基於神經網路的演算法
A. 神經網路演算法是什麼
神經網路演算法是指邏輯性的思維是指根據邏輯規則進行推理的過程;神經網路的研究內容相當廣泛,反映了多學科交叉技術領域的特點,主要的研究工敬彎作集中在生物原型研究、建立理論模型、網路模型與演算法研亮敬悶究、人工神經網路應用系統等方面;生物原型研究:從生理學、心理學、解剖學、腦科學、病理學等生物科學方面研究神經細胞、神經網路、神經系統的生物原型結構及其功能機理;建立理論模型:根據生物原型的研究,建立神經元、神經網路的理論模型;網路模型與演算法研究:在理論模型研究的基礎上構作具體的神經網路模型,以實現計算機模擬或准備製作硬體;人稿爛
B. 簡單介紹神經網路演算法
直接簡單介紹神經網路演算法
神經元:它是神經網路的基本單元。神經元先獲得輸入,然後執行某些數學運算後,再產生一個輸出。
神經元內輸入 經歷了3步數學運算,
先將兩個輸入乘以 權重 :
權重 指某一因素或指標相對於某一事物的重要程度,其不同於一般的比重,體現的不僅僅是某一因素或指標所佔的百分比,強調的是因素或指標的相對重要程度
x1→x1 × w1
x2→x2 × w2
把兩個結果相加,加上一個 偏置 :
(x1 × w1)+(x2 × w2)+ b
最後將它們經過 激活函數 處理得到輸出:
y = f(x1 × w1 + x2 × w2 + b)
激活函數 的作用是將無限制的輸入轉換為可預測形式的輸出。一種常用的激活函數是 sigmoid函數
sigmoid函數的輸出 介於0和1,我們可以理解為它把 (−∞,+∞) 范圍內的數壓縮到 (0, 1)以內。正值越大輸出越接近1,負向數值越大輸出越接近0。
神經網路: 神經網路就是把一堆神經元連接在一起
隱藏層 是夾在輸入輸入層和輸出層之間的部分,一個神經網路可以有多個隱藏層。
前饋 是指神經元的輸入向前傳遞獲得輸出的過程
訓練神經網路 ,其實這就是一個優化的過程,將損失最小化
損失 是判斷訓練神經網路的一個標准
可用 均方誤差 定義損失
均方誤差 是反映 估計量 與 被估計量 之間差異程度的一種度量。設t是根據子樣確定的總體參數θ的一個估計量,(θ-t)2的 數學期望 ,稱為估計量t的 均方誤差 。它等於σ2+b2,其中σ2與b分別是t的 方差 與 偏倚 。
預測值 是由一系列網路權重和偏置計算出來的值
反向傳播 是指向後計算偏導數的系統
正向傳播演算法 是由前往後進行的一個演算法
C. 神經網路演算法的三大類分別是
神經網路演算法的三大類分別是:
1、前饋神經網路:
這是實際應用中最常見的神經網路類型。第一層是輸入,最後一層是輸出。如果有多個隱藏層,我們稱之為「深度」神經網路。他們計算出一系列改變樣本相似性的變換。各層神經元的活動是前一層活動的非線性函數。
2、循環網路:
循環網路在他們的連接圖中定向了循環,這意味著你可以按照箭頭回到你開始的地方。他們可以有復雜的動態,使其很難訓練。他們更具有生物真實性。
循環網路的目的是用來處理序列數據。在傳統的神經網路模型中,是從輸入層到隱含層再到輸出層,層與層之間是全連接的,每層之間的節點是無連接的。但是這種普通的神經網路對於很多問題卻無能無力。
循環神經網路,即一個序列當前的輸出與前面的輸出也有關。具體的表現形式為網路會對前面的信息進行記憶並應用於當前輸出的計算中,即隱藏層之間的節點不再無連接而是有連接的,並且隱藏層的輸入不僅包括輸入層的輸出還包括上一時刻隱藏層的輸出。
3、對稱連接網路:
對稱連接網路有點像循環網路,但是單元之間的連接是對稱的(它們在兩個方向上權重相同)。比起循環網路,對稱連接網路更容易分析。
這個網路中有更多的限制,因為它們遵守能量函數定律。沒有隱藏單元的對稱連接網路被稱為「Hopfield 網路」。有隱藏單元的對稱連接的網路被稱為玻爾茲曼機。
(3)基於神經網路的演算法擴展閱讀:
應用及發展:
心理學家和認知科學家研究神經網路的目的在於探索人腦加工、儲存和搜索信息的機制,弄清人腦功能的機理,建立人類認知過程的微結構理論。
生物學、醫學、腦科學專家試圖通過神經網路的研究推動腦科學向定量、精確和理論化體系發展,同時也寄希望於臨床醫學的新突破;信息處理和計算機科學家研究這一問題的目的在於尋求新的途徑以解決不能解決或解決起來有極大困難的大量問題,構造更加逼近人腦功能的新一代計算機。
D. 神經網路演算法原理
一共有四種演算法及原理,如下所示:
1、自適應諧振理論(ART)網路
自適應諧振理論(ART)網路具有不同的方案。一個ART-1網路含有兩層一個輸入層和一個輸出層。這兩層完全互連,該連接沿著正向(自底向上)和反饋(自頂向下)兩個方向進行。
2、學習矢量量化(LVQ)網路
學習矢量量化(LVQ)網路,它由三層神經元組成,即輸入轉換層、隱含層和輸出層。該網路在輸入層與隱含層之間為完全連接,而在隱含層與輸出層之間為部分連接,每個輸出神經元與隱含神經元的不同組相連接。
3、Kohonen網路
Kohonen網路或自組織特徵映射網路含有兩層,一個輸入緩沖層用於接收輸入模式,另一個為輸出層,輸出層的神經元一般按正則二維陣列排列,每個輸出神經元連接至所有輸入神經元。連接權值形成與已知輸出神經元相連的參考矢量的分量。
4、Hopfield網路
Hopfield網路是一種典型的遞歸網路,這種網路通常只接受二進制輸入(0或1)以及雙極輸入(+1或-1)。它含有一個單層神經元,每個神經元與所有其他神經元連接,形成遞歸結構。
(4)基於神經網路的演算法擴展閱讀:
人工神經網路演算法的歷史背景:
該演算法系統是 20 世紀 40 年代後出現的。它是由眾多的神經元可調的連接權值連接而成,具有大規模並行處理、分布式信息存儲、良好的自組織自學習能力等特點。
BP演算法又稱為誤差反向傳播演算法,是人工神經網路中的一種監督式的學習演算法。BP 神經網路演算法在理論上可以逼近任意函數,基本的結構由非線性變化單元組成,具有很強的非線性映射能力。
而且網路的中間層數、各層的處理單元數及網路的學習系數等參數可根據具體情況設定,靈活性很大,在優化、信號處理與模式識別、智能控制、故障診斷等許 多領域都有著廣泛的應用前景。
E. 機器學習演算法之神經網路
在學習了機器學習的相關知識以後,我們知道其中的演算法有很多種,比如回歸演算法、K近鄰演算法等等,這些都是需要大家掌握的演算法,而神經網路演算法是一個十分實用的演算法,在這篇文章中我們就給大家介紹一下機器學習演算法中的神經網路演算法知識。
那麼什麼是神經網路演算法呢?其實神經網路也稱之為人工神經網路,簡單就是ANN,而演算法是80年代機器學習界非常流行的演算法,不過在90年代中途衰落。現在,隨著深度學習的發展,神經網路再次出現在大家的視野中,重新成為最強大的機器學習演算法之一。而神經網路的誕生起源於對大腦工作機理的研究。早期生物界學者們使用神經網路來模擬大腦。機器學習的學者們使用神經網路進行機器學習的實驗,發現在視覺與語音的識別上效果都相當好。
那麼神經網路的學習機理是什麼呢?簡單來說,就是分解與整合。我們可以通過一個例子進行解答這個問題,比如說,我們可以把一個正方形分解為四個折線進入視覺處理的下一層中。四個神經元分別處理一個折線。每個折線再繼續被分解為兩條直線,每條直線再被分解為黑白兩個面。於是,一個復雜的圖像變成了大量的細節進入神經元,神經元處理以後再進行整合,最後得出了看到的是正方形的結論。這就是大腦視覺識別的機理,也是神經網路工作的機理。
那麼神經網路的邏輯架構是什麼呢?其實一個簡單的神經網路的邏輯架構分成輸入層,隱藏層,和輸出層。輸入層負責接收信號,隱藏層負責對數據的分解與處理,最後的結果被整合到輸出層。每層中的一個圓代表一個處理單元,可以認為是模擬了一個神經元,若干個處理單元組成了一個層,若干個層再組成了一個網路,這就是所謂的神經網路知識。
