物理演算法設計
『壹』 大學物理實驗有效數字簡演算法求1.6+98.75為多少
1.6+98.75=100.35,1.6的6是欠准位,所以,結果保留到小數點後一位,小數點後第二位是5,處理的規則是:4舍6入5進偶,最後的結果應當是:100.4
『貳』 資料庫物理模型
資料庫物理模型設計的目標是根據選定的Oracle資料庫系統特點和航空物探數據管理與服務的業務處理需求,確定航空物探資料庫最優的物理環境、存取方法和存儲結構。即通過資料庫物理設計,以便達到物理資料庫結構的優化,使得在資料庫上運行的各種事務響應時間少、存儲空間利用率高、事務吞吐率大。
一、資料庫布局
航空物探信息系統的維護數據(部門、崗位、人員、人員許可權、數據入庫檢查規則及數據字典等)相對比較穩定。入庫前數據需經過各種檢查校對,確認數據正確後才能歸檔,存入航空物探資料資料庫,所以存入資料庫前的數據可能經常需要修改和刪除,相對變化較大;而存入資料資料庫中的數據一般不允許修改和刪除,以免誤操作破壞資料庫數據造成損失。
圖2-12 航空物探資料庫邏輯模型
圖2-13 航空物探資料庫布局與數據採集流程圖
據此,我們採用圖2-13所示的資料庫數據採集流程,並將航空物探資料庫分為資料採集資料庫、資料資料庫、系統維護資料庫分別進行存儲和管理,實現數據的統一管理和統一使用,便於數據入庫和易於維護等。
航空物探資料資料庫是航空物探所有數據最終存儲的場所。資料採集資料庫是數據歸檔存入資料資料庫前的臨時「集散地」,在此接收各項檢查,在確認數據無誤後歸檔到資料資料庫,然後刪除資料採集資料庫中已歸檔的數據。此外,資料採集資料庫中還保存數據入庫、維護、檢查日誌及歸檔記錄。
系統維護資料庫,存儲系統維護信息(如系統功能、資料庫表清單等)、安全信息(如信息系統用戶的角色、許可權、授權的系統功能等),數據字典、入庫數據檢查規則等。將其與航空物探數據分開,有利於系統維護和管理。
二、資料庫空間設置
資料庫空間設置包括磁碟空間設置、應用系統表空間設置、撤銷表空間、臨時表空間、日誌空間和索引空間設置。
(一)磁碟空間設置
磁碟空間設置的目標:磁碟性能不能阻礙實現資料庫性能,資料庫磁碟必須專用於資料庫文件,否則非資料庫將會影響到資料庫性能,且磁碟空間必須滿足恢復和性能的要求。
航空物探資料庫伺服器為IBMP620小型機,8塊硬碟,每塊硬碟36GB空間,每塊物理磁碟建立一個文件系統。為了提高磁碟的反應時間和尋道時間,提高I/O的存取效率,除了一塊硬碟用於UNIX操作系統外,其餘7塊磁碟分別存放資料採集資料庫、系統維護資料庫-日誌文件,資料資料庫及資料資料庫的大欄位數據、索引、回滾段和數據日誌文件。
(二)應用系統表空間設置
信息系統數據採集過程對數據的事務操作比較頻繁,經常進行數據插入(新數據入庫)、修改(入庫數據有誤)和刪除操作(數據重新導入或歸檔入庫),因此航空物探資料採集資料庫所在的表空間會很活躍。為了不影響其他I/O的競爭,同時也可以提高數據入庫的操作效率(50多年的歷史數據需要集中入庫),分配一個磁碟空間(36GB)為採集庫的表空間。由於採集數據歸檔入資料庫後被刪除,同時進行數據入庫的項目也不是很多,雖仍保留所有的採集日誌數據,一個磁碟空間也足夠使用。
航空物探資料資料庫的二維表和Oracle大欄位(BLOB)分別存放在不同的物理磁碟(每個磁碟36GB)上,對同時存在有表格數據和大欄位數據的資料庫表(如航跡線數據)時,可以提高磁碟I/O效率。隨著數據入庫的項目越來越多,需要增加相應的物理磁碟或磁碟陣列。
