要獲得自旋鎖,此時B只能自旋轉。 而此時搶占已經關閉,(單核)不會調度A進程了,B永遠自旋,產生死鎖。
2、進程A擁有自旋鎖,中斷到來,CPU執行中斷函數,中斷處理函數,中斷處理函數需要獲得自旋鎖,訪問共享資源,此時無法獲得鎖,只能自旋,產生死鎖。
== 如何避免死鎖: ==
1、如果中斷處理函數中也要獲得自旋鎖,那麼驅動程序需要在擁有自旋鎖時禁止中斷;
2、自旋鎖必須在可能的最短時間內擁有
3、避免某個獲得鎖的函數調用其他同樣試圖獲取這個鎖的函數,否則代碼就會死鎖;不論是信號量還是自旋鎖,都不允許鎖擁有者第二次獲得這個鎖,如果試圖這么做,系統將掛起;
4、鎖的順序規則(a) 按同樣的順序獲得鎖;b) 如果必須獲得一個局部鎖和一個屬於內核更中心位置的鎖,則應該首先獲取自己的局部鎖 ;c) 如果我們擁有信號量和自旋鎖的組合,則必須首先獲得信號量;在擁有自旋鎖時調用down(可導致休眠)是個嚴重的錯誤的;)
== rw(read/write)spinlock: ==
加鎖邏輯:
1、假設臨界區內沒有任何的thread,這個時候任何的讀線程和寫線程都可以鍵入
2、假設臨界區內有一個讀線程,這時候信賴的read線程可以任意進入,但是寫線程不能進入;
3、假設臨界區有一個寫線程,這時候任何的讀、寫線程都不可以進入;
4、假設臨界區內有一個或者多個讀線程,寫線程不可以進入臨界區,但是寫線程也無法阻止後續的讀線程繼續進去,要等到臨界區所有的讀線程都結束了,才可以進入,可見:==rw(read/write)spinlock更加有利於讀線程;==
== seqlock(順序鎖): ==
加鎖邏輯:
1、假設臨界區內沒有任何的thread,這個時候任何的讀線程和寫線程都可以鍵入
2、假設臨界區內沒有寫線程的情況下,read線程可以任意進入;
3、假設臨界區有一個寫線程,這時候任何的讀、寫線程都不可以進入;
4、假設臨界區內只有read線程的情況下,寫線程可以理解執行,不會等待,可見:==seqlock(順序鎖)更加有利於寫線程;==
讀寫速度 : CPU > 一級緩存 > 二級緩存 > 內存 ,因此某一個CPU0的lock修改了,其他的CPU的lock就會失效;那麼其他CPU就會依次去L1 L2和主存中讀取lock值,一旦其他CPU去讀取了主存,就存在系統性能降低的風險;
mutex用於互斥操作。
互斥體只能用於一個線程,資源只有兩種狀態(佔用或者空閑)
1、mutex的語義相對於信號量要簡單輕便一些,在鎖爭用激烈的測試場景下,mutex比信號量執行速度更快,可擴展
性更好,
2、另外mutex數據結構的定義比信號量小;、
3、同一時刻只有一個線程可以持有mutex
4、不允許遞歸地加鎖和解鎖
5、當進程持有mutex時,進程不可以退出。
• mutex必須使用官方API來初始化。
• mutex可以睡眠,所以不允許在中斷處理程序或者中斷下半部中使用,例如tasklet、定時器等
==常見操作:==
struct mutex mutex_1;
mutex_init(&mutex_1);
mutex_lock(&mutex_1)
臨界區代碼;
mutex_unlock(&mutex_1)
==常見函數:==
=
7. Linux進程間通信(互斥鎖、條件變數、讀寫鎖、文件鎖、信號燈)
為了能夠有效的控制多個進程之間的溝通過程,保證溝通過程的有序和和諧,OS必須提供一定的同步機制保證進程之間不會自說自話而是有效的協同工作。比如在 共享內存的通信方式中,兩個或者多個進程都要對共享的內存進行數據寫入,那麼怎麼才能保證一個進程在寫入的過程中不被其它的進程打斷,保證數據的完整性 呢?又怎麼保證讀取進程在讀取數據的過程中數據不會變動,保證讀取出的數據是完整有效的呢?
