當前位置:首頁 » 操作系統 » 決策樹演算法id3

決策樹演算法id3

發布時間: 2023-07-24 04:43:04

㈠ 決策樹演算法的典型演算法

決策樹的典型演算法有ID3,C4.5,CART等。
國際權威的學術組織,數據挖掘國際會議ICDM (the IEEE International Conference on Data Mining)在2006年12月評選出了數據挖掘領域的十大經典演算法中,C4.5演算法排名第一。C4.5演算法是機器學習演算法中的一種分類決策樹演算法,其核心演算法是ID3演算法。C4.5演算法產生的分類規則易於理解,准確率較高。不過在構造樹的過程中,需要對數據集進行多次的順序掃描和排序,在實際應用中因而會導致演算法的低效。
決策樹演算法的優點如下:
(1)分類精度高;
(2)生成的模式簡單;
(3)對雜訊數據有很好的健壯性。
因而是目前應用最為廣泛的歸納推理演算法之一,在數據挖掘中受到研究者的廣泛關注。

㈡ id3演算法是什麼

ID3演算法是一種貪心演算法,用來構造決策樹。ID3演算法起源於概念學習系統(CLS),以信息熵的下降速度為選取測試屬性的標准,即在每個節點選取還尚未被用來劃分的具有最高信息增益的屬性作為劃分標准,然後繼續這個過程,直到生成的決策樹能完美分類訓練樣例。

ID3演算法的背景

ID3演算法最早是由羅斯昆(J. Ross Quinlan)於1975年在悉尼大學提出的一種分類預測演算法,演算法的核心是「信息熵」。ID3演算法通過計算每個屬性的信息增益,認為信息增益高的是好屬性,每次劃分選取信息增益最高的屬性為劃分標准,重復這個過程,直至生成一個能完美分類訓練樣例的決策樹。

㈢ 決策樹演算法

決策樹演算法的演算法理論和應用場景

演算法理論:

我了解的決策樹演算法,主要有三種,最早期的ID3,再到後來的C4.5和CART這三種演算法。

這三種演算法的大致框架近似。

決策樹的學習過程

1.特徵選擇

在訓練數據中 眾多X中選擇一個特徵作為當前節點分裂的標准。如何選擇特徵有著很多不同量化評估標准,從而衍生出不同的決策樹演算法。

2.決策樹生成

根據選擇的特徵評估標准,從上至下遞歸生成子節點,直到數據集不可分或者最小節點滿足閾值,此時決策樹停止生長。

3.剪枝

決策樹極其容易過擬合,一般需要通過剪枝,縮小樹結構規模、緩解過擬合。剪枝技術有前剪枝和後剪枝兩種。

有些演算法用剪枝過程,有些沒有,如ID3。

預剪枝:對每個結點劃分前先進行估計,若當前結點的劃分不能帶來決策樹的泛化性能的提升,則停止劃分,並標記為葉結點。

後剪枝:現從訓練集生成一棵完整的決策樹,然後自底向上對非葉子結點進行考察,若該結點對應的子樹用葉結點能帶來決策樹泛化性能的提升,則將該子樹替換為葉結點。

但不管是預剪枝還是後剪枝都是用驗證集的數據進行評估。

ID3演算法是最早成型的決策樹演算法。ID3的演算法核心是在決策樹各個節點上應用信息增益准則來選擇特徵,遞歸構建決策樹。缺點是,在選擇分裂變數時容易選擇分類多的特徵,如ID值【值越多、分叉越多,子節點的不純度就越小,信息增益就越大】。

ID3之所以無法 處理缺失值、無法處理連續值、不剪紙等情況,主要是當時的重點並不是這些。

C4.5演算法與ID3近似,只是分裂標准從 信息增益 轉變成  信息增益率。可以處理連續值,含剪枝,可以處理缺失值,這里的做法多是 概率權重。

CART:1.可以處理連續值 2.可以進行缺失值處理 3.支持剪枝 4.可以分類可以回歸。

缺失值的處理是 作為一個單獨的類別進行分類。

建立CART樹

我們的演算法從根節點開始,用訓練集遞歸的建立CART樹。

1) 對於當前節點的數據集為D,如果樣本個數小於閾值或者沒有特徵,則返回決策子樹,當前節點停止遞歸。

2) 計算樣本集D的基尼系數, 如果基尼系數小於閾值 (說明已經很純了!!不需要再分了!!),則返回決策樹子樹,當前節點停止遞歸。

3) 計算當前節點現有的各個特徵的各個特徵值對數據集D的基尼系數。

4) 在計算出來的各個特徵的各個特徵值對數據集D的基尼系數中,選擇 基尼系數最小的特徵A和對應的特徵值a。根據這個最優特徵和最優特徵值,把數據集劃分成兩部分D1和D2,同時建立當前節點的左右節點,做節點的數據集D為D1,右節點的數據集D為D2。 (註:注意是二叉樹,故這里的D1和D2是有集合關系的,D2=D-D1)

