當前位置:首頁 » 操作系統 » 演算法受眾

演算法受眾

發布時間: 2023-08-08 10:20:09

1. 信息流的那點事:3 推薦演算法是如何實現的

講完信息流流行的原因( 信息流的那點事:2 為什麼信息流如此流行 ),這一篇,我們來從產品的視角,來看看推薦演算法在技術上是如何實現的。

根據需要的技術和運營成本,可以將主流的推薦演算法分為三類:基於內容元數據的推薦、基於用戶畫像的推薦、基於協同過濾演算法的推薦。

基於元數據的推薦是比較基礎的推薦演算法,基本原理是給內容打標簽,具體元數據的選取根據的內容有所不同,比較通用的角度有內容的關鍵詞、類型、作者、來源等,打開一款頭條類app,選擇屏蔽一條內容,就可以看到一些該內容的元數據。

有了內容的元數據,就可以根據內容間的關聯,可以進行相關內容的推薦,喜歡看奇葩說的用戶,可能也會喜歡看同是米未傳媒出品的飯局的誘惑。根據內容的元數據,也可以記錄並逐漸明確用戶的內容偏好,進行數據積累,便於結合用戶的喜好進行對應的精準推薦,這也就是下面要說的基於用戶畫像的推薦的內容。

用戶畫像,類比一下就是給用戶打標簽,主要由三部分組成:用戶的基礎數據(年齡、性別等)、應用使用數據(應用使用頻率、時長等)和內容偏好數據(喜好的內容分類、種類等)。

對於基礎數據,不同年齡的用戶的內容偏好有很大差異,年輕人可能更喜歡新歌熱歌,而中年人可能更愛聽懷舊一些的歌曲;根據應用使用數據,可以進行用戶分層,活躍用戶可以多推薦內容促進使用,快要流失用戶可以推送一些打開率較高的內容來挽回,運營活動也可以更有針對性;基於內容偏好數據,可以記錄並逐漸明確用戶的內容偏好,從而進行更精準的推薦,從愛看娛樂新聞,到愛看國內明星,再到愛看某個小鮮肉,隨著內容偏好數據的逐步積累,頭條類產品的推薦也就越精確。

協同過濾演算法,簡單來說,就是尋找相近的用戶或內容來進行推薦,主要有基於用戶的協同過濾推薦和基於項目的協同過濾推薦兩種。

(1)基於用戶的協同過濾推薦

基於用戶的協同過濾推薦演算法,就是通過演算法分析出與你內容偏好相近的用戶,將他喜歡的內容推薦給你,這種推薦給你志同道合的人愛看的內容的思路,更相近於生活中的朋友作為同道中人的推薦。舉例來說,如果你喜歡ABC,而其他用戶在和你一樣喜歡ABC的同時,還都喜歡D,那麼就會把D推薦給你。

(2).基於內容的協同過濾推薦

基於內容的協同過濾推薦演算法,就是通過演算法分析出內容和內容之間的關聯度,根據你喜歡的內容推薦最相關的內容,常見的看了這個內容的用戶85%也喜歡xxx,就是這種思路。舉例來說,如果你喜歡A,而喜歡A的用戶都喜歡B,那麼就會把B推薦給你。

相比於純粹的基於內容元數據的推薦,基於內容的協同過濾推薦更能發現一些內容間深層次的聯系,比如羅輯思維經常推薦各種內容,僅僅根據內容元數據來推薦,一集羅輯思維最相關的應該是另外一集,並不能推薦內容元數據相關性不太大的節目里推薦的內容;但由於可能很多用戶看完後都會搜索查看節目里推薦的內容,基於內容的協同過濾推薦就會發現兩者的相關性,進行推薦。

介紹推薦演算法的思路時,我們一直談到一個詞「內容偏好」,這也就是實現推薦演算法時一個核心的問題——需要通過怎樣的數據,才能判定用戶的內容偏好?主流的思路有一下三種:

