當前位置:首頁 » 操作系統 » 排序追蹤演算法

排序追蹤演算法

發布時間: 2023-07-15 18:23:18

Ⅰ 常用的排序演算法都有哪些

排序演算法 所謂排序,就是使一串記錄,按照其中的某個或某些關鍵字的大小,遞增或遞減的排列起來的操作。
分類
在計算機科學所使用的排序演算法通常被分類為:
計算的復雜度(最差、平均、和最好表現),依據串列(list)的大小(n)。一般而言,好的表現是O。(n log n),且壞的行為是Ω(n2)。對於一個排序理想的表現是O(n)。僅使用一個抽象關鍵比較運算的排序演算法總平均上總是至少需要Ω(n log n)。
記憶體使用量(以及其他電腦資源的使用)
穩定度:穩定排序演算法會依照相等的關鍵(換言之就是值)維持紀錄的相對次序。也就是一個排序演算法是穩定的,就是當有兩個有相等關鍵的紀錄R和S,且在原本的串列中R出現在S之前,在排序過的串列中R也將會是在S之前。
一般的方法:插入、交換、選擇、合並等等。交換排序包含冒泡排序(bubble sort)和快速排序(quicksort)。選擇排序包含shaker排序和堆排序(heapsort)。
當相等的元素是無法分辨的,比如像是整數,穩定度並不是一個問題。然而,假設以下的數對將要以他們的第一個數字來排序。
(4, 1) (3, 1) (3, 7) (5, 6)
在這個狀況下,有可能產生兩種不同的結果,一個是依照相等的鍵值維持相對的次序,而另外一個則沒有:
(3, 1) (3, 7) (4, 1) (5, 6) (維持次序)
(3, 7) (3, 1) (4, 1) (5, 6) (次序被改變)
不穩定排序演算法可能會在相等的鍵值中改變紀錄的相對次序,但是穩定排序演算法從來不會如此。不穩定排序演算法可以被特別地時作為穩定。作這件事情的一個方式是人工擴充鍵值的比較,如此在其他方面相同鍵值的兩個物件間之比較,就會被決定使用在原先資料次序中的條目,當作一個同分決賽。然而,要記住這種次序通常牽涉到額外的空間負擔。
排列演算法列表
在這個表格中,n是要被排序的紀錄數量以及k是不同鍵值的數量。
穩定的
冒泡排序(bubble sort) — O(n2)
雞尾酒排序 (Cocktail sort, 雙向的冒泡排序) — O(n2)
插入排序 (insertion sort)— O(n2)
桶排序 (bucket sort)— O(n); 需要 O(k) 額外 記憶體
計數排序 (counting sort) — O(n+k); 需要 O(n+k) 額外 記憶體
歸並排序 (merge sort)— O(n log n); 需要 O(n) 額外記憶體
原地歸並排序 — O(n2)
二叉樹排序 (Binary tree sort) — O(n log n); 需要 O(n) 額外記憶體
鴿巢排序 (Pigeonhole sort) — O(n+k); 需要 O(k) 額外記憶體
基數排序 (radix sort)— O(n·k); 需要 O(n) 額外記憶體
Gnome sort — O(n2)
Library sort — O(n log n) with high probability, 需要 (1+ε)n 額外記憶體
不穩定
選擇排序 (selection sort)— O(n2)
希爾排序 (shell sort)— O(n log n) 如果使用最佳的現在版本
Comb sort — O(n log n)
堆排序 (heapsort)— O(n log n)
Smoothsort — O(n log n)
快速排序 (quicksort)— O(n log n) 期望時間, O(n2) 最壞情況; 對於大的、亂數串列一般相信是最快的已知排序
Introsort — O(n log n)
