十大數據挖掘演算法
Ⅰ 數據挖掘十大演算法-
整理里一晚上的數據挖掘演算法,其中主要引自wiki和一些論壇。發布到上作為知識共享,但是發現Latex的公式轉碼到網頁的時候出現了丟失,暫時沒找到解決方法,有空再回來填坑了。
——編者按
一、 C4.5
C4.5演算法是由Ross Quinlan開發的用於產生決策樹的演算法[1],該演算法是對Ross Quinlan之前開發的ID3演算法的一個擴展。C4.5演算法主要應用於統計分類中,主要是通過分析數據的信息熵建立和修剪決策樹。
1.1 決策樹的建立規則
在樹的每個節點處,C4.5選擇最有效地方式對樣本集進行分裂,分裂規則是分析所有屬性的歸一化的信息增益率,選擇其中增益率最高的屬性作為分裂依據,然後在各個分裂出的子集上進行遞歸操作。
依據屬性A對數據集D進行分類的信息熵可以定義如下:
劃分前後的信息增益可以表示為:
那麼,歸一化的信息增益率可以表示為:
1.2 決策樹的修剪方法
C4.5採用的剪枝方法是悲觀剪枝法(Pessimistic Error Pruning,PEP),根據樣本集計運算元樹與葉子的經驗錯誤率,在滿足替換標准時,使用葉子節點替換子樹。
不妨用K表示訓練數據集D中分類到某一個葉子節點的樣本數,其中其中錯誤分類的個數為J,由於用估計該節點的樣本錯誤率存在一定的樣本誤差,因此用表示修正後的樣本錯誤率。那麼,對於決策樹的一個子樹S而言,設其葉子數目為L(S),則子樹S的錯誤分類數為:
設數據集的樣本總數為Num,則標准錯誤可以表示為:
那麼,用表示新葉子的錯誤分類數,則選擇使用新葉子節點替換子樹S的判據可以表示為:
二、KNN
最近鄰域演算法(k-nearest neighbor classification, KNN)[2]是一種用於分類和回歸的非參數統計方法。KNN演算法採用向量空間模型來分類,主要思路是相同類別的案例彼此之間的相似度高,從而可以藉由計算未知樣本與已知類別案例之間的相似度,來實現分類目標。KNN是一種基於局部近似和的實例的學習方法,是目前最簡單的機器學習演算法之一。
在分類問題中,KNN的輸出是一個分類族群,它的對象的分類是由其鄰居的「多數表決」確定的,k個最近鄰居(k為正整數,通常較小)中最常見的分類決定了賦予該對象的類別。若k = 1,則該對象的類別直接由最近的一個節點賦予。在回歸問題中,KNN的輸出是其周圍k個鄰居的平均值。無論是分類還是回歸,衡量鄰居的權重都非常重要,目標是要使較近鄰居的權重比較遠鄰居的權重大,例如,一種常見的加權方案是給每個鄰居權重賦值為1/d,其中d是到鄰居的距離。這也就自然地導致了KNN演算法對於數據的局部結構過於敏感。
三、Naive Bayes
在機器學習的眾多分類模型中,應用最為廣泛的兩種分類模型是決策樹模型(Decision Tree Model)和樸素貝葉斯模型(Naive Bayesian Model,NBC)[3]。樸素貝葉斯模型發源於古典數學理論,有著堅實的數學基礎,以及穩定的分類效率。同時,NBC模型所需估計的參數很少,對缺失數據不太敏感,演算法也比較簡單。
在假設各個屬性相互獨立的條件下,NBC模型的分類公式可以簡單地表示為:
但是實際上問題模型的屬性之間往往是非獨立的,這給NBC模型的分類准確度帶來了一定影響。在屬性個數比較多或者屬性之間相關性較大時,NBC模型的分類效率比不上決策樹模型;而在屬性相關性較小時,NBC模型的性能最為良好。
四、CART
CART演算法(Classification And Regression Tree)[4]是一種二分遞歸的決策樹,把當前樣本劃分為兩個子樣本,使得生成的每個非葉子結點都有兩個分支,因此CART演算法生成的決策樹是結構簡潔的二叉樹。由於CART演算法構成的是一個二叉樹,它在每一步的決策時只能是「是」或者「否」,即使一個feature有多個取值,也是把數據分為兩部分。在CART演算法中主要分為兩個步驟:將樣本遞歸劃分進行建樹過程;用驗證數據進行剪枝。
五、K-means
k-平均演算法(k-means clustering)[5]是源於信號處理中的一種向量量化方法,現在則更多地作為一種聚類分析方法流行於數據挖掘領域。k-means的聚類目標是:把n個點(可以是樣本的一次觀察或一個實例)劃分到k個聚類中,使得每個點都屬於離他最近的均值(此即聚類中心)對應的聚類。
5.1 k-means的初始化方法
通常使用的初始化方法有Forgy和隨機劃分(Random Partition)方法。Forgy方法隨機地從數據集中選擇k個觀測作為初始的均值點;而隨機劃分方法則隨機地為每一觀測指定聚類,然後執行「更新」步驟,即計算隨機分配的各聚類的圖心,作為初始的均值點。Forgy方法易於使得初始均值點散開,隨機劃分方法則把均值點都放到靠近數據集中心的地方;隨機劃分方法一般更適用於k-調和均值和模糊k-均值演算法。對於期望-最大化(EM)演算法和標准k-means演算法,Forgy方法作為初始化方法的表現會更好一些。
5.2 k-means的標准演算法
k-means的標准演算法主要包括分配(Assignment)和更新(Update),在初始化得出k個均值點後,演算法將會在這兩個步驟中交替執行。
分配(Assignment):將每個觀測分配到聚類中,使得組內平方和達到最小。
更新(Update):對於上一步得到的每一個聚類,以聚類中觀測值的圖心,作為新的均值點。
六、Apriori
Apriori演算法[6]是一種最有影響的挖掘布爾關聯規則頻繁項集的演算法,其核心是基於兩階段頻集思想的遞推演算法。該關聯規則在分類上屬於單維、單層、布爾關聯規則。Apriori採用自底向上的處理方法,每次只擴展一個對象加入候選集,並且使用數據集對候選集進行檢驗,當不再產生匹配條件的擴展對象時,演算法終止。
Apriori的缺點在於生成候選集的過程中,演算法總是嘗試掃描整個數據集並盡可能多地添加擴展對象,導致計算效率較低;其本質上採用的是寬度優先的遍歷方式,理論上需要遍歷次才可以確定任意的最大子集S。