5) 對左右的子節點遞歸的調用1-4步,生成決策樹。

CART採用的辦法是後剪枝法,即先生成決策樹,然後產生所有可能的剪枝後的CART樹,然後使用交叉驗證來檢驗各種剪枝的效果,選擇泛化能力最好的剪枝策略。

應用場景

比如欺詐問題中,通過決策樹演算法簡單分類,默認是CART的分類樹,默認不剪枝。然後在出圖後,自行選擇合適的葉節點進行拒絕操作。

這個不剪枝是因為欺詐問題的特殊性,欺詐問題一般而言較少,如數據的萬幾水平,即正樣本少,而整個欺詐問題需要解決的速度較快。此時只能根據業務要求,迅速針對已有的正樣本情況,在控制准確率的前提下,盡可能提高召回率。這種情況下,可以使用決策樹來簡單應用,這個可以替代原本手工選擇特徵及特徵閾值的情況。

㈣ 簡述ID3演算法基本原理和步驟

1.基本原理:
以信息增益/信息熵為度量,用於決策樹結點的屬性選擇的標准,每次優先選取信息量最多(信息增益最大)的屬性,即信息熵值最小的屬性,以構造一顆熵值下降最快的決策樹,到葉子節點處的熵值為0。(信息熵 無條件熵 條件熵 信息增益 請查找其他資料理解)
決策樹將停止生長條件及葉子結點的類別取值:
①數據子集的每一條數據均已經歸類到每一類,此時,葉子結點取當前樣本類別值。
②數據子集類別仍有混亂,但已經找不到新的屬性進行結點分解,此時,葉子結點按當前樣本中少數服從多數的原則進行類別取值。
③數據子集為空,則按整個樣本中少數服從多數的原則進行類別取值。