Patience sorting — O(n log n + k) 最外情況時間, 需要 額外的 O(n + k) 空間, 也需要找到最長的遞增子序列(longest increasing subsequence)
不實用的排序演算法
Bogo排序 — O(n × n!) 期望時間, 無窮的最壞情況。
Stupid sort — O(n3); 遞回版本需要 O(n2) 額外記憶體
Bead sort — O(n) or O(√n), 但需要特別的硬體
Pancake sorting — O(n), 但需要特別的硬體
排序的演算法
排序的演算法有很多,對空間的要求及其時間效率也不盡相同。下面列出了一些常見的排序演算法。這裡面插入排序和冒泡排序又被稱作簡單排序,他們對空間的要求不高,但是時間效率卻不穩定;而後面三種排序相對於簡單排序對空間的要求稍高一點,但時間效率卻能穩定在很高的水平。基數排序是針對關鍵字在一個較小范圍內的排序演算法。
插入排序
冒泡排序
選擇排序
快速排序
堆排序
歸並排序
基數排序
希爾排序
插入排序
插入排序是這樣實現的:
首先新建一個空列表,用於保存已排序的有序數列(我們稱之為"有序列表")。
從原數列中取出一個數,將其插入"有序列表"中,使其仍舊保持有序狀態。
重復2號步驟,直至原數列為空。
插入排序的平均時間復雜度為平方級的,效率不高,但是容易實現。它藉助了"逐步擴大成果"的思想,使有序列表的長度逐漸增加,直至其長度等於原列表的長度。
冒泡排序
冒泡排序是這樣實現的:
首先將所有待排序的數字放入工作列表中。
從列表的第一個數字到倒數第二個數字,逐個檢查:若某一位上的數字大於他的下一位,則將它與它的下一位交換。
重復2號步驟,直至再也不能交換。
冒泡排序的平均時間復雜度與插入排序相同,也是平方級的,但也是非常容易實現的演算法。
選擇排序
選擇排序是這樣實現的:
設數組內存放了n個待排數字,數組下標從1開始,到n結束。
i=1
從數組的第i個元素開始到第n個元素,尋找最小的元素。
將上一步找到的最小元素和第i位元素交換。
如果i=n-1演算法結束,否則回到第3步
選擇排序的平均時間復雜度也是O(n²)的。
快速排序
現在開始,我們要接觸高效排序演算法了。實踐證明,快速排序是所有排序演算法中最高效的一種。它採用了分治的思想:先保證列表的前半部分都小於後半部分,然後分別對前半部分和後半部分排序,這樣整個列表就有序了。這是一種先進的思想,也是它高效的原因。因為在排序演算法中,演算法的高效與否與列表中數字間的比較次數有直接的關系,而"保證列表的前半部分都小於後半部分"就使得前半部分的任何一個數從此以後都不再跟後半部分的數進行比較了,大大減少了數字間不必要的比較。但查找數據得另當別論了。
堆排序
堆排序與前面的演算法都不同,它是這樣的:
首先新建一個空列表,作用與插入排序中的"有序列表"相同。
找到數列中最大的數字,將其加在"有序列表"的末尾,並將其從原數列中刪除。
重復2號步驟,直至原數列為空。
堆排序的平均時間復雜度為nlogn,效率高(因為有堆這種數據結構以及它奇妙的特徵,使得"找到數列中最大的數字"這樣的操作只需要O(1)的時間復雜度,維護需要logn的時間復雜度),但是實現相對復雜(可以說是這里7種演算法中比較難實現的)。
看起來似乎堆排序與插入排序有些相像,但他們其實是本質不同的演算法。至少,他們的時間復雜度差了一個數量級,一個是平方級的,一個是對數級的。
平均時間復雜度
插入排序 O(n2)
冒泡排序 O(n2)
選擇排序 O(n2)
快速排序 O(n log n)
堆排序 O(n log n)
歸並排序 O(n log n)
基數排序 O(n)
希爾排序 O(n1.25)
冒泡排序
654
比如說這個,我想讓它從小到大排序,怎麼做呢?
第一步:6跟5比,發現比它大,則交換。564
第二步:5跟4比,發現比它大,則交換。465
第三步:6跟5比,發現比它大,則交換。456