當然,在神經網路中,其實每一個處理單元事實上就是一個邏輯回歸模型,邏輯回歸模型接收上層的輸入,這樣,把模型的預測結果作為輸出傳輸到下一個層次。這些過程,神經網路可以完成非常復雜的非線性分類。在神經網路在圖像識別領域的一個著名應用,而這個程序叫做LeNet,是一個基於多個隱層構建的神經網路。通過LeNet可以識別多種手寫數字,並且達到很高的識別精度與擁有較好的魯棒性。這也是神經網路中最著名的應用。
在這篇文章中我們給大家介紹了很多關於神經網路的相關知識,通過這些知識我們可以更好地了解神經網路演算法。當然,我們要想了解機器學習還需要掌握更多的演算法。
F. 神經網路——BP演算法
對於初學者來說,了解了一個演算法的重要意義,往往會引起他對演算法本身的重視。BP(Back Propagation,後向傳播)演算法,具有非凡的歷史意義和重大的現實意義。
1969年,作為人工神經網路創始人的明斯基(Marrin M insky)和佩珀特(Seymour Papert)合作出版了《感知器》一書,論證了簡單的線性感知器功能有限,不能解決如「異或」(XOR )這樣的基本問題,而且對多層網路也持悲觀態度。這些論點給神經網路研究以沉重的打擊,很多科學家紛紛離開這一領域,神經網路的研究走向長達10年的低潮時期。[1]
1974年哈佛大學的Paul Werbos發明BP演算法時,正值神經外網路低潮期,並未受到應有的重視。[2]
1983年,加州理工學院的物理學家John Hopfield利用神經網路,在旅行商這個NP完全問題的求解上獲得當時最好成績,引起了轟動[2]。然而,Hopfield的研究成果仍未能指出明斯基等人論點的錯誤所在,要推動神經網路研究的全面開展必須直接解除對感知器——多層網路演算法的疑慮。[1]
真正打破明斯基冰封魔咒的是,David Rumelhart等學者出版的《平行分布處理:認知的微觀結構探索》一書。書中完整地提出了BP演算法,系統地解決了多層網路中隱單元連接權的學習問題,並在數學上給出了完整的推導。這是神經網路發展史上的里程碑,BP演算法迅速走紅,掀起了神經網路的第二次高潮。[1,2]
因此,BP演算法的歷史意義:明確地否定了明斯基等人的錯誤觀點,對神經網路第二次高潮具有決定性意義。
這一點是說BP演算法在神經網路領域中的地位和意義。
BP演算法是迄今最成功的神經網路學習演算法,現實任務中使用神經網路時,大多是在使用BP演算法進行訓練[2],包括最近炙手可熱的深度學習概念下的卷積神經網路(CNNs)。
BP神經網路是這樣一種神經網路模型,它是由一個輸入層、一個輸出層和一個或多個隱層構成,它的激活函數採用sigmoid函數,採用BP演算法訓練的多層前饋神經網路。
BP演算法全稱叫作誤差反向傳播(error Back Propagation,或者也叫作誤差逆傳播)演算法。其演算法基本思想為:在2.1所述的前饋網路中,輸入信號經輸入層輸入,通過隱層計算由輸出層輸出,輸出值與標記值比較,若有誤差,將誤差反向由輸出層向輸入層傳播,在這個過程中,利用梯度下降演算法對神經元權值進行調整。
BP演算法中核心的數學工具就是微積分的 鏈式求導法則 。
BP演算法的缺點,首當其沖就是局部極小值問題。
BP演算法本質上是梯度下降,而它所要優化的目標函數又非常復雜,這使得BP演算法效率低下。
[1]、《BP演算法的哲學思考》,成素梅、郝中華著
[2]、《機器學習》,周志華著
[3]、 Deep Learning論文筆記之(四)CNN卷積神經網路推導和實現
2016-05-13 第一次發布
2016-06-04 較大幅度修改,完善推導過程,修改文章名
2016-07-23 修改了公式推導中的一個錯誤,修改了一個表述錯誤
G. 利用神經網路進行文本分類演算法綜述(持續更新中)