七、SVM
支持向量機(Support Vector Machine, SVM)[7]是在分類與回歸分析中分析數據的監督式學習模型與相關的學習演算法。給定一組訓練實例,每個訓練實例被標記為屬於兩個類別中的一個或另一個,SVM訓練演算法創建一個將新的實例分配給兩個類別之一的模型,使其成為非概率二元線性分類器。SVM模型是將實例表示為空間中的點,這樣映射就使得單獨類別的實例被盡可能寬的明顯的間隔分開。然後,將新的實例映射到同一空間,並基於它們落在間隔的哪一側來預測所屬類別。
除了進行線性分類之外,SVM還可以使用所謂的核技巧有效地進行非線性分類,將其輸入隱式映射到高維特徵空間中,即支持向量機在高維或無限維空間中構造超平面或超平面集合,用於分類、回歸或其他任務。直觀來說,分類邊界距離最近的訓練數據點越遠越好,因為這樣可以縮小分類器的泛化誤差。
八、EM
最大期望演算法(Expectation–Maximization Algorithm, EM)[7]是從概率模型中尋找參數最大似然估計的一種演算法。其中概率模型依賴於無法觀測的隱性變數。最大期望演算法經常用在機器學習和計算機視覺的數據聚類(Data Clustering)領域。最大期望演算法經過兩個步驟交替進行計算,第一步是計算期望(E),利用對隱藏變數的現有估計值,計算其最大似然估計值;第二步是最大化(M),最大化在E步上求得的最大似然值來計算參數的值。M步上找到的參數估計值被用於下一個E步計算中,這個過程不斷交替進行。
九、PageRank
PageRank演算法設計初衷是根據網站的外部鏈接和內部鏈接的數量和質量對網站的價值進行衡量。PageRank將每個到網頁的鏈接作為對該頁面的一次投票,被鏈接的越多,就意味著被其他網站投票越多。
演算法假設上網者將會不斷點網頁上的鏈接,當遇到了一個沒有任何鏈接出頁面的網頁,這時候上網者會隨機轉到另外的網頁開始瀏覽。設置在任意時刻,用戶到達某頁面後並繼續向後瀏覽的概率,該數值是根據上網者使用瀏覽器書簽的平均頻率估算而得。PageRank值可以表示為:
其中,是被研究的頁面集合,N表示頁面總數,是鏈接入頁面的集合,是從頁面鏈接處的集合。
PageRank演算法的主要缺點是的主要缺點是舊的頁面等級會比新頁面高。因為即使是非常好的新頁面也不會有很多外鏈,除非它是某個站點的子站點。
十、AdaBoost
AdaBoost方法[10]是一種迭代演算法,在每一輪中加入一個新的弱分類器,直到達到某個預定的足夠小的錯誤率。每一個訓練樣本都被賦予一個權重,表明它被某個分類器選入訓練集的概率。如果某個樣本點已經被准確地分類,那麼在構造下一個訓練集中,它被選中的概率就被降低;相反,如果某個樣本點沒有被准確地分類,那麼它的權重就得到提高。通過這樣的方式,AdaBoost方法能「聚焦於」那些較難分的樣本上。在具體實現上,最初令每個樣本的權重都相等,對於第k次迭代操作,我們就根據這些權重來選取樣本點,進而訓練分類器Ck。然後就根據這個分類器,來提高被它分錯的的樣本的權重,並降低被正確分類的樣本權重。然後,權重更新過的樣本集被用於訓練下一個分類器Ck[,並且如此迭代地進行下去。
AdaBoost方法的自適應在於:前一個分類器分錯的樣本會被用來訓練下一個分類器。AdaBoost方法對於雜訊數據和異常數據很敏感。但在一些問題中,AdaBoost方法相對於大多數其它學習演算法而言,不會很容易出現過擬合現象。AdaBoost方法中使用的分類器可能很弱(比如出現很大錯誤率),但只要它的分類效果比隨機好一點(比如兩類問題分類錯誤率略小於0.5),就能夠改善最終得到的模型。而錯誤率高於隨機分類器的弱分類器也是有用的,因為在最終得到的多個分類器的線性組合中,可以給它們賦予負系數,同樣也能提升分類效果。
引用
[1] Quinlan, J. R. C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, 1993.
[2] Altman, N. S. An introction to kernel and nearest-neighbor nonparametric regression. The American Statistician. 1992, 46 (3): 175–185. doi:10.1080/00031305.1992.10475879
[3] Webb, G. I.; Boughton, J.; Wang, Z. Not So Naive Bayes: Aggregating One-Dependence Estimators. Machine Learning (Springer). 2005, 58 (1): 5–24. doi:10.1007/s10994-005-4258-6
[4] decisiontrees.net Interactive Tutorial
[5] Hamerly, G. and Elkan, C. Alternatives to the k-means algorithm that find better clusterings (PDF). Proceedings of the eleventh international conference on Information and knowledge management (CIKM). 2002
[6] Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining association rules in large databases. Proceedings of the 20th International Conference on Very Large Data Bases, VLDB, pages 487-499, Santiago, Chile, September 1994.