步驟:
理解了上述停止增長條件以及信息熵,步驟就很簡單

㈤ 決策樹之ID3演算法及其Python實現

決策樹之ID3演算法及其Python實現

1. 決策樹背景知識
??決策樹是數據挖掘中最重要且最常用的方法之一,主要應用於數據挖掘中的分類和預測。決策樹是知識的一種呈現方式,決策樹中從頂點到每個結點的路徑都是一條分類規則。決策樹演算法最先基於資訊理論發展起來,經過幾十年發展,目前常用的演算法有:ID3、C4.5、CART演算法等。
2. 決策樹一般構建過程
??構建決策樹是一個自頂向下的過程。樹的生長過程是一個不斷把數據進行切分細分的過程,每一次切分都會產生一個數據子集對應的節點。從包含所有數據的根節點開始,根據選取分裂屬性的屬性值把訓練集劃分成不同的數據子集,生成由每個訓練數據子集對應新的非葉子節點。對生成的非葉子節點再重復以上過程,直到滿足特定的終止條件,停止對數據子集劃分,生成數據子集對應的葉子節點,即所需類別。測試集在決策樹構建完成後檢驗其性能。如果性能不達標,我們需要對決策樹演算法進行改善,直到達到預期的性能指標。
??註:分裂屬性的選取是決策樹生產過程中的關鍵,它決定了生成的決策樹的性能、結構。分裂屬性選擇的評判標準是決策樹演算法之間的根本區別。
3. ID3演算法分裂屬性的選擇——信息增益
??屬性的選擇是決策樹演算法中的核心。是對決策樹的結構、性能起到決定性的作用。ID3演算法基於信息增益的分裂屬性選擇。基於信息增益的屬性選擇是指以信息熵的下降速度作為選擇屬性的方法。它以的資訊理論為基礎,選擇具有最高信息增益的屬性作為當前節點的分裂屬性。選擇該屬性作為分裂屬性後,使得分裂後的樣本的信息量最大,不確定性最小,即熵最小。
??信息增益的定義為變化前後熵的差值,而熵的定義為信息的期望值,因此在了解熵和信息增益之前,我們需要了解信息的定義。
??信息:分類標簽xi 在樣本集 S 中出現的頻率記為 p(xi),則 xi 的信息定義為:?log2p(xi) 。
??分裂之前樣本集的熵:E(S)=?∑Ni=1p(xi)log2p(xi),其中 N 為分類標簽的個數。
??通過屬性A分裂之後樣本集的熵:EA(S)=?∑mj=1|Sj||S|E(Sj),其中 m 代表原始樣本集通過屬性A的屬性值劃分為 m 個子樣本集,|Sj| 表示第j個子樣本集中樣本數量,|S| 表示分裂之前數據集中樣本總數量。
??通過屬性A分裂之後樣本集的信息增益:InfoGain(S,A)=E(S)?EA(S)
??註:分裂屬性的選擇標准為:分裂前後信息增益越大越好,即分裂後的熵越小越好。
4. ID3演算法
??ID3演算法是一種基於信息增益屬性選擇的決策樹學習方法。核心思想是:通過計算屬性的信息增益來選擇決策樹各級節點上的分裂屬性,使得在每一個非葉子節點進行測試時,獲得關於被測試樣本最大的類別信息。基本方法是:計算所有的屬性,選擇信息增益最大的屬性分裂產生決策樹節點,基於該屬性的不同屬性值建立各分支,再對各分支的子集遞歸調用該方法建立子節點的分支,直到所有子集僅包括同一類別或沒有可分裂的屬性為止。由此得到一棵決策樹,可用來對新樣本數據進行分類。
ID3演算法流程:
(1) 創建一個初始節點。如果該節點中的樣本都在同一類別,則演算法終止,把該節點標記為葉節點,並用該類別標記。
(2) 否則,依據演算法選取信息增益最大的屬性,該屬性作為該節點的分裂屬性。
(3) 對該分裂屬性中的每一個值,延伸相應的一個分支,並依據屬性值劃分樣本。
(4) 使用同樣的過程,自頂向下的遞歸,直到滿足下面三個條件中的一個時就停止遞歸。
??A、待分裂節點的所有樣本同屬於一類。
??B、訓練樣本集中所有樣本均完成分類。
??C、所有屬性均被作為分裂屬性執行一次。若此時,葉子結點中仍有屬於不同類別的樣本時,選取葉子結點中包含樣本最多的類別,作為該葉子結點的分類。
ID3演算法優缺點分析
優點:構建決策樹的速度比較快,演算法實現簡單,生成的規則容易理解。
缺點:在屬性選擇時,傾向於選擇那些擁有多個屬性值的屬性作為分裂屬性,而這些屬性不一定是最佳分裂屬性;不能處理屬性值連續的屬性;無修剪過程,無法對決策樹進行優化,生成的決策樹可能存在過度擬合的情況。

㈥ 決策樹演算法基礎 ID3與C4.5

決策樹演算法基礎:ID3與C4.5
設X是一個取有限個值得離散隨機變數,其概率分布為P(X=xi)=pi, i=1,2,…,n。則隨機變數X的信息熵為
條件熵H(Y|X)表示在已知隨機變數X的條件下隨機變數Y的不確定性。H(Y|X)的計算公式為
所以決策樹分支後信息總熵H(D|A)=P1*H1+P2*H2+...+Pn*Hn,(特徵A條件下D的經驗條件熵)
所以信息增益ΔH=H(D)-H(D|A)
H(D|A)越小,ΔH越大,該特徵A越適合作為當前的決策節點。
選取最佳特徵偽代碼:
計算信息總熵H(D)
遍歷每一個特徵下的關於D的經驗條件熵H(D|A)
計算每一個特徵的信息增益ΔH
將信息增益ΔH最大的特徵作為最佳特徵選為當前決策節點
ID3演算法偽代碼:
如果第一個標簽的數量等於所有的標簽數量,說明這是一個單節點樹,返回這個標簽作為該節點類
如果特徵只有一個,說明這是一個單節點樹,用多數表決法投票選出標簽返回作為該節點類
否則,按信息增益最大的特徵A作為當前決策節點,即決策樹父節點
如果該特徵的信息增益ΔH小於閾值,則用多數表決法投票選出標簽返回作為該節點類
否則,對於該特徵A的每一個可能值ai,將原空間D分割為若干個子空間Di
對於若干個非空子集Di,將每個Di中實例數最大的類作為標記,構建子節點
以Di為訓練空間,遞歸調用上述步驟
由於信息增益存在偏向於選擇取值較多的特徵的問題,而C4.5演算法中,將ID3演算法里的信息增益換成信息增益比,較好地解決了這個問題。
決策樹的優點在於計算量簡單,適合有缺失屬性值的樣本,適合處理不相關的特徵。而缺點是容易過擬合,可以通過剪枝來簡化模型,另外隨機森林也解決了這個問題。