讓用戶手動選擇,顯然是最簡單的思路,然而由於選擇的空間必然有限,只能讓用戶從幾個大類中間挑選,無法涵蓋全部內容的同時,粒度過大推薦也就很難精準。而且剛打開應用就讓用戶選擇,或者是讓用戶使用一段時間後在去補充選擇,這樣的操作都太重可能造成用戶流失。

既然手動選擇很難實現,我們就需要從用戶的使用數據中挖掘,主流的思路就是根據用戶一些主動操作來判斷,點擊閱讀了就說明喜歡,點了贊或者回復分享就是特別喜歡,如果跳過了內容就減少推薦,點擊了不感興趣,就不再推薦。

根據用戶使用的操作來判斷內容偏好,在不斷地使用中積累與細化數據,對內容偏好的判斷也就越來越准確,這就是頭條系應用的主要策略,這樣的策略對於下沉市場的不願做出主動選擇的沉默用戶,是一個非常適合的策略,但這樣只看點擊與操作,不關注內容實際質量的策略也會造成標題黨、內容低俗等問題,在後文會進一步介紹。

既然選擇不能完全代表用戶的內容偏好,如何使判斷更加精準呢?就要從一些更加隱性的數據入手了,比如對於文章,除了點擊,閱讀時間,閱讀完成度,是否查看文章的相關推薦內容,都是可以考慮的角度,相比純粹的點擊判斷,可以一定程度上解決標題黨的問題。再比如看視頻,如果快進次數過多,雖然看完了,可能也不是特別感興趣,而值得反復回看的內容,命中內容偏好的幾率就相對較高。

介紹完了推薦演算法的原理與數據來源,讓我們來試著還原一下一條內容的完整分發流程。

首先,是內容的初始化與冷啟動。可以通過演算法對內容進行分析提取或者人工處理,提取內容的來源、分類、關鍵詞等元數據,再根據用戶畫像計算內容興趣匹配度,分發給有對應內容偏好的用戶,,也可以通過內容原匹配度,向關系鏈分發,完成內容的冷啟動。

然後,可以根據用戶閱讀時間,閱讀完成度,互動數等數據,對該內容的質量進行分析,相應的增加或者減少推薦,實現內容動態分發調節。

最後,就是協同過濾演算法發揮作用的時間,對於優質內容,可以通過基於用戶的協同過濾推薦,推薦給與該內容受眾有類似愛好的用戶,也可以基於項目的協同過濾推薦,推薦給愛觀看同類內容的用戶,讓優質內容的傳播不在局限於關系鏈。

在真正的推薦演算法實現過程中,除了基礎的內容原匹配度,內容匹配度和內容質量,還有很多值得考慮的問題,比如新聞通知等時效性內容就要短時間加權,超時則不推薦;對於用戶的內容偏好也不能永遠維持,隨著時間用戶可能會喜歡新的內容,如果一定時間內用戶對以前喜歡的內容不感興趣,就要減少該種類推薦;還有為了不陷入越喜歡越推薦,最後全部是一種內容,讓用戶厭煩的境地,對於用戶的偏好也要設定一個上限;為了保持新鮮度,需要幫助用戶發現他可能喜歡的新內容.....

最後,通過數據可以了解我們如何閱讀這篇文章,但任何數據都無法准確描述我們閱讀後的感受與收獲;再高級的演算法也只是演算法,它雖然可能比我們更了解我們實際的的內容偏好,但無法了解到我們對於內容的追求。

這可能也就是頭條系產品雖然收獲了巨大成功,但也收到了標題黨、低俗化、迴音室效應等指責的原因,下一篇,讓我們來聊聊,信息流產品的面臨的問題與可能的解決方法。

2. 演算法推薦服務被戴「緊箍」,流量造假、控制熱搜等有治了

演算法推薦是把「雙刃劍」

騰訊安全戰略研究中心聯合賽博研究院發布的《人工智慧時代數字內容治理的機遇與挑戰》報告顯示,演算法精準推薦已經占據信息流分發主導地位,演算法能夠實現數字內容聚合和精準推薦,快速匹配信息與人。基於演算法的個性化內容推送在為用戶提供精準化、個性化服務的同時,也帶來了國家安全風險因素增高、不良信息泛濫風險增加以及傳統權利保護難度加大等問題,已然成為一把「雙刃劍」。