系統維護資料庫相對穩定,佔用磁碟空間約500M左右。由於系統磁碟有限,把日誌文件存放該磁碟中。
(三)撤銷表和臨時表空間的設置
在Oracle資料庫中,撤銷的目的是確保事務的回退和恢復。撤銷參數有UNDO_MANAGEMENT、UNDO_TABLESPACE和UNDO_RETENTION。
UNDO_MANAGEMENT參數用於資料庫中管理撤銷數據的方式,航空物探資料庫設置為自動模式(auto)。
UNDO_TABLESPACE參數用於指定資料庫中保存撤銷數據的撤銷表空間名稱,航空物探資料庫撤銷表空間名稱為UNDO_ARGS_TBSPACE,空間大小設置為20GB,以確保在保留時間內進行恢復。
UNDO_RETENTION參數用於指定已經提交事務的撤銷數據在能夠覆蓋之前應該保留多長時間,本資料庫系統設置為60min。
臨時表空間是用以存儲大量的排序,與撤銷表空間存放在一個物理磁碟上,本資料庫系統臨時表空間設置為500M。
(四)日誌空間設置
日誌的主要功能是記錄對資料庫已做過的全部操作。在系統出現故障時,如果不能將修改數據永久地寫入數據文件,則可利用日誌得到該修改,所以不會丟失已有操作結果。
日誌文件主要是保護資料庫以防止故障。為了防止日誌文件本身的故障,航空物探資料庫系統分別在一個獨立磁碟和系統維護庫磁碟中存放日誌文件。若系統出現故障,在下次打開資料庫時Oracle資料庫系統自動用日誌文件中的信息來恢復資料庫文件。
根據航空物探資料庫信息系統同時登錄的用戶數及使用的功能,將日誌文件大小設置為10GB。
(五)索引表空間設置
為了提高航空物探信息系統的查詢和統計速度,把所有索引空間與應用表空間完全分開,從而提高I/O存取效率。航空物探索引表空間大小設置為10GB。
聚集是表的一種存儲方法,一般每個基本表是單獨組織的,但對邏輯上經常在一起查詢的表,在物理上也鄰近存放,這樣可減少數據的搜索時間,提高性能。
當幾個關系(表)以聚集方式組織時,是通過公共屬性的值為表聚集的依據。航空物探資料庫系統是以項目標識(PROJ_ID)建立聚集的,所有涉及項目標識的資料庫表直接引用項目標識聚集。航空物探聚集表空間與索引表空間相同。
三、資料庫參數設置
在資料庫創建前需要對如下資料庫參數進行設置,航空物探參數文件名為Inito-raargs.ora,各種參數設置如下:
DB_block_size=16384
DB_name=oraagrs
DB_domain=oraargs.com
Compatible=9.1.0
Nls_characterset=ZHS16GBK
Open_Cursors=100
DB_files=100
DB_file_mutliblock_read_count=16
Log_checkpoint_interval=256000
Processes=200
四、內存設置
航空物探資料庫伺服器物理內存為4GB,除部分用於系統開銷外,其餘全部用於資料庫。
Oracle使用共享系統全局區(System Globla Area,SGA)內存來管理內存和文件結構,包含DB_block_Bufers、DB_cache_size、Shared_pool_size、Log_Buffer參數。航空物探資料庫系統的全局區內存參數設置如下。
DB_block_Buffers參數為SGA中存儲區高速緩存的緩沖區數目,每個緩沖區的大小等於參數DB_block_size的大小,DB_block_Buffers=19200(約300MB)。
Shared_pool_size參數為分配給共享SQL區的位元組數,是SGA大小的主要影響者,Shared_pool_size=1228800000(1.2GB)。