[7] Cortes, C.; Vapnik, V. Support-vector networks. Machine Learning. 1995, 20 (3): 273–297. doi:10.1007/BF00994018
[8] Arthur Dempster, Nan Laird, and Donald Rubin. "Maximum likelihood from incomplete data via the EM algorithm". Journal of the Royal Statistical Society, Series B, 39 (1):1–38, 1977
[9] Susan Moskwa. PageRank Distribution Removed From WMT. [October 16, 2009]
[10] Freund, Yoav; Schapire, Robert E. A Decision-Theoretic Generalization of on-Line Learning and an Application to Boosting. 1995. CiteSeerX: 10.1.1.56.9855
Ⅱ 數據挖掘常用演算法有哪些
1、 樸素貝葉斯
樸素貝葉斯(NB)屬於生成式模型(即需要計算特徵與類的聯合概率分布),計算過程非常簡單,只是做了一堆計數。NB有一個條件獨立性假設,即在類已知的條件下,各個特徵之間的分布是獨立的。這樣樸素貝葉斯分類器的收斂速度將快於判別模型,如邏輯回歸,所以只需要較少的訓練數據即可。即使NB條件獨立假設不成立,NB分類器在實踐中仍然表現的很出色。它的主要缺點是它不能學習特徵間的相互作用,用mRMR中的R來講,就是特徵冗餘。
2、邏輯回歸(logistic regression)
邏輯回歸是一個分類方法,屬於判別式模型,有很多正則化模型的方法(L0,L1,L2),而且不必像在用樸素貝葉斯那樣擔心特徵是否相關。與決策樹與SVM相比,還會得到一個不錯的概率解釋,甚至可以輕松地利用新數據來更新模型(使用在線梯度下降演算法online gradient descent)。如果需要一個概率架構(比如,簡單地調節分類閾值,指明不確定性,或者是要獲得置信區間),或者希望以後將更多的訓練數據快速整合到模型中去,那麼可以使用它。
3、 線性回歸
線性回歸是用於回歸的,而不像Logistic回歸是用於分類,其基本思想是用梯度下降法對最小二乘法形式的誤差函數進行優化。
4、最近鄰演算法——KNN
KNN即最近鄰演算法,其主要過程為:計算訓練樣本和測試樣本中每個樣本點的距離(常見的距離度量有歐式距離,馬氏距離等);對上面所有的距離值進行排序;選前k個最小距離的樣本;根據這k個樣本的標簽進行投票,得到最後的分類類別;如何選擇一個最佳的K值,這取決於數據。
5、決策樹
決策樹中很重要的一點就是選擇一個屬性進行分枝,因此要注意一下信息增益的計算公式,並深入理解它。
6、SVM支持向量機
高准確率,為避免過擬合提供了很好的理論保證,而且就算數據在原特徵空間線性不可分,只要給個合適的核函數,它就能運行得很好。在動輒超高維的文本分類問題中特別受歡迎。可惜內存消耗大,難以解釋,運行和調參也有些煩人,而隨機森林卻剛好避開了這些缺點,比較實用。
Ⅲ 數據挖掘演算法有哪些
統計和可視化要想建立一個好的預言模型,你必須了解自己的數據。最基本的方法是計算各種統計變數(平均值、方差等)和察看數據的分布情況。你也可以用數據透視表察看多維數據。數據的種類可分為連續的,有一個用數字表示的值(比如銷售量)或離散的,分成一個個的類別(如紅、綠、藍)。離散數據可以進一步分為可排序的,數據間可以比較大小(如,高、中、低)和標稱的,不可排序(如郵政編碼)。圖形和可視化工具在數據准備階段尤其重要,它能讓你快速直觀的分析數據,而不是給你枯燥乏味的文本和數字。它不僅讓你看到整個森林,還允許你拉近每一棵樹來察看細節。在圖形模式下人們很容易找到數據中可能存在的模式、關系、異常等,直接看數字則很難。可視化工具的問題是模型可能有很多維或變數,但是我們只能在2維的屏幕或紙上展示它。比如,我們可能要看的是信用風險與年齡、性別、婚姻狀況、參加工作時間的關系。因此,可視化工具必須用比較巧妙的方法在兩維空間內展示n維空間的數據。雖然目前有了一些這樣的工具,但它們都要用戶「訓練」過他們的眼睛後才能理解圖中畫的到底是什麼東西。對於眼睛有色盲或空間感不強的人,在使用這些工具時可能會遇到困難。聚集(分群)聚集是把整個資料庫分成不同的群組。它的目的是要群與群之間差別很明顯,而同一個群之間的數據盡量相似。與分類不同(見後面的預測型數據挖掘),在開始聚集之前你不知道要把數據分成幾組,也不知道怎麼分(依照哪幾個變數)。因此在聚集之後要有一個對業務很熟悉的人來解釋這樣分群的意義。很多情況下一次聚集你得到的分群對你的業務來說可能並不好,這時你需要刪除或增加變數以影響分群的方式,經過幾次反復之後才能最終得到一個理想的結果。神經元網路和K-均值是比較常用的聚集演算法。不要把聚集與分類混淆起來。在分類之前,你已經知道要把數據分成哪幾類,每個類的性質是什麼,聚集則恰恰相反。關聯分析關聯分析是尋找資料庫中值的相關性。兩種常用的技術是關聯規則和序列模式。關聯規則是尋找在同一個事件中出現的不同項的相關性,比如在一次購買活動中所買不同商品的相關性。序列模式與此類似,他尋找的是事件之間時間上的相關性,如對股票漲跌的分析。關聯規則可記為A==>B,A稱為前提和左部(LHS),B稱為後續或右部(RHS)。如關聯規則「買錘子的人也會買釘子」,左部是「買錘子」,右部是「買釘子」。要計算包含某個特定項或幾個項的事務在資料庫中出現的概率只要在資料庫中直接統計即可。某一特定關聯(「錘子和釘子」)在資料庫中出現的頻率稱為支持度。比如在總共1000個事務中有15個事務同時包含了「錘子和釘子」,則此關聯的支持度為1.5%。非常低的支持度(比如1百萬個事務中只有一個)可能意味著此關聯不是很重要,或出現了錯誤數據(如,「男性和懷孕」)。要找到有意義的規則,我們還要考察規則中項及其組合出現的相對頻率。當已有A時,B發生的概率是多少?也即概率論中的條件概率。回到我們的例子,也就是問「當一個人已經買了錘子,那他有多大的可能也會買釘子?」這個條件概率在數據挖掘中也稱為可信度,計算方法是求百分比:(A與B同時出現的頻率)/(A出現的頻率)。讓我們用一個例子更詳細的解釋這些概念: 總交易筆數(事務數):1,000包含「錘子」:50包含「釘子」:80包含「鉗子」:20包含「錘子」和「釘子」:15包含「鉗子」和「釘子」:10包含「錘子」和「鉗子」:10包含「錘子」、「鉗子」和「釘子」:5 則可以計算出: 「錘子和釘子」的支持度=1.5%(15/1,000)「錘子、釘子和鉗子」的支持度=0.5%(5/1,000)「錘子==>釘子」的可信度=30%(15/50)「釘子==>錘子」的可信度=19%(15/80)「錘子和釘子==>鉗子」的可信度=33%(5/15)「鉗子==>錘子和釘子」的可信度=25%(5/20)
Ⅳ 數據挖掘十大經典演算法(1)——樸素貝葉斯(Naive Bayes)
在此推出一個演算法系列的科普文章。我們大家在平時埋頭工程類工作之餘,也可以抽身對一些常見演算法進行了解,這不僅可以幫助我們拓寬思路,從另一個維度加深對計算機技術領域的理解,做到觸類旁通,同時也可以讓我們搞清楚一些既熟悉又陌生的領域——比如數據挖掘、大數據、機器學習——的基本原理,揭開它們的神秘面紗,了解到其實很多看似高深的領域,其實背後依據的基礎和原理也並不復雜。而且,掌握各類演算法的特點、優劣和適用場景,是真正從事數據挖掘工作的重中之重。只有熟悉演算法,才可能對紛繁復雜的現實問題合理建模,達到最佳預期效果。
本系列文章的目的是力求用最干練而生動的講述方式,為大家講解由國際權威的學術組織the IEEE International Conference on Data Mining (ICDM) 於2006年12月評選出的數據挖掘領域的十大經典演算法。它們包括:
本文作為本系列的第一篇,在介紹具體演算法之前,先簡單為大家鋪墊幾個數據挖掘領域的常見概念:
在數據挖掘領域,按照演算法本身的行為模式和使用目的,主要可以分為分類(classification),聚類(clustering)和回歸(regression)幾種,其中:
打幾個不恰當的比方 :
另外,還有一個經常有人問起的問題,就是 數據挖掘 和 機器學習 這兩個概念的區別,這里一句話闡明我自己的認識:機器學習是基礎,數據挖掘是應用。機器學習研製出各種各樣的演算法,數據挖掘根據應用場景把這些演算法合理運用起來,目的是達到最好的挖掘效果。
當然,以上的簡單總結一定不夠准確和嚴謹,更多的是為了方便大家理解打的比方。如果大家有更精當的理解,歡迎補充和交流。
好了,鋪墊了這么多,現在終於進入正題!