上海 財經 大學研究員崔麗麗表示,互聯網平台作為消除信息不對稱的先進技術代表,有責任維持技術手段的客觀性,反映流量的自然狀態,呈現真實的公眾意見。不應該因為商業利益的驅使在流量上作假。過去曾發生過一些涉及到商業利益的新聞、信息被操控的情況,這樣獲取的商業利益是一種市場不公平的表現,甚至是不合法的。

提出演算法「向善」新要求

根據徵求意見稿,管理規定將適用於在境內應用演算法推薦技術提供互聯網信息服務的公司。這也意味著,以內容推薦演算法為核心競爭力的短視頻平台、UGC(用戶生產內容)平台、推薦內容或是廣告的電商和社交平台等主流互聯網公司和平台的演算法推薦技術都包含在此。

崔麗麗表示,不論是UGC還是PGC(專業生產內容)平台,內容的審核以及對於受眾的推薦實際都有相應的規則,互聯網信息平台已經在形態上取代了過去的傳統媒體,因此,可能具備了一定的公共設施屬性,所以信息的產生、審核和分發應該符合公允、客觀以及符合事實等要求。

徵求意見稿指出,演算法推薦服務提供者應當堅持主流價值導向,優化演算法推薦服務機制,積極傳播正能量,促進演算法應用「向上向善」。演算法推薦服務提供者應當定期審核、評估、驗證演算法機制機理、模型、數據和應用結果等,不得設置誘導用戶沉迷或者高額消費等違背公序良俗的演算法模型。

王娟表示,徵求意見稿對演算法的主體價值導向、個人數據用途、行業自律等提出了演算法「向善」的要求,提出了演算法提供者備案責任,明確了演算法推薦服務提供者作為落實演算法安全的主體責任 ,還對演算法推薦服務日誌等信息提出了留存要求,留存期限不少於六個月,並在相關執法部門依法查詢時予以提供,對回溯求證環節進行了加強。

徵求意見稿明確,演算法推薦服務提供者應落實演算法安全主體責任,建立健全用戶注冊、信息發布審核、演算法機制機理審核、安全評估監測、安全事件應急處置、數據安全保護和個人信息保護等管理制度,制定並公開演算法推薦相關服務規則,配備與演算法推薦服務規模相適應的專業人員和技術支撐。

從用戶的角度來看,演算法對數據的交互模式也提出了很多要求。徵求意見稿提出,演算法推薦服務提供者應當以顯著方式告知用戶其提供演算法推薦服務的情況,並以適當方式公示演算法推薦服務的基本原理、目的意圖、運行機制等。同時,演算法推薦服務提供者應當向用戶提供選擇、修改或者刪除用於演算法推薦服務的用戶標簽的功能,以及不針對其個人特徵的選項,或者向用戶提供便捷的關閉演算法推薦服務的選項。

而對於大數據「殺熟」等頑疾,徵求意見稿強調,演算法推薦服務提供者向消費者銷售商品或者提供服務的,應當保護消費者合法權益,不得根據消費者的偏好、交易習慣等特徵,利用演算法在交易價格等交易條件上實行不合理的差別待遇等違法行為。

網路熱搜將被嚴管

近年來,網路熱搜已經成為實時的輿情風向標和輿論的集散地,徵求意見稿也特別對熱搜作出了規范管理,明確演算法推薦服務提供者應當加強演算法推薦服務版面頁面生態管理,建立完善人工干預和用戶自主選擇機制,在首頁首屏、熱搜、精選、榜單類、彈窗等重點環節積極呈現符合主流價值導向的信息內容。

王娟表示,徵求意見稿對熱搜、虛假流量可謂「重拳出擊」,核心仍是圍繞互聯網不是法外之地,建立清朗網路空間、樹立良好 社會 價值觀,微博熱搜榜等各類「帶節奏」式資本疊加流量的運作模式將受到重大挑戰。