DB_cache_size參數是SGA大小和資料庫性能的最重要的決定因素。該值較高,可以提高系統的命中率,減少I/O,DB_cache_size=1024000000(1GB)。
Log_Bufer參數為重做日誌高速緩存大小,主要進行插入、刪除和修改回退操作,Log_buffer=5120000(5MB)。
五、優化設置
由於航空物探信息系統的採集軟體和應用軟體是採用MS.NETC#進行開發的,應用程序與資料庫之間的連接有傳統的ODBC和OLEDB兩種方式。為了支持ODBC在OLEDB技術上建立了相應的OLEDB到ODBC的調用轉換,而使用直接的OLEDB方式則不需轉換,從而提高處理速度。
在建立資料庫表時,參數Pctfree和Pctused設置不正確可能會導致數據出現行鏈接和行遷移現象,即同一行的數據被保存在不同的數據塊中。在進行數據查詢時,為了讀出這些數據,磁頭必須重新定位,這樣勢必會大大降低資料庫的執行速度。因此,在創建表時應充分估計到將來可能出現的數據變化,正確地設置這兩個參數,盡量減少資料庫中出現的行鏈接和行遷移現象。
航空物探資料採集資料庫表的插入、修改和刪除的頻率較高,Pctfree設置為20,Pctused設置為40;系統維護資料庫表相對穩定,Pctfree設置為10,Pctused設置為15;資料資料庫表除了增加數據外基本不進行修改和刪除操作,Pctfree設置為10,Pctused設置為5。
六、擴展性設置
多CPU和並行查詢PQO(Parallel Query Option)方式的利用:CPU的快速發展使得Oracle越來越重視對多CPU的並行技術的應用,一個資料庫的訪問工作可以用多個CPU相互配合來完成。對於多CPU系統盡量採用並行查詢選項方式進行資料庫操作。航空物探資料庫伺服器為2個CPU,在程序查詢中採用了並行查詢的方式。
在航空物探工作量統計、飛行小時統計、測量面積統計和岩石物性統計中,為了加快統計效率,在相應的查詢語句中增加了並行查詢語句。
隨著航空物探高精度測量程度的不斷提高,測量數據將越來越大。為了滿足航空物探查詢效率及發展,將航磁測量數據與校正後航磁測量數據按比例尺分1:20萬以下、20萬~50萬、1:50萬以上分別存放3張不同的資料庫表。
七、創建資料庫
在完成資料庫布局、空間設置、內存設置、資料庫參數設置、擴展性設置和優化設置後,進行航空物探資料庫物理模型設計,即航空物探資料庫實體創建。由於航空物探空間資料庫邏輯模型是採用ESRI提供的ArcGIS UML構建的Geodatabase模型,因此,使用ESRI公司提供的CaseTools將航空物探數據UML模型圖轉成空間資料庫(Geodatabase)實體(圖2-14)。
航空物探屬性資料庫表(二維表)是採用Power Designer資料庫設計平台直接把資料庫關系模型生成資料庫腳本來創建的。
經過資料庫的概念設計、邏輯設計和物理設計,最終生成航空物探資料庫。
圖2-14 航空物探資料庫物理模型實現
八、空間數據的索引機制
對於海量的空間資料庫而言,資料庫的操作效率是關繫到資料庫成敗的關鍵問題。為了提高數據的訪問、檢索和顯示速度,數據在載入到資料庫時,要素類數據建立了空間索引,柵格數據構建了金字塔結構,對象類數據採用與資料庫直接聯接的訪問機制。
(一)空間索引