作為本系列入門的第一篇,先為大家介紹一個容易理解又很有趣的演算法—— 樸素貝葉斯 。
先站好隊,樸素貝葉斯是一個典型的 有監督的分類演算法 。
光從名字也可以想到,要想了解樸素貝葉斯,先要從 貝葉斯定理 說起。
貝葉斯定理是我們高中時代學過的一條概率學基礎定理,它描述了條件概率的計算方式。不要怕已經把這些知識還給了體育老師,相信你一看公式就能想起來。
P(A|B)表示事件B已經發生的前提下,事件A發生的概率,叫做事件B發生下事件A的條件概率。其基本求解公式為:
其中,P(AB)表示A和B同時發生的概率,P(B)標識B事件本身的概率。
貝葉斯定理之所以有用,是因為我們在生活中經常遇到這種情況:我們可以很容易直接得出P(A|B),P(B|A)則很難直接得出,但我們更關心P(B|A)。
而貝葉斯定理就為我們打通從P(A|B)獲得P(B|A)的道路。
下面不加證明地直接給出貝葉斯定理:
有了貝葉斯定理這個基礎,下面來看看樸素貝葉斯演算法的基本思路。
你看,其思想就是這么的樸素。那麼,屬於每個分類的概率該怎麼計算呢?下面我們先祭出形式化語言!
那麼現在的關鍵就是如何計算第3步中的各個條件概率。我們可以這么做:
因為分母對於所有類別為常數,因為我們只要將分子最大化皆可。又因為各特徵屬性是條件獨立的,所以有:
如果你也跟我一樣,對形式化語言有嚴重生理反應,不要怕,直接跳過前面這一坨,我們通過一個鮮活的例子,用人類的語言再解釋一遍這個過程。
某個醫院早上收了六個門診病人,如下表。
現在又來了第七個病人,是一個打噴嚏的建築工人。請問他最有可能患有何種疾病?
本質上,這就是一個典型的分類問題, 症狀 和 職業 是特徵屬性, 疾病種類 是目標類別
根據 貝葉斯定理
可得
假定"打噴嚏"和"建築工人"這兩個特徵是獨立的,因此,上面的等式就變成了
這是可以計算的。
因此,這個打噴嚏的建築工人,有66%的概率是得了感冒。同理,可以計算這個病人患上過敏或腦震盪的概率。比較這幾個概率,就可以知道他最可能得什麼病。
接下來,我們再舉一個樸素貝葉斯演算法在實際中經常被使用的場景的例子—— 文本分類器 ,通常會用來識別垃圾郵件。
首先,我們可以把一封郵件的內容抽象為由若干關鍵片語成的集合,這樣是否包含每種關鍵詞就成了一封郵件的特徵值,而目標類別就是 屬於垃圾郵件 或 不屬於垃圾郵件
假設每個關鍵詞在一封郵件里出現與否的概率相互之間是獨立的,那麼只要我們有若干已經標記為垃圾郵件和非垃圾郵件的樣本作為訓練集,那麼就可以得出,在全部垃圾郵件(記為Trash)出現某個關鍵詞Wi的概率,即 P(Wi|Trash)
而我們最重要回答的問題是,給定一封郵件內容M,它屬於垃圾郵件的概率是多大,即 P(Trash|M)
根據貝葉斯定理,有
我們先來看分子:
P(M|Trash) 可以理解為在垃圾郵件這個范疇中遇見郵件M的概率,而一封郵件M是由若干單詞Wi獨立匯聚組成的,只要我們所掌握的單詞樣本足夠多,因此就可以得到
這些值我們之前已經可以得到了。
再來看分子里的另一部分 P(Trash) ,這個值也就是垃圾郵件的總體概率,這個值顯然很容易得到,用訓練集中垃圾郵件數除以總數即可。
而對於分母來說,我們雖然也可以去計算它,但實際上已經沒有必要了,因為我們要比較的 P(Trash|M) 和 P(non-Trash|M) 的分母都是一樣的,因此只需要比較分子大小即可。
這樣一來,我們就可以通過簡單的計算,比較郵件M屬於垃圾還是非垃圾二者誰的概率更大了。
樸素貝葉斯的英文叫做 Naive Bayes ,直譯過來其實是 天真的貝葉斯 ,那麼他到底天真在哪了呢?
這主要是因為樸素貝葉斯的基本假設是所有特徵值之間都是相互獨立的,這才使得概率直接相乘這種簡單計算方式得以實現。然而在現實生活中,各個特徵值之間往往存在一些關聯,比如上面的例子,一篇文章中不同單詞之間一定是有關聯的,比如有些詞總是容易同時出現。
因此,在經典樸素貝葉斯的基礎上,還有更為靈活的建模方式—— 貝葉斯網路(Bayesian Belief Networks, BBN) ,可以單獨指定特徵值之間的是否獨立。這里就不展開了,有興趣的同學們可以做進一步了解。
最後我們來對這個經典演算法做個點評:
優點:
缺點:
好了,對於 樸素貝葉斯 的介紹就到這里,不知道各位看完之後是否會對數據挖掘這個領域產生了一點興趣了呢?