Ⅱ 常見的幾種排序演算法總結

對於非科班生的我來說,演算法似乎對我來說是個難點,查閱了一些資料,趁此來了解一下幾種排序演算法。
首先了解一下,什麼是程序

關於排序演算法通常我們所說的往往指的是內部排序演算法,即數據記錄在內存中進行排序。
排序演算法大體可分為兩種:
一種是比較排序,時間復雜度O(nlogn) ~ O(n^2),主要有:冒泡排序,選擇排序,插入排序,歸並排序,堆排序,快速排序等。
另一種是非比較排序,時間復雜度可以達到O(n),主要有:計數排序,基數排序,桶排序等

冒泡排序它重復地走訪過要排序的元素,一次比較相鄰兩個元素,如果他們的順序錯誤就把他們調換過來,直到沒有元素再需要交換,排序完成。這個演算法的名字由來是因為越小(或越大)的元素會經由交換慢慢「浮」到數列的頂端。

選擇排序類似於冒泡排序,只不過選擇排序是首先在未排序的序列中找到最小值(最大值),放到序列的起始位置,然後再從剩餘未排序元素中繼續尋找最小(大)元素,放到已排序序列的末尾,以此類推,直到所有元素均排序完畢。

插入排序比冒泡排序和選擇排序更有效率,插入排序類似於生活中抓撲克牌來。
插入排序具體演算法描述,以數組[3, 2, 4, 5, 1]為例。

前面三種排序演算法只有教學價值,因為效率低,很少實際使用。歸並排序(Merge sort)則是一種被廣泛使用的排序方法。
它的基本思想是,將兩個已經排序的數組合並,要比從頭開始排序所有元素來得快。因此,可以將數組拆開,分成n個只有一個元素的數組,然後不斷地兩兩合並,直到全部排序完成。
以對數組[3, 2, 4, 5, 1] 進行從小到大排序為例,步驟如下:

有了merge函數,就可以對任意數組排序了。基本方法是將數組不斷地拆成兩半,直到每一半隻包含零個元素或一個元素為止,然後就用merge函數,將拆成兩半的數組不斷合並,直到合並成一整個排序完成的數組。

快速排序(quick sort)是公認最快的排序演算法之一,有著廣泛的應用。
快速排序演算法步驟

參考:
常用排序演算法總結(一)
阮一峰-演算法總結

Ⅲ 基本排序演算法原理

演算法原理:每次對相鄰的兩個元素進行比較,若前者大於後者則進行交換,如此一趟下來最後一趟的就是最大元素,重復以上的步驟,除了已經確定的元素 。

演算法原理:每次對相鄰的兩個元素進行比較,若前者大於後者則進行交換,如此一趟下來最後一趟的就是最大元素,重復以上的步驟,除了已經確定的元素

演算法步驟

1)  設置兩個變數i、j,排序開始的時候:i=0,j=n-1;

2)第一個數組值作為比較值,首先保存到temp中,即temp=A[0];

3)然後j-- ,向前搜索,找到小於temp後,因為s[i]的值保存在temp中,所以直接賦值,s[i]=s[j]

4)然後i++,向後搜索,找到大於temp後,因為s[j]的值保存在第2步的s[i]中,所以直接賦值,s[j]=s[i],然後j--,避免死循環

5)重復第3、4步,直到i=j,最後將temp值返回s[i]中

6)  然後採用「二分」的思想,以i為分界線,拆分成兩個數組 s[0,i-1]、s[i+1,n-1]又開始排序

排序圖解

演算法原理:從第一個元素開始,左邊視為已排序數組,右邊視為待排序數組,從左往右依次取元素,插入左側已排序數組,對插入新元素的左側數組重新生成有序數組 。需要注意的是,在往有序數組插入一個新元素的過程中,我們可以採用按 順序循環 比較,也可以通過 折半查找法 來找到新元素的位置,兩種方式的效率 取決於數組的數據量

演算法原理:希爾排序也是利用插入排序的思想來排序。希爾排序通過將比較的全部元素分為幾個區域來提升插入排序的性能。這樣可以讓一個元素可以一次性地朝最終位置前進一大步。然後演算法再取越來越小的步長進行排序,演算法的最後一步就是普通的插入排序,但是到了這步,需排序的數據幾乎是已排好的了,插入效率比較高。