為了提高要素類數據的查詢性能,在建立航空物探空間資料庫時,創建了空間索引機制。常用的空間索引有格網索引、R樹索引、四叉樹索引等。Geodatabase採用格網索引方式。所謂格網索引是將空間區域劃分成適合大小的正方形格網,記錄每一個格網內所包含的空間實體(對象)以及每一個實體的封裝邊界范圍,即包圍空間實體的左下角和右上角坐標。當用戶進行空間查詢時,首先計算出用戶查詢對象所在格網,然後通過格網編號,就可以快速檢索到所需的空間實體。
確定適合的格網級數、單元大小是建立空間格網索引的關鍵。格網太大,在一個格網內有多個空間實體,查詢檢索的准確度降低。格網太小,則索引數據量成倍增長和冗餘,檢索的速度和效率較低。資料庫的每一數據層採用不同大小、不同級數的空間索引格網單元,但每層最多級數不能超過三級。格網單元的大小不是一個確定性的值,需要根據對象的大小確定。空間索引格網的大小與檢索准確度之間的關系如圖2-15所示。
選擇格網單元的大小遵循下列基本原則:
1)對於簡單要素的數據層,盡可能選擇單級索引格網。減少RDBMS搜索格網單元索引的級數,縮短空間索引搜索的過程,例如航跡線要素類。
圖2-15 索引格網大小與檢索准確度的關系
2)如果數據層中的要素封裝邊界大小變化比較大,應選擇2或3級索引格網。Geodata-base最多提供三級格網單元。每一要素封裝邊界在適合的級內,減少了每一封裝邊界有多個格網的可能性。在空間索引搜索過程中,RDBMS則必須搜索所有3個格網單元級,這將消耗大量的時間。
3)若用戶經常對圖層執行相同的查詢,最佳格網的大小應是平均查尋空間范圍的1.5倍。
4)格網的大小不能小於要素封裝邊界的平均大小,為了減少每個格網單元有多個要素封裝邊界的可能性,格網單元的大小應取平均格網單元的3倍。最佳格網單元的大小可能受圖層平均查詢的影響。
空間域是按照要素數據集定義的,空間索引格網是按照要素類設置的。它們都是在創建Geodatabase資料庫時設置,並一經設置,中間不許改變;所以一定要在充分分析數據的情況下確定它們的值。航空物探數據主要是簡單要素類,空間跨度為70°。根據上述原則,航空物探數據選擇單級索引格網,格網大小為20°。
(二)金字塔結構
金字塔結構的核心是將柵格數據逐級進行抽稀,形成多級解析度的重采樣數據,並將其分割成塊,按一定的文件格式(金字塔文件格式)存儲成磁碟文件;在以後進行圖像顯示處理時,只需將要顯示的部分所覆蓋的塊從磁碟文件直接讀進內存緩沖區顯示即可。從金字塔的所有層中尋找與所要求顯示的比例相近或匹配的一層,並將該層的從某一點起的一定范圍的圖像所覆蓋的所有塊載入到內存緩沖區,提取所需部分並形成圖像。
金字塔演算法(圖2-16)是通過獲取顯示時所需要的一定解析度的數據來提高顯示速度。使用金字塔數據格式後,在顯示全圖時僅需要顯示一個較低解析度的數據,這樣既能加快顯示速度,又不會影響顯示效果。放大圖像,盡管顯示圖像解析度提高,由於顯示區域減小,所以顯示速度不會下降。如果沒有為柵格數據建立金字塔數據,則每次顯示都會讀取整個數據,然後進行重采樣得到顯示所需要的解析度,明顯地降低了顯示速度。
圖2-16 金字塔壓縮示意圖
金字塔數據重采樣方式有:最近鄰法、雙線性內插和立方卷積。其中最近鄰法適用於離散數據,而雙線性內插法和立方卷積法適合於連續數據。
在ArcGISEngine中提供了IRasterPyramid和IRasterPyramid2介面來實現金字塔數據的建立,而建立的數據保存在*.rrd格式的文件中。
(三)空間域定義
空間域是指數據的有效空間范圍,即Geodatabase資料庫的最大等效坐標的值域范圍,其定義主要是指比例系數和MinX、MinY的計算。