面對外界的質疑,微博也在近日發布了熱搜管理規則,並對「花錢買熱搜」「花錢壓熱搜」等質疑回應稱,熱搜根據微博用戶的真實行為進行計算,並根據搜索量、發博量、互動量等數據指標,形成實時榜單。榜單演算法中包含了嚴格的排水軍和反垃圾機制,以確保公正客觀。同時上半年熱搜還將「減少 娛樂 佔比」作為主要調控目標。

3. 演算法的新聞價值判斷是什麼意思

核心概念辨析

一、傳統「新聞價值概念」梳理(基礎概念)

◆ 所謂新聞價值,就是指凝聚在新聞事實中的社會需求,就是新聞本身之所以存在的客觀理由,在我們比較固定的認識中,它包括時效性、重要性、顯著性、接近性以及趣味性等幾個基本屬性。

◆ 新聞價值是新聞事實本身所包含的滿足社會需求的素質的總和。新聞價值要素包括真實性、時新性等不變要素和重要性、顯著性、接近性、趣味性等可變要素。新聞事實所包含的價值要素越豐富,級數越高,新聞價值就越大。

二、新聞價值的常見的幾種特性

◆ 客觀性

新聞的客觀性要素是新聞存在的基本條件。新聞如果失真失實就不成其為新聞,也就沒有新聞價值了。在新聞價值諸要素中,客觀實在性是最重要的不變要素。一切新聞的產生和存在,首先要確認構成這一新聞的內容是否具有客觀實在性。

◆ 新鮮性

新鮮性是新聞存在的標志,新聞如果不新鮮,也就不成其為新聞了,當然也就不存在新聞價值了。在新聞價值諸要素中,新鮮性也是重要的不變要素。一切新聞都必須新鮮,這是受眾需要新聞的根本原因所在。

◆ 重要性

新聞的重要性是指事實信息內容的重要程度。事實信息內容越重要,新聞價值越大。判定某一事實信息內容重要與否的標准,主要看其政治與社會意義的大小及其對社會與公眾產生的影響程度。影響程度越大,政治和社會意義越大,新聞價值也就越大。

◆ 顯著性

事實信息中的人物、地點和事件中的知名度越是顯著、越是突出,新聞價值也越大。一個普通群眾很難成為新聞人物,而政府官員、大企業家、歌星、影星、社會名流的言行舉止則往往會成新聞;一國之都、歷史名城、古跡勝地也往往是出新聞的地方。新聞媒介應關注具有顯著性的人物和事件,抓住其具有新意的內容及時予以報道。

◆ 趣味性

新聞的趣味性指事實信息內容對受眾產生的興趣程度。越是受眾感興趣的事實信息,新聞價值越大。趣味是新聞傳播適應群眾情趣需要的一種驗證。趣味性還可使新聞內容的表現生動活潑、富有情趣。一些嚴肅的政治、經濟新聞同樣可以表現得妙趣橫生。

三、傳統新聞價值的「體系觀」

◆ 新聞事實

人們之所以需要新聞,就是要通過新聞的接收和利用,來減少或消除自己對周圍世界最新變動狀態的不確定性。這種相關性使人們對這一新變動的認知成為必要。這是新聞價值的系統結構中最基本的客觀性因素,沒有它,新聞價值就無從發生。

◆ 傳播者

傳播者在新聞事實與受傳者之間的中介作用是舉足輕重的。正是由於傳播者的能動性工作,使新聞事實由自在信息狀態經過積極的揚棄獲得了新質,轉變為自為的新聞信息狀態。傳播者「化入」新聞作品的化入型新聞信息以其傳真性、時效性,為滿足人們的新聞需要提供了現實可能。

◆ 受傳者

受傳者根據自己的需要,通過認知結構的接收機制,對新聞作品所提供的化人型新聞信息作積極的揚棄,成為實際滿足其新聞需要的「為我之物」。

綜上所述,新聞價值生成的內在根據是新聞事實的價值素質、傳播者對新聞的選擇、受傳者對新聞的接收三者的內在結構的有機對應、偶合和同一。

四、演算法時代,新聞價值意義的重構(重點內容,論述題答題模板,重點識記)