排序圖解

選擇排序(Selection sort)是一種簡單直觀的排序演算法。它的工作原理如下。首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置,然後,再從剩餘未排序元素中繼續尋找最小(大)元素,然後放到已排序序列的末尾。以此類推,直到所有元素均排序完畢。選擇排序的主要優點與數據移動有關。如果某個元素位於正確的最終位置上,則它不會被移動。選擇排序每次交換一對元素,它們當中至少有一個將被移到其最終位置上,因此對n個元素的表進行排序總共進行至多n-1次交換。在所有的完全依靠交換去移動元素的排序方法中,選擇排序屬於非常好的一種。

歸並排序,顧名思義就是一種 「遞歸合並」 的排序方法(這個理解很重要)。對於一個數列,我們把它進行二分處理,依次遞歸下去,然後將小范圍的數進行排序,最後將其合並在一起。就實現了歸並排序。

這實際上是運用了 分治思想 ,顯然,想要把一個數列排好序,最終達到的目的就是它的任何一部分都是有序的。這樣的話,我們可以考慮分別把數列分成N多個部分,讓每個部分分別有序,然後再將其統一,變成所有的東西都有序。這樣就實現了排序。這個想法就叫分治思想。

排序圖解

排序圖解

Ⅳ 排序演算法的排序演算法

排序的演算法有很多,對空間的要求及其時間效率也不盡相同。下面列出了一些常見的排序演算法。這裡面插入排序和冒泡排序又被稱作簡單排序,他們對空間的要求不高,但是時間效率卻不穩定;而後面三種排序相對於簡單排序對空間的要求稍高一點,但時間效率卻能穩定在很高的水平。基數排序是針對關鍵字在一個較小范圍內的排序演算法。
插入排序
冒泡排序
選擇排序
快速排序
堆排序
歸並排序
基數排序
希爾排序 插入排序是這樣實現的:
1、首先新建一個空列表,用於保存已排序的有序數列(我們稱之為有序列表)。
2、從原數列中取出一個數,將其插入有序列表中,使其仍舊保持有序狀態。
3、重復2號步驟,直至原數列為空。
插入排序的平均時間復雜度為平方級的,效率不高,但是容易實現。它藉助了逐步擴大成果的思想,使有序列表的長度逐漸增加,直至其長度等於原列表的長度。
插入排序的基本思想是在遍歷數組的過程中,假設在序號 i 之前的元素即 [0..i-1] 都已經排好序,本趟需要找到 i 對應的元素 x 的正確位置 k ,並且在尋找這個位置 k 的過程中逐個將比較過的元素往後移一位,為元素 x 「騰位置」,最後將 k 對應的元素值賦為 x ,一般情況下,插入排序的時間復雜度和空間復雜度分別為 O(n2 ) 和 O(1)。 冒泡排序是這樣實現的:
1、從列表的第一個數字到倒數第二個數字,逐個檢查:若某一位上的數字大於他的下一位,則將它與它的下一位交換。
2、重復1號步驟,直至再也不能交換。
冒泡排序的平均時間復雜度與插入排序相同,也是平方級的,但冒泡排序是原地排序的,也就是說它不需要額外的存儲空間。 選擇排序是這樣實現的:
1、設數組內存放了n個待排數字,數組下標從1開始,到n結束。
2、初始化i=1
3、從數組的第i個元素開始到第n個元素,尋找最小的元素。
4、將上一步找到的最小元素和第i位元素交換。
5、i++,直到i=n-1演算法結束,否則回到第3步
選擇排序的平均時間復雜度也是O(n^2)的。
舉例:
564
比如說這個,我想讓它從小到大排序,怎麼做呢?
第一步:從第一位開始找最小的元素,564中4最小,與第一位交換。結果為465
第二步:從第二位開始找最小的元素,465中5最小,與第二位交換。結果為456
第三步:i=2,n=3,此時i=n-1,演算法結束
完成 平均時間復雜度
插入排序 O(n^2)
冒泡排序 O(n^2)
選擇排序 O(n^2)
快速排序 O(n log n)
堆排序 O(n log n)
歸並排序 O(n log n)
基數排序 O(n)
希爾排序 O(n^1.25)

