當前位置:首頁 » 操作系統 » 區域匹配演算法

區域匹配演算法

發布時間: 2023-07-17 17:30:06

㈠ 使用OpenCV進行模板匹配(原圖-模板圖)

匹配演算法有很多,比如最簡單的對比原圖和模板圖的像素值。
但是這種方法稍微有一點旋轉和光照變化結果就會很差。

為了改進這個,有了SAD演算法。
然後SAD相似的SSD。
再然後是計算區域互相關性的NCC演算法。
以上三種演算法中,SAD演算法最簡單,因此當模板大小確定後,SAD演算法的速度最快。NCC演算法與SAD演算法相比要復雜得多。

至於演算法的過程,這三個演算法都是很好理解的演算法,我覺得還是自學比較好。

㈡ sift演算法是什麼

Sift演算法是David Lowe於1999年提出的局部特徵描述子,並於2004年進行了更深入的發展和完善。Sift特徵匹配演算法可以處理兩幅圖像之間發生平移、旋轉、仿射變換情況下的匹配問題,具有很強的匹配能力。

這一演算法的靈感也十分的直觀,人眼觀測兩張圖片是否匹配時會注意到其中的典型區域(特徵點部分),如果我們能夠實現這一特徵點區域提取過程,再對所提取到的區域進行描述就可以實現特徵匹配了。

sift演算法的應用

SIFT演算法目前在軍事、工業和民用方面都得到了不同程度的應用,其應用已經滲透了很多領域,典型的應用如下:物體識別;機器人定位與導航;圖像拼接;三維建模;手勢識別;視頻跟蹤;筆記鑒定;指紋與人臉識別;犯罪現場特徵提取。

㈢ 基於特徵的影像匹配演算法有哪些

基於局部約束的方法:有區域匹配(主要是基於窗口)、特徵匹配(基於特徵點,如SIFT)、相位匹配(主要用濾波來做)。
基於全局約束的方法:主要有動態規劃演算法、圖割演算法、人工智慧演算法、協同演算法、置信度傳播演算法、非線性擴散演算法等。
那個發展史就找兩本攝影測量的書或下幾篇論文看看就知道了

㈣ opencv關於像素點的圖像匹配演算法

首先,建議你將圖像中感興趣區域(比如上圖中的字母)取出來進行歸一化,然後在進行匹配率計算。這是因為周圍環境會對匹配率產生影響。
其次,建議你將匹配率演算法改成Hausdorff距離https://en.wikipedia.org/wiki/Hausdorff,這樣對圖像有些平移什麼的都不怎麼敏感了。

㈤ 圖像匹配方法有哪些

圖像匹配的方法很多,一般分為兩大類,一類是基於灰度匹配的方法,另一類是基於特徵匹配的方法。

(1)基於灰度匹配的方法。也稱作相關匹配演算法,用空間二維滑動模板進行圖像匹配,不同演算法的區別主要體現在模板及相關准則的選擇方面。

(2)基於特徵匹配的方法。首先在原始圖像中提取特徵,然後再建立兩幅圖像之間特徵的匹配對應關系。常用的特徵匹配基元包括點、線、區域等顯著特徵。圖像特徵相比像素點數量殺過少很多,特徵間的匹配度量隨位置變化尖銳,容易找出准確的匹配位置,特徵提取能大大減少雜訊影響,對灰度變化、形變和遮擋有較強的適應力。

圖像匹配的任務就是尋找同一場景的兩幅或多幅圖像中像素點之間的對應關系。我們研究的圖像匹配方法主要是基於圖像特徵的方法,主要包括特徵提取、特徵描述和特徵匹配三步。SIFT方法是目前效果較好的經典匹配方法,在我們的研究過程中,均是採用SIFT方法作為基準來評價我們提出的演算法的。

㈥ 圖像匹配的演算法

迄今為止,人們已經提出了各種各樣的圖像匹配演算法,但從總體上講,這些匹配演算法可以分成關系結構匹配方法、結合特定理論工具的匹配方法、基於灰度信息的匹配方法、基於亞像元匹配方法、基於內容特徵的匹配方法五大類型 基於內容特徵的匹配首先提取反映圖像重要信息的特徵,而後以這些特徵為模型進行匹配。局部特徵有點、邊緣、線條和小的區域,全局特徵包括多邊形和稱為結構的復雜的圖像內容描述。特徵提取的結果是一個含有特徵的表和對圖像的描述,每一個特徵由一組屬性表示,對屬性的進一步描述包括邊緣的定向和弧度,邊與線的長度和曲率,區域的大小等。除了局部特徵的屬性外,還用這些局部特徵之間的關系描述全局特徵,這些關系可以是幾何關系,例如兩個相鄰的三角形之間的邊,或兩個邊之間的距離可以是輻射度量關系,例如灰度值差別,或兩個相鄰區域之間的灰度值方差或拓撲關系,例如一個特徵受限於另一個特徵。人們一般提到的基於特徵的匹配絕大多數都是指基於點、線和邊緣的局部特徵匹配,而具有全局特徵的匹配實質上是我們上面提到的關系結構匹配方法。特徵是圖像內容最抽象的描述,與基於灰度的匹配方法比,特相對於幾何圖像和輻射影響來說更不易變化,但特徵提取方法的計算代價通常較,並且需要一些自由參數和事先按照經驗選取的閉值,因而不便於實時應用同時,在紋理較少的圖像區域提取的特徵的密度通常比較稀少,使局部特徵的提 取比較困難。另外,基於特徵的匹配方法的相似性度量也比較復雜,往往要以特徵屬性、啟發式方法及閉方法的結合來確定度量方法。基於圖像特徵的匹配方法可以克服利用圖像灰度信息進行匹配的缺點,由於圖像的特徵點比象素點要少很多,因而可以大大減少匹配過程的計算量同時,特徵點的匹配度量值對位置的變化比較敏感,可以大大提高匹配的精確程度而且,特徵點的提取過程可以減少雜訊的影響,對灰度變化,圖像形變以及遮擋等都有較好的適應能力。所以基於圖像特徵的匹配在實際中的應用越來越廣-泛。所使用的特徵基元有點特徵明顯點、角點、邊緣點等、邊緣線段等。

熱點內容
翻杯子演算法 發布:2025-03-16 03:34:31 瀏覽:602
ftp後台密碼怎麼設置 發布:2025-03-16 03:33:08 瀏覽:360
阿里雲伺服器的sdk是免費的嗎 發布:2025-03-16 03:33:04 瀏覽:7
卸載linux軟體 發布:2025-03-16 03:19:07 瀏覽:808
太平天國迅雷下載ftp 發布:2025-03-16 03:13:19 瀏覽:64
伺服器硬碟溫度怎麼調節 發布:2025-03-16 03:11:47 瀏覽:74
netcore編譯前執行代碼 發布:2025-03-16 03:05:17 瀏覽:475
飢荒聯機版伺服器搭建程序 發布:2025-03-16 02:55:18 瀏覽:684
win7如何訪問共享 發布:2025-03-16 02:55:14 瀏覽:37
centosphp升級 發布:2025-03-16 02:42:04 瀏覽:52