李良榮教授在《新聞學概論》中提到,新聞價值就是事實本身包含的引起公眾共同興趣的素質。這些素質包括時新性、重要性、新奇性、接近性、趣味性。新聞推薦演算法在一定程度上放大了個體的新聞興趣偏好,更好地滿足了個體的新聞內容需求,但弱化了新聞內容本身的地位。許多新聞內容生產者會投用戶所好進行新聞內容生產,這就使新聞價值的含義發生了重構。

(一)時新性向即時性轉變

新聞以往的定義是新近發生事實的變動,但由於互聯網和移動終端的發展和普及,時新性已不能滿足受眾的要求。受眾更傾向於即時性的新聞內容,即新聞事件發生的同時受眾就能接受到相應的新聞內容。互聯網時代加速了信息的生產,也加速了信息的傳播,受眾需要更及時地了解自己所處環境的信息變動。雖然即時性在時效上更好地滿足了受眾的信息需求,但是由於其新聞內容在新聞事件發生的同時就進行了發布,新聞具體信息極易出現誤差或者錯誤。

(二)重要性向標簽性轉變

由於演算法在進行新聞內容推送的時候會抓取新聞內容中的關鍵詞等進行分析,許多新聞內容都需要帶有標簽,也就是關鍵字。即使新聞內容很重要,但如果無法被演算法抓取正確的關鍵詞作為標簽,就會極易被演算法推送到對該新聞內容不感興趣的受眾面前。這不僅會降低新聞內容傳播的影響力,也會影響受眾的新聞閱讀感受。

(三)新奇性向互動性轉變

在信息爆炸的時代,新聞內容僅包含新奇性,將無法有效吸引受眾閱讀。新聞內容更需要具有互動性,從而吸引受眾點擊、閱讀內容最後進行分享。以今日頭條為例,當演算法察覺新聞內容與許多受眾產生了互動,會將此新聞內

容推薦給更多的受眾。具有互動性的新聞內容不僅可以更好地在受眾中進行傳播,更能促進受眾分享,使新聞內容擁有更大的影響力。

(四)接近性向情近性轉變

傳統新聞價值中的接近性既包括地緣關繫上的接近也包括心理上的接近。但是在演算法幫助下,受眾可以直接接觸到其最感興趣的內容,新聞內容的接近性便發生了向情感上接近的轉變。情近性是指新聞內容能夠引起受眾的情感認同。雖然演算法只能從受眾的行為習慣、相似群體等方面發掘其興趣,但是在一定程度上也反映出了受眾對某些新聞內容的情感態度。情近性與保持新聞內容的客觀性並不排斥,因為完全客觀的內容是不存在的,任何新聞內容都是有立場的內容,完全客觀本身即是一種態度傾向。

4. 名詞解釋 演算法

演算法(Algorithm)是指解題方案的准確而完整的描述,是一系列解決問題的清晰指令,演算法代表著用系統的方法描述解決問題的策略機制。也就是說,能夠對一定規范的輸入,在有限時間內獲得所要求的輸出。如果一個演算法有缺陷,或不適合於某個問題,執行這個演算法將不會解決這個問題。不同的演算法可能用不同的時間、空間或效率來完成同樣的任務。一個演算法的優劣可以用空間復雜度與時間復雜度來衡量。

熱點內容
linux關閉445埠 發布:2025-03-12 13:20:47 瀏覽:217
加密語句表情 發布:2025-03-12 13:17:36 瀏覽:819
電腦伺服器響應不了 發布:2025-03-12 13:16:02 瀏覽:895
vmwarenat外網訪問 發布:2025-03-12 13:06:31 瀏覽:45
紅魔三哪個安卓系統最穩定 發布:2025-03-12 13:01:45 瀏覽:301
arm嵌入式linux系統 發布:2025-03-12 13:01:45 瀏覽:490
伺服器組播地址 發布:2025-03-12 13:00:55 瀏覽:266
編程課導 發布:2025-03-12 12:56:57 瀏覽:446
封印者要什麼配置 發布:2025-03-12 12:51:11 瀏覽:784
電腦終端伺服器輻射大 發布:2025-03-12 12:36:54 瀏覽:640