常用的同步方式有: 互斥鎖、條件變數、讀寫鎖、記錄鎖(文件鎖)和信號燈.
互斥鎖:
顧名思義,鎖是用來鎖住某種東西的,鎖住之後只有有鑰匙的人才能對鎖住的東西擁有控制權(把鎖砸了,把東西偷走的小偷不在我們的討論范圍了)。所謂互斥, 從字面上理解就是互相排斥。因此互斥鎖從字面上理解就是一點進程擁有了這個鎖,它將排斥其它所有的進程訪問被鎖住的東西,其它的進程如果需要鎖就只能等待,等待擁有鎖的進程把鎖打開後才能繼續運行。 在實現中,鎖並不是與某個具體的變數進行關聯,它本身是一個獨立的對象。進(線)程在有需要的時候獲得此對象,用完不需要時就釋放掉。
互斥鎖的主要特點是互斥鎖的釋放必須由上鎖的進(線)程釋放,如果擁有鎖的進(線)程不釋放,那麼其它的進(線)程永遠也沒有機會獲得所需要的互斥鎖。
互斥鎖主要用於線程之間的同步。
條件變數:
上文中提到,對於互斥鎖而言,如果擁有鎖的進(線)程不釋放鎖,其它進(線)程永遠沒機會獲得鎖,也就永遠沒有機會繼續執行後續的邏輯。在實際環境下,一 個線程A需要改變一個共享變數X的值,為了保證在修改的過程中X不會被其它的線程修改,線程A必須首先獲得對X的鎖。現在假如A已經獲得鎖了,由於業務邏 輯的需要,只有當X的值小於0時,線程A才能執行後續的邏輯,於是線程A必須把互斥鎖釋放掉,然後繼續「忙等」。如下面的偽代碼所示:
1.// get x lock
2.while(x
8. linux 下進程間的同步機制有哪些
感覺你提問的應該是進程間的通信。而通訊主要有以下6中方式:
1.管道(Pipe)及有名管道(named pipe):管道可用於具有親緣關系進程間的通信,有名管道克服了管道沒有名字的限制,因此,除具有管道所具有的功能外,它還允許無親緣關系進程間的通信;
2.信號(Signal):信號是比較復雜的通信方式,用於通知接受進程有某種事件生,除了用於進程間通信外,進程還可以發送信號給進程本身;linux除了支持Unix早期 信號語義函數sigal外,還支持語義符合Posix.1標準的信號函數sigaction(實際上, 該函數是基於BSD的,BSD為了實現可靠信號機制,又能夠統一對外介面,sigaction函數重新實現了signal函數);
3.報文(Message)隊列(消息隊列):消息隊列是消息的鏈接表,包括Posix消息隊列system V消息隊列。有足夠許可權的進程可以向隊列中添加消息,被賦予讀許可權的進程則可以讀走隊列中的消息。消息隊列克服了信號承載信息量少,管道只能承載無格式位元組流以及緩沖區大小受限等缺點。
4.共享內存:使得多個進程可以訪問同一塊內存空間,是最快的可用IPC形式。是針其他通信機制運行效率較低設計的。往往與其它通信機制,如信號量結合使用, 來達到進程間的同步及互斥。
5.信號量(semaphore):主要作為進程間以及同一進程不同線程之間的同步手段。
6.套接字(Socket):更為一般的進程間通信機制,可用於不同機器之間的進程間通信。起初是由Unix系統的BSD分支開發出來的,但現在一般可以移植到其它類Unix 系統上:Linux和System V的變種都支持套接字。