傳統的文本分類一般都是使用詞袋模型/Tf-idf作為特徵+機器學習分類器來進行分類的。隨著深度學習的發展,越來越多的神經網路模型被用來進行文本分類。本文將對這些神經網路模型做一個簡單的介紹。
本文介紹了一種詞向量模型,雖然算不得文本分類模型,但由於其可以說是fasttext的基礎。因此也簡單提一下。
作者認為cbow和skipgram及大部分詞向量模型都沒有考慮到單詞的多態性,而簡單的將一個單詞的多種形態視為獨立的單詞。例如like的不同形式有likes,liking,liked,likes,這些單詞的意思其實是相同的,但cbow/skipgram模型卻認為這些單詞是各自獨立的,沒有考慮到其形態多樣性。
因此作者提出了一個可以有效利用單詞字元級別信息的n-gram詞向量模型,該模型是以skipgram模式實現的。例如單詞 where,其n-gram表示為<wh, whe, her, ere, re>, where。其中<>分別表示前後綴。在原始的skipgram模型中,輸入僅僅只是where的onehot向量,而在此模型中輸入則變成了<wh, whe, her, ere, re>, where的onehot編碼的加和,有效的利用了字元級別的信息,因此效果更加好。
而在loss方面,文中採用了負采樣+binary LogisticRegression的策略。即對每一個目標單詞都預測為正負中的一種。
在本文中作者提供了一個基於神經網路的文本分類模型,這個模型是基於cbow的,與cbow非常類似。
和CBOW一樣,fastText模型也只有三層:輸入層、隱含層、輸出層(Hierarchical Softmax),輸入都是多個經向量表示的單詞,輸出都是一個特定的target,隱含層都是對多個詞向量的疊加平均。不同的是,CBOW的輸入是目標單詞的上下文,fastText的輸入是多個單詞及其n-gram特徵的embeding表示方式,這些特徵用來表示單個文檔;CBOW的輸入單詞被onehot編碼過,fastText的輸入特徵是被embedding過;CBOW的輸出是目標詞彙,fastText的輸出是文檔對應的類標。輸出層的實現同樣使用了層次softmax,當然如果自己實現的話,對於類別數不是很多的任務,個人認為是可以直接使用softmax的。
最後,貼一個Keras的模型fasttext簡化版。
基於詞向量表示,本文提出利用卷積神經網路來進行文本分類。其演算法如上圖所示:
在本文中,作者嘗試了多種不同的詞向量模式:
在上一篇文章中CNN網路的輸入一般是預訓練好的詞向量,而在本文中作者提出一種直接將embedding訓練與分類任務結合在一起,且能有效提取/保留詞序信息,也即有效訓練出n-gram的模型方法,其實也可以理解為一種利用CNN來進行embedding的方法。
此外,另一個問題是輸入序列長度變化問題(在上一篇文章textCNN中通過padding解決的?),在本文作者提出使用一個動態可變的pooling層來解決這個問題,使得卷積層輸出的大小是相同的。關於可變pooling其實與圖像識別中的 空間金字塔池化 (Spatial Pyramid Pooling) 是類似的。
這篇文章有點將fastText與TextCNN結合在一起的感覺,將n-gram embedding與分類任務結合在了一起進行訓練,通過CNN來進行Embedding。
Text Categorization via Region Embedding》
在本篇文章中作者提出了一個tv-embedding(即two-view embedding),它也屬於region embedding(也可以理解為ngram embedding)。這種方法與上面的bow-CNN表示相似,使用bow(bag of words)的方式來表示一個區域的詞句,然後通過某個區域(region,左右鄰域的單詞或詞句)來預測其前後的區域(單詞或詞句),即輸入區域是view1,target區域是view2。tv-embedding是單獨訓練的,在使用的時候與CNN中的embedding組合在一起(形成多個channel?)。作者認為,word2vec方法預訓練得到的embedding向量是普適性的,而通過特定任務的數據集的訓練得到tv-embedding具有任務相關的一些信息,更有利於提升我們的模型效果。