Ⅳ 數據挖掘十大經典演算法之樸素貝葉斯
樸素貝葉斯,它是一種簡單但極為強大的預測建模演算法。之所以稱為樸素貝葉斯,**是因為它假設每個輸入變數是獨立的。**這個假設很硬,現實生活中根本不滿足,但是這項技術對於絕大部分的復雜問題仍然非常有效。
貝葉斯原理、貝葉斯分類和樸素貝葉斯這三者之間是有區別的。
貝葉斯原理是最大的概念,它解決了概率論中「逆向概率」的問題,在這個理論基礎上,人們設計出了貝葉斯分類器,樸素貝葉斯分類是貝葉斯分類器中的一種,也是最簡單,最常用的分類器。樸素貝葉斯之所以樸素是因為它假設屬性是相互獨立的,因此對實際情況有所約束,**如果屬性之間存在關聯,分類准確率會降低。**不過好在對於大部分情況下,樸素貝葉斯的分類效果都不錯。
樸素貝葉斯分類器依靠精確的自然概率模型,在有監督學習的樣本集中能獲取得非常好的分類效果。在許多實際應用中,樸素貝葉斯模型參數估計使用最大似然估計方法,換而言之樸素貝葉斯模型能工作並沒有用到貝葉斯概率或者任何貝葉斯模型。
樸素貝葉斯分類 常用於文本分類 ,尤其是對於英文等語言來說,分類效果很好。它常用於垃圾文本過濾、情感預測、推薦系統等。
1、 需要知道先驗概率
先驗概率是計算後驗概率的基礎。在傳統的概率理論中,先驗概率可以由大量的重復實驗所獲得的各類樣本出現的頻率來近似獲得,其基礎是「大數定律」,這一思想稱為「頻率主義」。而在稱為「貝葉斯主義」的數理統計學派中,他們認為時間是單向的,許多事件的發生不具有可重復性,因此先驗概率只能根據對置信度的主觀判定來給出,也可以說由「信仰」來確定。
2、按照獲得的信息對先驗概率進行修正
在沒有獲得任何信息的時候,如果要進行分類判別,只能依據各類存在的先驗概率,將樣本劃分到先驗概率大的一類中。而在獲得了更多關於樣本特徵的信息後,可以依照貝葉斯公式對先驗概率進行修正,得到後驗概率,提高分類決策的准確性和置信度。
3、分類決策存在錯誤率
由於貝葉斯分類是在樣本取得某特徵值時對它屬於各類的概率進行推測,並無法獲得樣本真實的類別歸屬情況,所以分類決策一定存在錯誤率,即使錯誤率很低,分類錯誤的情況也可能發生。
第一階段:准備階段
在這個階段我們需要確定特徵屬性,同時明確預測值是什麼。並對每個特徵屬性進行適當劃分,然後由人工對一部分數據進行分類,形成訓練樣本。
第二階段:訓練階段
這個階段就是生成分類器,主要工作是 計算每個類別在訓練樣本中的出現頻率 及 每個特徵屬性劃分對每個類別的條件概率。
第三階段:應用階段
這個階段是使用分類器對新數據進行分類。
優點:
(1)樸素貝葉斯模型發源於古典數學理論,有穩定的分類效率。
(2)對小規模的數據表現很好,能個處理多分類任務,適合增量式訓練,尤其是數據量超出內存時,我們可以一批批的去增量訓練。
(3)對缺失數據不太敏感,演算法也比較簡單,常用於文本分類。
缺點:
(1)理論上,樸素貝葉斯模型與其他分類方法相比具有最小的誤差率。但是實際上並非總是如此,這是因為樸素貝葉斯模型給定輸出類別的情況下,假設屬性之間相互獨立,這個假設在實際應用中往往是不成立的,在屬性個數比較多或者屬性之間相關性較大時,分類效果不好。而在屬性相關性較小時,樸素貝葉斯性能最為良好。對於這一點,有半樸素貝葉斯之類的演算法通過考慮部分關聯性適度改進。
(2)需要知道先驗概率,且先驗概率很多時候取決於假設,假設的模型可以有很多種,因此在某些時候會由於假設的先驗模型的原因導致預測效果不佳。
(3)由於我們是通過先驗和數據來決定後驗的概率從而決定分類,所以分類決策存在一定的錯誤率。
(4)對輸入數據的表達形式很敏感。
參考:
https://blog.csdn.net/qiu__liao/article/details/90671932
https://blog.csdn.net/u011067360/article/details/24368085
Ⅵ 數據挖掘演算法有哪些
問題一:常用的數據挖掘演算法有哪幾類? 10分 有十大經典演算法: 我是看譚磊的那本書學的。。。
下面是網站給出的答案:
1. C4.5
C4.5演算法是機器學習演算法中的一種分類決策樹演算法,其核心演算法是ID3演算法. C4.5演算法繼承了ID3演算法的優點,並在以下幾方面對ID3演算法進行了改進:
1) 用信息增益率來選擇屬性,克服了用信息增益選擇屬性時偏向選擇取值多的屬性的不足;
2) 在樹構造過程中進行剪枝;
3) 能夠完成對連續屬性的離散化處理;
4) 能夠對不完整數據進行處理。
C4.5演算法有如下優點:產生的分類規則易於理解,准確率較高。其缺點是:在構造樹的過程中,需要對數據集進行多次的順序掃描和排序,因而導致演算法的低效。
2. The k-means algorithm 即K-Means演算法
k-means algorithm演算法是一個聚類演算法,把n的對象根據他們的屬性分為k個分割,k >
問題二:數據挖掘中的預測演算法有哪些 數據挖掘(六):預測
blog.csdn/...977837
問題三:用於數據挖掘的分類演算法有哪些,各有何優劣 樸素貝葉斯(Naive Bayes, NB)
超級簡單,就像做一些數數的工作。如果條件獨立假設成立的話,NB將比鑒別模型(如Logistic回歸)收斂的更快,所以你只需要少量的訓練數據。即使條件獨立假設不成立,NB在實際中仍然表現出驚人的好。如果你想做類似半監督學習,或者是既要模型簡單又要性能好,NB值得嘗試。
Logistic回歸(Logistic Regression, LR)
LR有很多方法來對模型正則化。比起NB的條件獨立性假設,LR不需要考慮樣本是否是相關的。與決策樹與支持向量機(SVM)不同,NB有很好的概率解釋,且很容易利用新的訓練數據來更新模型(使用在線梯度下降法)。如果你想要一些概率信息(如,為了更容易的調整分類閾值,得到分類的不確定性,得到置信區間),或者希望將來有更多數據時能方便的更新改進模型,LR是值得使用的。