因為使用整數比浮點數有更高的壓縮率,並且對整數進行二進制搜索比較快,所以多用戶Geodatabase以4位元組正整數存儲坐標,其最大值為32位正整數所能表示的范圍是21.4億(2147483647),整數的范圍稱為空間域。在創建Geodatabase資料庫時需要定義合適的比例系數。大的整數值將消耗大量的計算機物理內存,所以選定的比例系數最好不要大於必須的比例系數。空間域隨坐標系的單位變化而變化。
比例系數和空間域之間成反比例關系,比例系數越大(存儲單位越小),表達的空間域也越小。為了使目標數據都存儲在系統中,需要謹慎地設置比例系數。將目標數據的寬度和高度較適中的數值乘以比例系數,如果結果小於21.4億,則比例系數是合適的。
航空物探數據模型是為我國的航空物探行業數據建庫設計的,它支持的空間數據的坐標范圍為我國領土覆蓋的海陸空間,最低緯度為赤道。根據概念設計的分析,航空物探數據模型採用的是地理坐標系,坐標系單位是度,基準是Beijing_1954,要求存儲的坐標數據精度達到0.01m。在赤道處,赤道圓周長為40075694.6m,則每度弧長=40075694.6×100/360cm=11132137.389cm,即1cm對應8.983000883E-8°。所以,航空物探數據模型的比例系數取為8.98E-8,即存儲單位為8.98E-8°,可滿足1cm精度要求。
將空間域移動到目標數據范圍之前,首先找到空間域在存儲單位的中心位置,目的是在必要時向各個方向擴展。4位元組正整數可表示的坐標范圍:2147483647×8.98E-8=192.84。我國的領土范圍是東經70°~140°,北緯0°~60°。所以,選取的比例系數是合適的。把空間域坐標系中心定為90°,然後,計算空間域的MinX、MinY。
MinX=((70+140)÷2)-90=15
MinY=((0+60)÷2)-90=-60
所以坐標的存儲數據是:
X_Storage=(X-MinX)/8.98E-8
Y_Storage=(Y-MinY)/8.98E-8
『叄』 演算法有哪些分類
演算法分類編輯演算法可大致分為:
基本演算法、數據結構的演算法、數論與代數演算法、計算幾何的演算法、圖論的演算法、動態規劃以及數值分析、加密演算法、排序演算法、檢索演算法、隨機化演算法、並行演算法,厄米變形模型,隨機森林演算法。
『肆』 優化演算法筆記(十七)萬有引力演算法
(以下描述,均不是學術用語,僅供大家快樂的閱讀)
萬有引力演算法(Gravitational Search Algorithm)是受物體之間的萬有引力啟發而提出的演算法。演算法提出於2008(2009)年,時間不長,不過相關的文章和應用已經相對較多,也有不少的優化改進方案。
萬有引力演算法中,每一個物體的位置代表了一個可行解,而物體的質量則反映了該位置的好壞,位置越好的物體的質量越大,反之物體的質量越小(質量由適應度值計算出,不是直接相等)。物體在解空間中的運動方式由其他物體的引力決定,質量越大的物體,在同等引力作用下的加速度較小,所以單位時間內的速度也相對較小,位移距離較短,反之加速度和速度都較大,位移距離較長。故可以簡單的認為, 位置越優的個體的移動速度越慢,位置越差的個體的移動速度越快 。
萬物之間皆有萬有引力,不過在我們談到萬有引力之時,對象大多是天體,否則萬有引力太小可以忽略不計。所有這次我們的主角就是天體了。(總不可能是蘋果吧)。
每一個天體都有個屬性:位置X,質量M,加速度A,以及速度V,還有適應度值F。
在D維空間內有N個天體,其位置為
,加速度
,速度
,其適應度值為
。
第i個天體的質量則是根據其適應度值計算得出:
其中M為天體的質量在群體重質量中的佔比, 分別表示全局最差天體的適應度值和全局最優個體的適應度值。
可以看出,處於最優位置的天體的質量m為1,最差位置的天體的質量m為0。當最優天體和最差天體重合時,所有的天體的質量m都為1。
由萬有引力計算公式和加速度公式可以計算出當前天體收到另一個天體萬有引力而產生的加速度:
其中R表示第i個天體和第j個天體之間的歐式距離,aij為天體i在第d維上受到天體j的萬有引力而產生的加速度,ai為第i個天體受到的其他所有天體萬有引力的合力產生的加速度。G為萬有引力常量,可以根據一下公式計算:
其中G0為初始值,T為最大迭代次數。
計算出了天體的加速度,則可以根據當前速度計算出下一步天體的運行速度以及天體下一步的位置。
這一步比較簡單與粒子群、蝙蝠等有速度的演算法一致。
可以看出萬有引力演算法的流程異常的簡單,與經典的粒子群差不多。萬有引力演算法也可以看做是一個優化改進版的粒子群,不過設計比較巧妙,引入的質量、加速度等概念,但實現仍然很簡單。萬有引力演算法的效果如何,在下一節將會進行實驗測試。
適應度函數 。
實驗一:
從圖像中可以看出,各個天體都在不停的運動,由於沒有貪心演算法(優於當前值才改變位置)的加入,所以個天體有可能運動到比原先位置更差的地方,而且其收斂速度也比較快。
從結果上看,似乎還不錯,受到最差值的影響均值也相對較大,演算法結果的穩定性不是太好。
直覺上感覺演算法有點問題。根據物理得來的直覺告訴我,這些天體會相互靠近,所以,它們不會集中到它們所構成的凸包之外, 凸實心物體的質心不會跑到該物體的外部 。做個試驗驗證一下,將測試函數的最優解設置到一個極端的位置。
實驗二 : 適應度函數
這次最優解位置在(90,90)處,該點有很大概率出現在初始天體所圍成的凸多邊形外。
從圖像中可以看出,在天體們還沒有到達最優位置附近(右下角的紅點)時,它們已經收斂於一個點,之後則很難再次向最優解靠經。看結果可以發現幾乎每一次實驗的結果都不太好,演算法果然有點問題,不過問題不大。
萬有引力出現這種現象可能有兩個原因: 1.演算法收斂的太快 ,還未對全局進行充分搜索之時就收斂到了一點,收斂到一點後無法再運到。 2.演算法沒有跳出局部最優的策略 ,萬有引力作用下的天體慢慢聚集到奇點,形成黑洞,無法從中逃離。
那接下來,對萬有引力演算法的改進方向也比較明確了:1.減緩其收斂速度,2增加跳出局部最優操作,使之逃離黑洞。
看看萬有引力常量G的函數圖像
將萬有引力常量的值修改為隨著迭代次數線性下降,從圖像中可以看出,效果還是比較明顯的,天體在不斷的運動,最後才收斂、聚集於一起。從實驗結果也可以看出,演算法相對穩定。結合圖像可以知道,改進後,演算法的收斂性下降,但全局搜索能力有較大的提升,演算法的結果不會很差但是精度較低。
將萬有引力常量的下降趨勢放緩為原來的1/4,從圖像中可以看出,演算法的收斂速度非常快,也得到了較好的結果,相比線性下降,演算法有著更好的精度,不足之處則是沒有跳出局部最優的操作,收斂過快也容易陷入局部最優。
不知道原文為什麼讓萬有引力常量G的如此快的降到0,明明降的更慢能有更好的全局搜索能力,但精度可能較差。猜測如果精度較差則在測試函數結果和曲線上比不贏對比的其他演算法,論文沒法發了。其使用的測試函數的最優解大多處於解空間的中心位置附近,即很少出現最優解在天體所圍成的凸多面體之外的情況,而實際問題中我們是無法預知最優解在個位置的。
接下來,將試著為萬有引力演算法加入一點跳出局部最優的操作。
實驗四 :改進,新增以下規則及操作
在實驗二的條件下
1 . 處於最優位置的天體保持自己的位置不動.