㈦ 決策樹的演算法

C4.5演算法繼承了ID3演算法的優點,並在以下幾方面對ID3演算法進行了改進:
1) 用信息增益率來選擇屬性,克服了用信息增益選擇屬性時偏向選擇取值多的屬性的不足;
2) 在樹構造過程中進行剪枝;
3) 能夠完成對連續屬性的離散化處理;
4) 能夠對不完整數據進行處理。
C4.5演算法有如下優點:產生的分類規則易於理解,准確率較高。其缺點是:在構造樹的過程中,需要對數據集進行多次的順序掃描和排序,因而導致演算法的低效。此外,C4.5隻適合於能夠駐留於內存的數據集,當訓練集大得無法在內存容納時程序無法運行。
具體演算法步驟如下;
1創建節點N
2如果訓練集為空,在返回節點N標記為Failure
3如果訓練集中的所有記錄都屬於同一個類別,則以該類別標記節點N
4如果候選屬性為空,則返回N作為葉節點,標記為訓練集中最普通的類;
5for each 候選屬性 attribute_list
6if 候選屬性是連續的then
7對該屬性進行離散化
8選擇候選屬性attribute_list中具有最高信息增益率的屬性D
9標記節點N為屬性D
10for each 屬性D的一致值d
11由節點N長出一個條件為D=d的分支
12設s是訓練集中D=d的訓練樣本的集合
13if s為空
14加上一個樹葉,標記為訓練集中最普通的類
15else加上一個有C4.5(R - {D},C,s)返回的點 背景:
分類與回歸樹(CART——Classification And Regression Tree)) 是一種非常有趣並且十分有效的非參數分類和回歸方法。它通過構建二叉樹達到預測目的。
分類與回歸樹CART 模型最早由Breiman 等人提出,已經在統計領域和數據挖掘技術中普遍使用。它採用與傳統統計學完全不同的方式構建預測准則,它是以二叉樹的形式給出,易於理解、使用和解釋。由CART 模型構建的預測樹在很多情況下比常用的統計方法構建的代數學預測准則更加准確,且數據越復雜、變數越多,演算法的優越性就越顯著。模型的關鍵是預測准則的構建,准確的。
定義:
分類和回歸首先利用已知的多變數數據構建預測准則, 進而根據其它變數值對一個變數進行預測。在分類中, 人們往往先對某一客體進行各種測量, 然後利用一定的分類准則確定該客體歸屬那一類。例如, 給定某一化石的鑒定特徵, 預測該化石屬那一科、那一屬, 甚至那一種。另外一個例子是, 已知某一地區的地質和物化探信息, 預測該區是否有礦。回歸則與分類不同, 它被用來預測客體的某一數值, 而不是客體的歸類。例如, 給定某一地區的礦產資源特徵, 預測該區的資源量。

㈧ 5.10 決策樹與ID3演算法

https://blog.csdn.net/dorisi_h_n_q/article/details/82787295

決策樹(decision tree)是一個樹結構(可以是二叉樹或非二叉樹)。決策過程是從根節點開始,測試待分類項中相應的特徵屬性,並按照其值選擇輸出分支,直到到達葉子節點,將葉子節點存放的類別作為決策結果。

決策樹的關鍵步驟是分裂屬性。就是在某節點處按某一特徵屬性的不同劃分構造不同的分支,目標是讓各個分裂子集盡可能地「純」。即讓一個分裂子集中待分類項屬於同一類別。

簡而言之,決策樹的劃分原則就是:將無序的數據變得更加有序

分裂屬性分為三種不同的情況 :

構造決策樹的關鍵性內容是進行屬性選擇度量,屬性選擇度量(找一種計算方式來衡量怎麼劃分更劃算)是一種選擇分裂准則,它決定了拓撲結構及分裂點split_point的選擇。