Ⅳ 快速排序演算法的排序演示

假設用戶輸入了如下數組: 下標 0 1 2 3 4 5 數據 6 2 7 3 8 9 創建變數i=0(指向第一個數據), j=5(指向最後一個數據), k=6(賦值為第一個數據的值)。
我們要把所有比k小的數移動到k的左面,所以我們可以開始尋找比6小的數,從j開始,從右往左找,不斷遞減變數j的值,我們找到第一個下標3的數據比6小,於是把數據3移到下標0的位置,把下標0的數據6移到下標3,完成第一次比較: 下標 0 1 2 34 5 數據 3 2 7 6 8 9 i=0 j=3 k=6
接著,開始第二次比較,這次要變成找比k大的了,而且要從前往後找了。遞加變數i,發現下標2的數據是第一個比k大的,於是用下標2的數據7和j指向的下標3的數據的6做交換,數據狀態變成下表: 下標 0 1 2 3 4 5 數據 3 2 6 7 8 9 i=2 j=3 k=6
稱上面兩次比較為一個循環。
接著,再遞減變數j,不斷重復進行上面的循環比較。
在本例中,我們進行一次循環,就發現i和j「碰頭」了:他們都指向了下標2。於是,第一遍比較結束。得到結果如下,凡是k(=6)左邊的數都比它小,凡是k右邊的數都比它大: 下標 0 1 2 3 4 5 數據 3 2 6 7 8 9 如果i和j沒有碰頭的話,就遞加i找大的,還沒有,就再遞減j找小的,如此反復,不斷循環。注意判斷和尋找是同時進行的。
然後,對k兩邊的數據,再分組分別進行上述的過程,直到不能再分組為止。
注意:第一遍快速排序不會直接得到最終結果,只會把比k大和比k小的數分到k的兩邊。為了得到最後結果,需要再次對下標2兩邊的數組分別執行此步驟,然後再分解數組,直到數組不能再分解為止(只有一個數據),才能得到正確結果。 在c++中可以用函數qsort()可以直接為數組進行排序。
用 法:
void qsort(void *base, int nelem, int width, int (*fcmp)(const void *,const void *));
參數:1 待排序數組首地址2 數組中待排序元素數量3 各元素的佔用空間大小4 指向函數的指針,用於確定排序的順序

Ⅵ 排序演算法的演算法列表

在這個表格中,n是要被排序的紀錄數量以及k是不同鍵值的數量。 冒泡排序(bubble sort) — O(n^2)
雞尾酒排序(Cocktail sort,雙向的冒泡排序) — O(n^2)
插入排序(insertion sort)— O(n^2)
桶排序(bucket sort)— O(n); 需要 O(k) 額外空間
計數排序(counting sort) — O(n+k); 需要 O(n+k) 額外空間
合並排序(merge sort)— O(nlog n); 需要 O(n) 額外空間
原地合並排序— O(n^2)
二叉排序樹排序 (Binary tree sort) — O(nlog n)期望時間; O(n^2)最壞時間; 需要 O(n) 額外空間
鴿巢排序(Pigeonhole sort) — O(n+k); 需要 O(k) 額外空間
基數排序(radix sort)— O(n·k); 需要 O(n) 額外空間
Gnome 排序— O(n^2)
圖書館排序— O(nlog n) with high probability,需要 (1+ε)n額外空間 選擇排序(selection sort)— O(n^2)
希爾排序(shell sort)— O(nlog n) 如果使用最佳的現在版本
組合排序— O(nlog n)
堆排序(heapsort)— O(nlog n)
平滑排序— O(nlog n)
快速排序(quicksort)— O(nlog n) 期望時間,O(n^2) 最壞情況; 對於大的、亂數列表一般相信是最快的已知排序
Introsort— O(nlog n)
Patience sorting— O(nlog n+ k) 最壞情況時間,需要 額外的 O(n+ k) 空間,也需要找到最長的遞增子串列(longest increasing subsequence) Bogo排序— O(n× n!) 期望時間,無窮的最壞情況。
Stupid sort— O(n^3); 遞歸版本需要 O(n^2) 額外存儲器
珠排序(Bead sort) — O(n) or O(√n),但需要特別的硬體
Pancake sorting— O(n),但需要特別的硬體
stooge sort——O(n^2.7)很漂亮但是很耗時