吐槽一下,這篇文章沒太看懂,也可能是英語太差,作者文章中沒有那種一眼就能讓人理解的網路圖,像textCNN的圖就非常一目瞭然,看圖就知道是怎麼做的了。
本文提出了一個使用監督學習加半監督預訓練的基於LSTM的文本分類模型。文章作者與上面相同,所以用到的很多技術可以說與上面也是同出一轍。因此簡單說下本文的一些思路。
作者認為已有的直接使用LSTM作為文本分類模型並直接將LSTM的最後一個輸出作為後續全連接分類器的方法面臨兩個問題:(1)這種方式一般都是與word embedding整合在一起(即輸入onehot經過一個embedding層再進入LSTM),但是embedding訓練不穩定,不好訓練;(2)直接使用LSTM最後一個輸出來表示整個文檔不準確,一般來說LSTM輸入中後面的單詞會在最後輸出中佔有較重的權重,但是這對於文章表示來說並不總是對的。因此作者對這兩點進行了改進:
本文其實可以看作是作者將自己前面的tv-embedding半監督訓練與RCNN的一個融合吧,大有一種一頓操作猛如虎,一看人頭0-5的感覺(因為作者的實驗結果跟一般的CNN相比其實也搶不了多少)。
本文的作者也是前面兩篇使用CNN來進行文本分類處理的文章的作者。因此在本文中,結合了前面兩篇文章提出的一些方法,並使用了一個深層的卷積神經網路。具體的細節包括:
更多詳細的關於DPCNN的細節可以查看 從DPCNN出發,撩一下深層word-level文本分類模型 。
本文提出了一種基於CNN+Attention的文本分類模型。作者認為已有的基於CNN的文本分類模型大都使用的是固定大小的卷積核,因此其學習到的表示也是固定的n-gram表示,這個n與CNN filter大小相關。但是在進行句子的語義表示時,不同句子發揮重要作用的ngram詞語常常是不同的,也即是變化的。因此,模型能根據句子來自適應的選擇每個句子最佳的n-gram對於提升模型的語義表示能力是非常關鍵的。本文便是由此思路提出了一種自適應的來選擇不同n-gram表示的模型。
本文模型在主題結構上參照了CV中的DenseNet,藉由DenseNet中的稠密連接來提取到豐富的n-gram特徵表示。舉例來說,在layer3的特徵不僅能學習到f(x1, x2, x3),還能學習到f(x1(x2,x3))這種更多層次,更加豐富的特徵。網路的結構主要包括三部分:DenseCNN主網路,Attention mole和最後的全連接層分類網路。下面對這三部分進行簡單的說明:
本文通過Dense connection + Attention來自動獲取對於文本語義最重要的n-gram特徵,結果很好。但是缺點是,這個網路比較適合較短的文本,文中對輸入文本進行了padding補齊,對於不同數據集最大長度分別為50,100等,但這對於較長的文本明顯是不足的。因此對於較長的文本或許HAN這種借用RNN來不限制輸入長短的網路會更好。
本文提出了一種結合循環神經網路(RNN)和卷積神經網路來進行文本分類的方法,其結構如上圖所示,該網路可以分為三部分:
雖然說是RNN與CNN的結合,但是其實只用到了CNN中的pooling,多少有一點噱頭的意思。文中還提到了RCNN為什麼比CNN效果好的原因,即為什麼RCNN能比CNN更好的捕捉到上下文信息:CNN使用了固定大小window(也即kernel size)來提取上下文信息,其實就是一個n-gram。因此CNN的表現很大程度上受window大小的影響,太小了會丟失一些長距離信息,太大了又會導致稀疏性問題,而且會增加計算量。