屬性選擇度量演算法有很多,一般使用自頂向下遞歸分治法,並採用不回溯的貪心策略。這里介紹常用的ID3演算法。

貪心演算法(又稱貪婪演算法)是指,在對問題求解時,總是做出在當前看來是最好的選擇。也就是說,不從整體最優上加以考慮,所做出的是在某種意義上的局部最優解。

此概念最早起源於物理學,是用來度量一個熱力學系統的無序程度。
而在信息學裡面,熵是對不確定性的度量。
在1948年,香農引入了信息熵,將其定義為離散隨機事件出現的概率,一個系統越是有序,信息熵就越低,反之一個系統越是混亂,它的信息熵就越高。所以信息熵可以被認為是系統有序化程度的一個度量。

熵定義為信息的期望值,在明晰這個概念之前,我們必須知道信息的定義。如果待分類的事務可能劃分在多個分類之中,則符號x的信息定義為:

在劃分數據集之前之後信息發生的變化稱為信息增益。
知道如何計算信息增益,就可計算每個特徵值劃分數據集獲得的信息增益,獲得信息增益最高的特徵就是最好的選擇。

條件熵 表示在已知隨機變數的條件下隨機變數的不確定性,隨機變數X給定的條件下隨機變數Y的條
件熵(conditional entropy) ,定義X給定條件下Y的條件概率分布的熵對X的數學期望:

根據上面公式,我們假設將訓練集D按屬性A進行劃分,則A對D劃分的期望信息為

則信息增益為如下兩者的差值

ID3演算法就是在每次需要分裂時,計算每個屬性的增益率,然後選擇增益率最大的屬性進行分裂

步驟:1. 對當前樣本集合,計算所有屬性的信息增益;

是最原始的決策樹分類演算法,基本流程是,從一棵空數出發,不斷的從決策表選取屬性加入數的生長過程中,直到決策樹可以滿足分類要求為止。CLS演算法存在的主要問題是在新增屬性選取時有很大的隨機性。ID3演算法是對CLS演算法的改進,主要是摒棄了屬性選擇的隨機性。

基於ID3演算法的改進,主要包括:使用信息增益比替換了信息增益下降度作為屬性選擇的標准;在決策樹構造的同時進行剪枝操作;避免了樹的過度擬合情況;可以對不完整屬性和連續型數據進行處理;使用k交叉驗證降低了計算復雜度;針對數據構成形式,提升了演算法的普適性。

信息增益值的大小相對於訓練數據集而言的,並沒有絕對意義,在分類問題困難時,也就是說在訓練數據集經驗熵大的時候,信息增益值會偏大,反之信息增益值會偏小,使用信息增益比可以對這個問題進行校正,這是特徵選擇
的另一個標准。
特徵對訓練數據集的信息增益比定義為其信息增益gR( D,A) 與訓練數據集的經驗熵g(D,A)之比 :

gR(D,A) = g(D,A) / H(D)

sklearn的決策樹模型就是一個CART樹。是一種二分遞歸分割技術,把當前樣本劃分為兩個子樣本,使得生成的每個非葉子節點都有兩個分支,因此,CART演算法生成的決策樹是結構簡潔的二叉樹。
分類回歸樹演算法(Classification and Regression Trees,簡稱CART演算法)是一種基於二分遞歸分割技術的演算法。該演算法是將當前的樣本集,分為兩個樣本子集,這樣做就使得每一個非葉子節點最多隻有兩個分支。因此,使用CART
演算法所建立的決策樹是一棵二叉樹,樹的結構簡單,與其它決策樹演算法相比,由該演算法生成的決策樹模型分類規則較少。

CART分類演算法的基本思想是:對訓練樣本集進行遞歸劃分自變數空間,並依次建立決策樹模型,然後採用驗證數據的方法進行樹枝修剪,從而得到一顆符合要求的決策樹分類模型。

CART分類演算法和C4.5演算法一樣既可以處理離散型數據,也可以處理連續型數據。CART分類演算法是根據基尼(gini)系
數來選擇測試屬性,gini系數的值越小,劃分效果越好。設樣本集合為T,則T的gini系數值可由下式計算:

CART演算法優點:除了具有一般決策樹的高准確性、高效性、模式簡單等特點外,還具有一些自身的特點。
如,CART演算法對目標變數和預測變數在概率分布上沒有要求,這樣就避免了因目標變數與預測變數概率分布的不同造成的結果;CART演算法能夠處理空缺值,這樣就避免了因空缺值造成的偏差;CART演算法能夠處理孤立的葉子結點,這樣可以避免因為數據集中與其它數據集具有不同的屬性的數據對進一步分支產生影響;CART演算法使用的是二元分支,能夠充分地運用數據集中的全部數據,進而發現全部樹的結構;比其它模型更容易理解,從模型中得到的規則能獲得非常直觀的解釋。