2 . 如果某一個天體的運動後的位置優於當前全局最優個體的位置則將當前的最優個體初始化到解空間的隨機位置.(將被自己幹掉的大哥流放)。
3 . 如果觸發了規則2,將所有的個體的以迭代次數重置為0,即計算G=G0*e^(-20t/T)中的t置為0,重新計算萬有引力常量,若未觸發條件2則t=t+1。
從圖像上看,演算法的全局搜索能力有大幅的增強,並且已經集中到了最優解的附近,而且由於加入了「流放」這一跳出局部最優的操作,可以看出,不斷的有新的個體出現在距最優位置較遠的位置。不過收斂速度有所下降,因此局部搜索能力有一定減弱。
看結果,好像沒有實驗三那麼好,但與實驗二相比,已經有了很大的提升,而且有了跳出局部最優的操作,結果也相對穩定。
上述的實驗僅僅是對直觀猜想的實現,如果想以此為改進點,還要對其進行大量的調優,相信會有不錯的結果。
萬有引力演算法根據萬有引力提出,結合了牛頓第二定律,可以說其操作步驟與真實的物理規律非常的貼切。不過就像前文說過,受物理現象啟發而來的優化演算法其性能是未知的,因為它們不具備智能,只有著規律,有規律就會存在弱點,就會有搜索盲區。宇宙那麼大,肯定存在沒有任何天體到達過的空間。
不過由於萬有引力演算法流程簡單,理解方便,其優化方案和能改進的地方相對較多。萬有引力演算法的收斂速度過快,導致其全局搜索能力較弱而局部搜索能力很強,容易陷入局部最優。根據其特點,我們可以降低其收斂速度或者增加跳出局部最優操作,來平衡演算法的各個性能。
參考文獻
Rashedi E , Nezamabadi-Pour H , Saryazdi S . GSA: A Gravitational Search Algorithm[J]. Information Sciences, 2009, 179(13):2232-2248. 提取碼:xhpa
以下指標純屬個人yy,僅供參考
目錄
上一篇 優化演算法筆記(十六)混合蛙跳演算法
下一篇 優化演算法筆記(十八)灰狼演算法
優化演算法matlab實現(十七)萬有引力演算法matlab實現
『伍』 簡述資料庫設計中物理設計階段的主要內容有哪些
1、需求分析:了解用戶的數據需求、處理需求、安全性及完整性要求;
2、概念設計:通過數據抽象,設計系統概念模型,一般為E-R模型;
3、邏輯結構設計:設計系統的模式和外模式,對於關系模型主要是基本表和視圖;
4、物理結構設計:設計數據的存儲結構和存取方法,如索引的設計;
5、系統實施:組織數據入庫、編制應用程序、試運行;
6、運行維護:系統投入運行,長期的維護工作。
『陸』 柯南《霧天狗殺人事件》里的物理演算法,有誰能解釋一下
霧天狗殺人事件的真相是人先被殺死然後將密室注滿水用船將人放在事先准備好的繩子上將水排干就形成了不支持物而上吊身亡。這裡面設計的物理知識有很多,有往密室注水是一個體積和時間的比例,體積=水流速度X時間X水流橫截面積,密室的體積=底面積X高,綜合就得出:速度V*時間T*截面積S=密室底面積S*高度H,時間T=(密室底面積S*高度H)/(速度V*截面積S);在將密室的水排干也需要考慮同一個問題。還有一個就是水浮力,浮力公式總結有四個,具體如下:(1)F浮=G – F 物理量 單位 F浮——浮力 N G ——物體的重力 N F ——物體浸沒液體中時彈簧測力計的讀數 N (2)F浮=G (提示:當物體處於漂浮或懸浮時) 物理量 單位 F浮——浮力 N G ——物體的重力 N (3)F浮=ρgV排 物理量 單位 F浮——浮力 N ρ ——密度 kg/m3 V排——物體排開的液體的體積 m3 g=9.8N/kg,粗略計算時取g=10N/kg (4)F浮=G排=m排g G排——物體排開的液體受到的重力 N m排——物體排開的液體的質量 kg。在乘船的時候需要考慮船能承受兩個人以上的重力。還有所用繩子的拉力,在剛開始的時候人泡在水中承受著水的浮力而水排干以後人將只受到繩子的拉力,所以繩子要能拉的起一個人重量。等等。。。。。生活中無處不存在著個各種物理知識。