決策樹(Decision Tree, DT)
DT容易理解與解釋(對某些人而言――不確定我是否也在他們其中)。DT是非參數的,所以你不需要擔心野點(或離群點)和數據是否線性可分的問題(例如,DT可以輕松的處理這種情況:屬於A類的樣本的特徵x取值往往非常小或者非常大,而屬於B類的樣本的特徵轎伍x取值在中間范圍)。DT的主要缺點是容易過擬合,這也正是隨機森林(Random Forest, RF)(或者Boosted樹)等集成學習演算法被提出來的原因。此外,RF在很多分類問題中經常表現得最好(我個人相信一般比SVM稍好),且速度快可擴展,也不像SVM那樣需要調整大量的參數,所以最近RF是一個非常流行的演算法。
支持向量機(Support Vector Machine, SVM)
很高的分類正確率,對過擬合有很好的理論保證,選取合適的核函數,面對特徵線性不可分的問題也可以表現得很好。SVM在維數通常很高的文本分類中非常的流行。由於較大的內存需求和搏帆瞎繁瑣的調參,我認為RF已經開始威脅其地位了。
回到LR與DT的問題(我更傾向是LR與RF的問題),做個簡單的總結:兩種方法都很快且可擴展。在正確率方面,RF比LR更優。但是LR可以在線更新且提供有用的概率信息。鑒於你在Square(不確定推斷科學家是什麼,應該不是有趣的化身),可能從事欺詐檢測:如果你想快速的調整閾值來改變假陽性率與假陰性率,分類結果中包含概率信息將很有幫助。無論你選擇什麼演算法,如果你的各類樣本數量是不基空均衡的(在欺詐檢測中經常發生),你需要重新采樣各類數據或者調整你的誤差度量方法來使各類更均衡。
問題四:數據挖掘與演算法是什麼關系? data mining:數據挖掘一般是指從大量的數據中自動搜索隱藏於其中的有著特殊關系性(屬於Association rule learning)的信息的過程。reference:數據挖掘2.聚類和分類:關於這些,我相信再好的演算法,都會有一定的准確度,我沒有說這些東西不重要。3.如果你的數據量足夠大,舉個例子說明吧,數據挖掘是這樣做的,你要判斷什麼樣的蘋果是甜的,應該這樣做,去超市買蘋果,總結甜蘋果的特徵 A B ,第二次你也去買蘋果,就選具備這些特徵值的。存的的問題有可能買到的蘋果還不是甜的,可能原因是要同時包含特徵C。但是如果你數據量足夠大,足夠大,你要買的蘋果直接能夠找到,一模一樣的蘋果,是不是甜的,都已經知道啦,直接取出來不就好了嗎?前提是數據你想要什麼有什麼。@黃宇恆@肖智博@葛少華@余天升
問題五:數據挖掘的方法有哪些? 利用數據挖掘進行數據分析常用的方法主要有分類、回歸分析、聚類、關聯規則、特徵、變化和偏差分析、Web頁挖掘等, 它們分別從不同的角度對數據進行挖掘。1、分類分類是找出資料庫中一組數據對象的共同特點並按照分類模式將其劃分為不同的類,其目的是通過分類模型,將資料庫中的數據項映射到某個給定的類別。它可以應用到客戶的分類、客戶的屬性和特徵分析、客戶滿意度分析、客戶的購買趨勢預測等,如一個汽車零售商將客戶按照對汽車的喜好劃分成不同的類,這樣營銷人員就可以將新型汽車的廣告手冊直接郵寄到有這種喜好的客戶手中,從而大大增加了商業機會。2、回歸分析回歸分析方法反映的是事務資料庫中屬性值在時間上的特徵,產生一個將數據項映射到一個實值預測變數的函數,發現變數或屬性間的依賴關系,其主要研究問題包括數據序列的趨勢特徵、數據序列的預測以及數據間的相關關系等。它可以應用到市場營銷的各個方面,如客戶尋求、保持和預防客戶流失活動、產品生命周期分析、銷售趨勢預測及有針對性的促銷活動等。3、聚類聚類分析是把一組數據按照相似性和差異性分為幾個類別,其目的是使得屬於同一類別的數據間的相似性盡可能大,不同類別中的數據間的相似性盡可能小。它可以應用到客戶群體的分丹、客戶背景分析、客戶購買趨勢預測、市場的細分等。4、關聯規則關聯規則是描述資料庫中數據項之間所存在的關系的規則,即根據一個事務中某些項的出現可導出另一些項在同一事務中也出現,即隱藏在數據間的關聯或相互關系。在客戶關系管理中,通過對企業的客戶資料庫里的大量數據進行挖掘,可以從大量的記錄中發現有趣的關聯關系,找出影響市場營銷效果的關鍵因素,為產品定位、定價與定製客戶群,客戶尋求、細分與保持,市場營銷與推銷,營銷風險評估和詐騙預測等決策支持提供參考依據。5、特徵特徵分析是從資料庫中的一組數據中提取出關於這些數據的特徵式,這些特徵式表達了該數據集的總體特徵。如營銷人員通過對客戶流失因素的特徵提取,可以得到導致客戶流失的一系列原因和主要特徵,利用這些特徵可以有效地預防客戶的流失。6、變化和偏差分析偏差包括很大一類潛在有趣的知識,如分類中的反常實例,模式的例外,觀察結果對期望的偏差等,其目的是尋找觀察結果與參照量之間有意義的差別。在企業危機管理及其預警中,管理者更感興趣的是那些意外規則。意外規則的挖掘可以應用到各種異常信息的發現、分析、識別、評價和預警等方面。7、Web頁挖掘隨著Internet的迅速發展及Web 的全球普及, 使得Web上的信息量無比豐富,通過對Web的挖掘,可以利用Web 的海量數據進行分析,收集政治、經濟、政策、科技、金融、各種市場、競爭對手、供求信息、客戶等有關的信息,集中精力分析和處理那些對企業有重大或潛在重大影響的外部環境信息和內部經營信息,並根據分析結果找出企業管理過程中出現的各種問題和可能引起危機的先兆,對這些信息進行分析和處理,以便識別、分析、評價和管理危機。
問題六:數據挖掘中常見的分類方法有哪些 判別分析、規則歸納、決策樹、神經網路、K最近鄰、基於案例的推理、遺傳演算法等等挺多的,這個問題范圍太大了,雲速數據挖掘分類挺多。
問題七:數據挖掘的方法有哪些 利用數據挖掘進行數據分析常用的方法主要有分類、回歸分析、聚類、關聯規則、特徵、變化和偏差分析、Web頁挖掘等, 它們分別從不同的角度對數據進行挖掘。
1、分類