CART演算法缺點:CART演算法是一種大容量樣本集挖掘演算法,當樣本集比較小時不夠穩定;要求被選擇的屬性只能產生兩個子結點,當類別過多時,錯誤可能增加得比較快。

sklearn.tree.DecisionTreeClassifier

1.安裝graphviz.msi , 一路next即可

ID3演算法就是在每次需要分裂時,計算每個屬性的增益率,然後選擇增益率最大的屬性進行分裂

按照好友密度劃分的信息增益:

按照是否使用真實頭像H劃分的信息增益

**所以,按先按好友密度劃分的信息增益比按真實頭像劃分的大。應先按好友密度劃分。

㈨ 決策樹ID3,C4.5,CART演算法中某一屬性分類後,是否能運用該屬性繼續分類

決策樹主要有ID3,C4.5,CART等形式。ID3選取信息增益的屬性遞歸進行分類,C4.5改進為使用信息增益率來選取分類屬性。CART是Classfication and Regression Tree的縮寫。表明CART不僅可以進行分類,也可以進行回歸。其中使用基尼系數選取分類屬性。以下主要介紹ID3和CART演算法。
ID3演算法:
信息熵: H(X)=-sigma(對每一個x)(plogp) H(Y|X)=sigma(對每一個x)(pH(Y|X=xi))
信息增益:H(D)-H(D|X) H(D)是整個數據集的熵
信息增益率:(H(D)-H(D|X))/H(X)
演算法流程:(1)對每一個屬性計算信息增益,若信息增益小於閾值,則將該支置為葉節點,選擇其中個數最多的類標簽作為該類的類標簽。否則,選擇其中最大的作為分類屬 性。
(2)若各個分支中都只含有同一類數據,則將這支置為葉子節點。
否則 繼續進行(1)。
CART演算法:
基尼系數:Gini(p)=sigma(每一個類)p(1-p)
回歸樹:屬性值為連續實數。將整個輸入空間劃分為m塊,每一塊以其平均值作為輸出。f(x)=sigma(每一塊)Cm*I(x屬於Rm)
回歸樹生成:(1)選取切分變數和切分點,將輸入空間分為兩份。
(2)每一份分別進行第一步,直到滿足停止條件。
切分變數和切分點選取:對於每一個變數進行遍歷,從中選擇切分點。選擇一個切分點滿足分類均方誤差最小。然後在選出所有變數中最小分類誤差最小的變數作為切分 變數。
分類樹:屬性值為離散值。
分類樹生成:(1)根據每一個屬性的每一個取值,是否取該值將樣本分成兩類,計算基尼系數。選擇基尼系數最小的特徵和屬性值,將樣本分成兩份。
(2)遞歸調用(1)直到無法分割。完成CART樹生成。

決策樹剪枝策略:
預剪枝(樹提前停止生長)和後剪枝(完全生成以後減去一些子樹提高預測准確率)
降低錯誤率剪枝:自下而上對每一個內部節點比較減去以其為葉節點和子樹的准確率。如果減去准確率提高,則減去,依次類推知道准確率不在提高。
代價復雜度剪枝:從原始決策樹T0開始生成一個子樹序列{T0、T1、T2、...、Tn},其中Ti+1是從Ti總產生,Tn為根節點。每次均從Ti中 減去具有最小誤差增長率的子樹。然後通過 交叉驗證比較序列中各子樹的效果選擇最優決策樹。

熱點內容
src怎麼找配置 發布:2025-03-15 14:18:32 瀏覽:691
下載u盤加密3000 發布:2025-03-15 14:18:29 瀏覽:794
sqlnotbetween 發布:2025-03-15 13:52:38 瀏覽:436
游戲伺服器刪了會怎麼樣 發布:2025-03-15 13:41:42 瀏覽:165
微商城系統源碼 發布:2025-03-15 13:31:32 瀏覽:593
什麼是平演算法 發布:2025-03-15 13:18:36 瀏覽:841
seleniumpython教程 發布:2025-03-15 13:11:19 瀏覽:625
c語言對前端 發布:2025-03-15 13:04:01 瀏覽:781
解壓粉磚 發布:2025-03-15 12:54:38 瀏覽:225
qq的賬號密碼到底是什麼 發布:2025-03-15 12:45:48 瀏覽:765