在眾多自然語言處理任務中,一個非常突出的問題就是訓練數據不足,且標注難度大。因此文本提出了一種多任務共享的RNN模型框架,其使用多個不同任務數據集來訓練同一個模型共享參數,已達到擴充數據集的作用。
文中作者提出了三個模型,如上圖所示:
三個模型的訓練方式相同:
本文提出了一個層次LSTM+Attention模型。作者認為,雖然一篇文章有多個句子組成但真正其關鍵作用的可能是其中的某幾個,因此對各個句子施加了注意力機制,以使得對文章語義貢獻較多的句子佔有更多的權重。同樣的,組成一個句子的單詞有多個,但是發揮重要作用的可能就那麼幾個,因此使用注意力機制以使得重要單詞發揮更大的作用,這些便是本文的核心思想。整個網路可分為三層,兩個LSTM層分別用來進行word encode和sentence encode,最頂上為一個全連接分類層。若加上兩層注意力層,則可認為網路為5層。下面簡單聊聊這五層網路的結構:
總體來說,本文看起來還是比較有意思的,符合人閱讀文章的習慣,我們寫文章的時候也是有中心詞和中心句的。但是由於這個層級結構是否會導致訓練慢或者不好訓練還不得而知。最後,文中還提出對文章按長短先進行排序,長度相似的進入一個batch,這將訓練速度加快了3倍。
本文提出了一個基於圖神經網路的文本分類方法。該方法的主要思想是將所有文章及其包含的詞彙都放到一個圖網路裡面去,圖網路中的節點分為兩種類型:單詞節點和文章節點。其中連接單詞節點和文章節點的邊的權重使用TF-IDF來表示,而單詞與單詞之間邊的權重則是使用點互信息(PMI)來表示。點互信息與傳統語言模型中的條件概率計算方式非常相似。只不過PMI採用的是滑窗方式而條件概率是直接在所有語料中進行統計,可以認為是將所有語料當做一個大窗口,這時就又與PMI相同了。
A表示圖網路的鄰接矩陣,表示如下:
GCN同樣也是可以含有多層隱藏層的,其各個層的計算方式如下:
其中A'為歸一化對稱鄰接矩陣, W0 ∈ R^(m×k) 為權重矩陣,ρ是激活函數,例如 ReLU ρ(x) = max(0,x) 如前所述,可以通過疊加多個GCN層來合並更高階的鄰域信息:
其中j表示層數。
損失函數定義為所有已標記文檔的交叉熵誤差:
文中提到Text GCN運行良好的原因有兩個方面:
但是其也有一些缺:
總的來說,文章的idea還是挺有意思的,效果也還不錯。初識GCN可能還是有一點難以理解,可以參考如下資料進行進一步學習:
基於圖卷積網路的文本分類演算法
如何理解 Graph Convolutional Network(GCN)?
H. 神經網路演算法原理
4.2.1 概述
人工神經網路的研究與計算機的研究幾乎是同步發展的。1943年心理學家McCulloch和數學家Pitts合作提出了形式神經元的數學模型,20世紀50年代末,Rosenblatt提出了感知器模型,1982年,Hopfiled引入了能量函數的概念提出了神經網路的一種數學模型,1986年,Rumelhart及LeCun等學者提出了多層感知器的反向傳播演算法等。
神經網路技術在眾多研究者的努力下,理論上日趨完善,演算法種類不斷增加。目前,有關神經網路的理論研究成果很多,出版了不少有關基礎理論的著作,並且現在仍是全球非線性科學研究的熱點之一。
神經網路是一種通過模擬人的大腦神經結構去實現人腦智能活動功能的信息處理系統,它具有人腦的基本功能,但又不是人腦的真實寫照。它是人腦的一種抽象、簡化和模擬模型,故稱之為人工神經網路(邊肇祺,2000)。
人工神經元是神經網路的節點,是神經網路的最重要組成部分之一。目前,有關神經元的模型種類繁多,最常用最簡單的模型是由閾值函數、Sigmoid 函數構成的模型(圖 4-3)。
儲層特徵研究與預測
以上演算法是對每個樣本作權值修正,也可以對各個樣本計算δj後求和,按總誤差修正權值。