分類是找出資料庫中一組數據對象的共同特點並按照分類模式將其劃分為不同的類,其目的是通過分類模型,將資料庫中的數據項映射到某個給定的類別。它可以應用到客戶的分類、客戶的屬性和特徵分析、客戶滿意度分析、客戶的購買趨勢預測等,如一個汽車零售商將客戶按照對汽車的喜好劃分成不同的類,這樣營銷人員就可以將新型汽車的廣告手冊直接郵寄到有這種喜好的客戶手中,從而大大增加了商業機會。
2、回歸分析
回歸分析方法反映的是事務資料庫中屬性值在時間上的特徵,產生一個將數據項映射到一個實值預測變數的函數,發現變數或屬性間的依賴關系,其主要研究問題包括數據序列的趨勢特徵、數據序列的預測以及數據間的相關關系等。它可以應用到市場營銷的各個方面,如客戶尋求、保持和預防客戶流失活動、產品生命周期分析、銷售趨勢預測及有針對性的促銷活動等。
3、聚類
聚類分析是把一組數據按照相似性和差異性分為幾個類別,其目的是使得屬於同一類別的數據間的相似性盡可能大,不同類別中的數據間的相似性盡可能小。它可以應用到客戶群體的分類、客戶背景分析、客戶購買趨勢預測、市場的細分等。
4、關聯規則
關聯規則是描述資料庫中數據項之間所存在的關系的規則,即根據一個事務中某些項的出現可導出另一些項在同一事務中也出現,即隱藏在數據間的關聯或相互關系。在客戶關系管理中,通過對企業的客戶資料庫里的大量數據進行挖掘,可以從大量的記錄中發現有趣的關聯關系,找出影響市場營銷效果的關鍵因素,為產品定位、定價與定製客戶群,客戶尋求、細分與保持,市場營銷與推銷,營銷風險評估和詐騙預測等決策支持提供參考依據。
5、特徵
特徵分析是從資料庫中的一組數據中提取出關於這些數據的特徵式,這些特徵式表達了該數據集的總體特徵。如營銷人員通過對客戶流失因素的特徵提取,可以得到導致客戶流失的一系列原因和主要特徵,利用這些特徵可以有效地預防客戶的流失。
6、變化和偏差分析
偏差包括很大一類潛在有趣的知識,如分類中的反常實例,模式的例外,觀察結果對期望的偏差等,其目的是尋找觀察結果與參照量之間有意義的差別。在企業危機管理及其預警中,管理者更感興趣的是那些意外規則。意外規則的挖掘可以應用到各種異常信息的發現、分析、識別、評價和預警等方面。
7、Web頁挖掘
隨著Internet的迅速發展及Web 的全球普及, 使得Web上的信息量無比豐富,通過對Web的挖掘,可以利用Web 的海量數據進行分析,收集政治、經濟、政策、科技、金融、各種市場、競爭對手、供求信息、客戶等有關的信息,集中精力分析和處理那些對企業有重大或潛在重大影響的外部環境信息和內部經營信息,並根據分析結果找出企業管理過程中出現的各種問題和可能引起危機的先兆,對這些信息進行分析和處理,以便識別、分析、評價和管理危機。
問題八:用於數據挖掘的分類演算法有哪些,各有何 數據挖掘可以看看【雲速數據挖掘】,全中文界面,只要設置好挖掘的熟悉,什麼信息都能挖掘到
問題九:大數據挖掘常用的方法有哪些 在大數據時代,數據挖掘是最關鍵的工作。大數據的挖掘是從海量、不完全的、有雜訊的、模糊的、隨機的大型資料庫中發現隱含在其中有價值的、潛在有用的信息和知識的過程,也是一種決策支持過程。其主要基於人工智慧,機器學習,模式學習,統計學等。通過對大數據高度自動化地分析,做出歸納性的推理,從中挖掘出潛在的模式,可以幫助企業、商家、用戶調整市場政策、減少風險、理性面對市場,並做出正確的決策。目前,在很多領域尤其是在商業領域如銀行、電信、電商等,數據挖掘可以解決很多問題,包括市場營銷策略制定、背景分析、企業管理危機等。大數據的挖掘常用的方法有分類、回歸分析、聚類、關聯規則、神經網路方法、Web 數據挖掘等。這些方法從不同的角度對數據進行挖掘。
(1)分類。分類是找出資料庫中的一組數據對象的共同特點並按照分類模式將其劃分為不同的類,其目的是通過分類模型,將資料庫中的數據項映射到摸個給定的類別中。可以應用到涉及到應用分類、趨勢預測中,如淘寶商鋪將用戶在一段時間內的購買情況劃分成不同的類,根據情況向用戶推薦關聯類的商品,從而增加商鋪的銷售量。
(2)回歸分析。回歸分析反映了資料庫中數據的屬性值的特性,通過函數表達數據映射的關系來發現屬性值之間的依賴關系。它可以應用到對數據序列的預測及相關關系的研究中去。在市場營銷中,回歸分析可以被應用到各個方面。如通過對本季度銷售的回歸分析,對下一季度的銷售趨勢作出預測並做出針對性的營銷改變。
(3)聚類。聚類類似於分類,但與分類的目的不同,是針對數據的相似性和差異性將一組數據分為幾個類別。屬於同一類別的數據間的相似性很大,但不同類別之間數據的相似性很小,跨類的數據關聯性很低。
(4)關聯規則。關聯規則是隱藏在數據項之間的關聯或相互關系,即可以根據一個數據項的出現推導出其他數據項的出現。關聯規則的挖掘過程主要包括兩個階段:第一階段為從海量原始數據中找出所有的高頻項目組;第二極端為從這些高頻項目組產生關聯規則。關聯規則挖掘技術已經被廣泛應用於金融行業企業中用以預測客戶的需求,各銀行在自己的ATM 機上通過捆綁客戶可能感興趣的信息供用戶了解並獲取相應信息來改善自身的營銷。
(5)神經網路方法。神經網路作為一種先進的人工智慧技術,因其自身自行處理、分布存儲和高度容錯等特性非常適合處理非線性的以及那些以模糊、不完整、不嚴密的知識或數據為特徵的處理問題,它的這一特點十分適合解決數據挖掘的問題。典型的神經網路模型主要分為三大類:第一類是以用於分類預測和模式識別的前饋式神經網路模型,其主要代表為函數型網路、感知機;第二類是用於聯想記憶和優化演算法的反饋式神經網路模型,以Hopfield 的離散模型和連續模型為代表。第三類是用於聚類的自組織映射方法,以ART 模型為代表。雖然神經網路有多種模型及演算法,但在特定領域的數據挖掘中使用何種模型及演算法並沒有統一的規則,而且人們很難理解網路的學習及決策過程。