Ⅶ 排序演算法的介紹

所謂排序,就是使一串記錄,按照其中的某個或某些關鍵字的大小,遞增或遞減的排列起來的操作。排序演算法,就是如何使得記錄按照要求排列的方法。排序演算法在很多領域得到相當地重視,尤其是在大量數據的處理方面。一個優秀的演算法可以節省大量的資源。在各個領域中考慮到數據的各種限制和規范,要得到一個符合實際的優秀演算法,得經過大量的推理和分析。

Ⅷ 快速排序演算法原理與實現

快速排序的原理:通過一趟排序將要排序的數據分割成獨立的兩部分,其中一部分的所有數據都比另外一部分的所有數據都要小。

然後再按此方法對這兩部分數據分別進行快速排序,整個排序過程可以遞歸進行,以此達到整個數據變成有序序列。

假設要排序的數組是A[1]……A[N],首先任意選取一個數據(通常選用第一個數據)作為關鍵數據,然後將所有比它的數都放到它前面,所有比它大的數都放到它後面,這個過程稱為一躺快速排序。一躺快速排序的演算法是:

1、設置兩個變數I、J,排序開始的時候I:=1,J:=N;

2、以第一個數組元素作為關鍵數據,賦值給X,即X:=A[1];

3、從J開始向前搜索,即由後開始向前搜索(J:=J-1),找到第一個小於X的值,兩者交換;

4、從I開始向後搜索,即由前開始向後搜索(I:=I+1),找到第一個大於X的值,兩者交換;

5、重復第3、4步,直到I=J。

(8)排序追蹤演算法擴展閱讀:

設要排序的數組是A[0]……A[N-1],首先任意選取一個數據(通常選用數組的第一個數)作為關鍵數據,然後將所有比它小的數都放到它前面,所有比它大的數都放到它後面,這個過程稱為一趟快速排序。

值得注意的是,快速排序不是一種穩定的排序演算法,也就是說,多個相同的值的相對位置也許會在演算法結束時產生變動。

一趟快速排序的演算法是:

1、設置兩個變數i、j,排序開始的時候:i=0,j=N-1;

2、以第一個數組元素作為關鍵數據,賦值給key,即key=A[0];

3、從j開始向前搜索,即由後開始向前搜索(j--),找到第一個小於key的值A[j],將A[j]的值賦給A[i];

4、從i開始向後搜索,即由前開始向後搜索(i++),找到第一個大於key的A[i],將A[i]的值賦給A[j];

5、重復第3、4步,直到i=j; (3,4步中,沒找到符合條件的值,即3中A[j]不小於key,4中A[i]不大於key的時候改變j、i的值,使得j=j-1,i=i+1,直至找到為止。找到符合條件的值,進行交換的時候i, j指針位置不變。

熱點內容
網站搭建伺服器搭建 發布:2025-03-16 10:33:27 瀏覽:795
游戲目錄在哪裡安卓 發布:2025-03-16 10:33:19 瀏覽:467
婉兒腳本 發布:2025-03-16 10:19:33 瀏覽:580
c語言ftp下載文件 發布:2025-03-16 10:05:02 瀏覽:307
手機帳戶密碼怎麼找回密碼 發布:2025-03-16 10:02:10 瀏覽:706
c語言位段的使用 發布:2025-03-16 10:00:38 瀏覽:572
象山編程 發布:2025-03-16 09:38:41 瀏覽:927
綠點掌知識薪資密碼是多少 發布:2025-03-16 09:37:05 瀏覽:597
osu安卓版怎麼 發布:2025-03-16 09:37:05 瀏覽:153
python編程編程第三版 發布:2025-03-16 09:29:56 瀏覽:968