(6)Web數據挖掘。Web數據挖掘是一項綜合性技術,指Web 從文檔結構和使用的 *** C 中發現隱含的模式P,如果將C看做是輸入,P 看做是輸出,那麼Web 挖掘過程就可以看做是從輸入到輸出的一個映射過程。
當前越來越多的Web 數據都是以數據流的形式出現的,因此對Web 數據流挖掘就具有很重要的意義。目前常用的Web數據挖掘演算法有:PageRank演算法,HITS演算法以及LOGSOM 演算法。這三種演算法提到的用戶都是籠統的用戶,並沒有區分用戶的個體。目前Web 數據挖掘面臨著一些問題,包括:用戶的分類問題、網站內容時效性問題,用戶在頁面......>>
Ⅶ 數據挖掘十大經典演算法之EM
EM(Expectation-Maximum)演算法也稱期望最大化演算法,它是最常見的隱變數估計方法,在機器學習中有極為廣泛的用途,例如常被用來學習高斯混合模型(Gaussian mixture model,簡稱GMM)的參數;隱式馬爾科夫演算法(HMM)、LDA主題模型的變分推斷等等。
EM演算法是一種迭代優化策略,由於它的計算方法中每一次迭代都分兩步,其中一個為期望步(E步),另一個為極大步(M步),一輪輪迭代更新隱含數據和模型分布參數,直到收斂,即得到我們需要的模型參數。
1. EM演算法推導過程
補充知識:Jensen不等式:
如果f是凸函數,函數的期望 大於等於 期望的函數。當且僅當下式中X是常量時,該式取等號。(應用於凹函數時,不等號方向相反)
2. EM演算法流程
3. EM演算法的其他問題
上面介紹的傳統EM演算法對初始值敏感,聚類結果隨不同的初始值而波動較大。總的來說,EM演算法收斂的優劣很大程度上取決於其初始參數。
EM演算法可以保證收斂到一個穩定點,即EM演算法是一定收斂的。
EM演算法可以保證收斂到一個穩定點,但是卻不能保證收斂到全局的極大值點,因此它是局部最優的演算法,當然,如果我們的優化目標是凸的,則EM演算法可以保證收斂到全局最大值,這點和梯度下降法這樣的迭代演算法相同。
EM演算法的簡單實例: https://zhuanlan.hu.com/p/40991784
參考:
https://zhuanlan.hu.com/p/40991784
https://blog.csdn.net/u011067360/article/details/24368085
Ⅷ 大數據挖掘常用的方法有哪些
1、分類。分類是找出資料庫中一組數據對象的共同特點並按照分類模式將其劃分為不同的類,其目的是通過分類模型,將資料庫中的數據項映射到某個給定的類別。
它可以應用到客戶的分類、客戶的屬性和特徵分析、客戶滿意度分析、客戶的購買趨勢預測等,如一個汽車零售商將客戶按照對汽車的喜好劃分成不同的類,這樣營銷人員就可以將新型汽車的廣告手冊直接郵寄到有這種喜好的客戶手中,從而大大增加了商業機會。
2、回歸分析。回歸分析方法反映的是事務資料庫中屬性值在時間上的特徵,產生一個將數據項映射到一個實值預測變數的函數,發現變數或屬性間的依賴關系,其主要研究問題包括數據序列的趨勢特徵、數據序列的預測以及數據間的相關關系等。
它可以應用到市場營銷的各個方面,如客戶尋求、保持和預防客戶流失活動、產品生命周期分析、銷售趨勢預測及有針對性的促銷活動等。
3、聚類。聚類分析是把一組數據按照相似性和差異性分為幾個類別,其目的是使得屬於同一類別的數據間的相似性盡可能大,不同類別中的數據間的相似性盡可能小。
它可以應用到客戶群體的分類、客戶背景分析、客戶購買趨勢預測、市場的細分等。
4、關聯規則。關聯規則是描述資料庫中數據項之間所存在的關系的規則,即根據一個事務中某些項的出現可導出另一些項在同一事務中也出現,即隱藏在數據間的關聯或相互關系。
在客戶關系管理中,通過對企業的客戶資料庫里的大量數據進行挖掘,可以從大量的記錄中發現有趣的關聯關系,找出影響市場營銷效果的關鍵因素,為產品定位、定價與定製客戶群,客戶尋求、細分與保持,市場營銷與推銷,營銷風險評估和詐騙預測等決策支持提供參考依據。
5、特徵。特徵分析是從資料庫中的一組數據中提取出關於這些數據的特徵式,這些特徵式表達了該數據集的總體特徵。如營銷人員通過對客戶流失因素的特徵提取,可以得到導致客戶流失的一系列原因和主要特徵,利用這些特徵可以有效地預防客戶的流失。
6、變化和偏差分析。偏差包括很大一類潛在有趣的知識,如分類中的反常實例,模式的例外,觀察結果對期望的偏差等,其目的是尋找觀察結果與參照量之間有意義的差別。在企業危機管理及其預警中,管理者更感興趣的是那些意外規則。意外規則的挖掘可以應用到各種異常信息的發現、分析、識別、評價和預警等方面。
Ⅸ 常用的數據挖掘演算法有哪幾類
常用的數據挖掘演算法分為以下幾類:神經網路,遺傳演算法,回歸演算法,聚類分析演算法,貝耶斯演算法。
目前已經進入大數據的時代,所以數據挖掘和大數據分析的就業前景非常好,學好大數據分析和數據挖掘可以在各個領域中發揮自己的價值;同時,大數據分析並不是一蹴而就的事情,而是需要你日積月累的數據處理經驗,不是會被輕易替代的。一家公司的各項工作,基本上都都用數據體現出來,一位高級的數據分析師職位通常是數據職能架構中領航者,擁有較高的分析和思辨能力,對於業務的理解到位,並且深度知曉公司的管理和商業行為,他可以負責一個子產品或模塊級別的項目,帶領團隊來全面解決問題,把控手下數據分析師的工作質量。
想要了解更多有關數據挖掘演算法的信息,可以了解一下CDA數據分析師的課程。課程教你學企業需要的敏捷演算法建模能力,可以學到前沿且實用的技術,挖掘數據的魅力;教你用可落地、易操作的數據科學思維和技術模板構建出優秀模型,只教實用干貨,以專精技術能力提升業務效果與效率。點擊預約免費試聽課。
Ⅹ 數據挖掘演算法有哪些
以下主要是常見的10種數據挖掘的演算法,數據挖掘分為:分類(Logistic回歸模型、神經網路、支持向量機等)、關聯分析、聚類分析、孤立點分析。每一大類下都有好幾種演算法,這個具體可以參考數據挖掘概論這本書(英文最新版)