數據挖掘的演算法有哪些
① 常見的數據挖掘方法有哪些
數據挖掘的常用方法有:
神經網路方法
遺傳演算法
決策樹方法
粗集方法
覆蓋正例排斥反例方法
統計分析方法
模糊集方法
神經網路由於本身良好的魯棒性、自組織自適應性、並行處理、分布存儲和高度容錯等特性非常適合解決數據挖掘的問題,因此近年來越來越受到人們的關注。
遺傳演算法是一種基於生物自然選擇與遺傳機理的隨機搜索演算法,是一種仿生全局優化方法。遺傳演算法具有的隱含並行性、易於和其它模型結合等性質使得它在數據挖掘中被加以應用。
決策樹是一種常用於預測模型的演算法,它通過將大量數據有目的分類,從中找到一些有價值的,潛在的信息。它的主要優點是描述簡單,分類速度快,特別適合大規模的數據處理。
粗集理論是一種研究不精確、不確定知識的數學工具。粗集方法有幾個優點:不需要給出額外信息;簡化輸入信息的表達空間;演算法簡單,易於操作。粗集處理的對象是類似二維關系表的信息表。
它是利用覆蓋所有正例、排斥所有反例的思想來尋找規則。首先在正例集合中任選一個種子,到反例集合中逐個比較。與欄位取值構成的選擇子相容則捨去,相反則保留。按此思想循環所有正例種子,將得到正例的規則(選擇子的合取式)。
在資料庫欄位項之間存在兩種關系:函數關系和相關關系,對它們的分析可採用統計學方法,即利用統計學原理對資料庫中的信息進行分析。可進行常用統計、回歸分析、相關分析、差異分析等。
即利用模糊集合理論對實際問題進行模糊評判、模糊決策、模糊模式識別和模糊聚類分析。系統的復雜性越高,模糊性越強,一般模糊集合理論是用隸屬度來刻畫模糊事物的亦此亦彼性的。
② 數據挖掘常用演算法有哪些
1、 樸素貝葉斯
樸素貝葉斯(NB)屬於生成式模型(即需要計算特徵與類的聯合概率分布),計算過程非常簡單,只是做了一堆計數。NB有一個條件獨立性假設,即在類已知的條件下,各個特徵之間的分布是獨立的。這樣樸素貝葉斯分類器的收斂速度將快於判別模型,如邏輯回歸,所以只需要較少的訓練數據即可。即使NB條件獨立假設不成立,NB分類器在實踐中仍然表現的很出色。它的主要缺點是它不能學習特徵間的相互作用,用mRMR中的R來講,就是特徵冗餘。
2、邏輯回歸(logistic regression)
邏輯回歸是一個分類方法,屬於判別式模型,有很多正則化模型的方法(L0,L1,L2),而且不必像在用樸素貝葉斯那樣擔心特徵是否相關。與決策樹與SVM相比,還會得到一個不錯的概率解釋,甚至可以輕松地利用新數據來更新模型(使用在線梯度下降演算法online gradient descent)。如果需要一個概率架構(比如,簡單地調節分類閾值,指明不確定性,或者是要獲得置信區間),或者希望以後將更多的訓練數據快速整合到模型中去,那麼可以使用它。
3、 線性回歸
線性回歸是用於回歸的,而不像Logistic回歸是用於分類,其基本思想是用梯度下降法對最小二乘法形式的誤差函數進行優化。
4、最近鄰演算法——KNN
KNN即最近鄰演算法,其主要過程為:計算訓練樣本和測試樣本中每個樣本點的距離(常見的距離度量有歐式距離,馬氏距離等);對上面所有的距離值進行排序;選前k個最小距離的樣本;根據這k個樣本的標簽進行投票,得到最後的分類類別;如何選擇一個最佳的K值,這取決於數據。
5、決策樹
決策樹中很重要的一點就是選擇一個屬性進行分枝,因此要注意一下信息增益的計算公式,並深入理解它。
6、SVM支持向量機
高准確率,為避免過擬合提供了很好的理論保證,而且就算數據在原特徵空間線性不可分,只要給個合適的核函數,它就能運行得很好。在動輒超高維的文本分類問題中特別受歡迎。可惜內存消耗大,難以解釋,運行和調參也有些煩人,而隨機森林卻剛好避開了這些缺點,比較實用。
③ 數據挖掘演算法有哪些
以下主要是常見的10種數據挖掘的演算法,數據挖掘分為:分類(Logistic回歸模型、神經網路、支持向量機等)、關聯分析、聚類分析、孤立點分析。每一大類下都有好幾種演算法,這個具體可以參考數據挖掘概論這本書(英文最新版)
④ 數據挖掘的常用方法有哪些
1、決策樹法決策樹在解決歸類與預測上有著極強的能力,它以法則的方式表達,而這些法則則以一連串的問題表示出來,經由不斷詢問問題最終能導出所需的結果。典型的決策樹頂端是一個樹根,底部有許多的樹葉,它將紀錄分解成不同的子集,每個子集中的欄位可能都包含一個簡單的法則。此外,決策樹可能有著不同的外型,例如二元樹、三元樹或混和的決策樹型態。
2、神經網路法
神經網路法是模擬生物神經系統的結構和功能,是一種通過訓練來學習的非線性預測模型,它將每一個連接看作一個處理單元,試圖模擬人腦神經元的功能,可完成分類、聚類、特徵挖掘等多種數據挖掘任務。神經網路的學習方法主要表現在權值的修改上。其優點是具有抗干擾、非線性學習、聯想記憶功能,對復雜情況能得到精確的預測結果;缺點首先是不適合處理高維變數,不能觀察中間的學習過程,具有“黑箱”性,輸出結果也難以解釋;其次是需較長的學習時間。神經網路法主要應用於數據挖掘的聚類技術中。
3、關聯規則法
關聯規則是描述資料庫中數據項之間所存在的關系的規則,即根據一個事務中某些項的出現可導出另一些項在同一事務中也出現,即隱藏在數據間的關聯或相互關系。在客戶關系管理中,通過對企業的客戶資料庫里的大量數據進行挖掘,可以從大量的記錄中發現有趣的關聯關系,找出影響市場營銷效果的關鍵因素,為產品定位、定價與定製客戶群,客戶尋求、細分與保持,市場營銷與推銷,營銷風險評估和詐騙預測等決策支持提供參考依據。
4、遺傳演算法
遺傳演算法模擬了自然選擇和遺傳中發生的繁殖、交配和基因突變現象,是一種採用遺傳結合、遺傳交叉變異及自然選擇等操作來生成實現規則的、基於進化理論的機器學習方法。它的基本觀點是“適者生存”原理,具有隱含並行性、易於和其他模型結合等性質。主要的優點是可以處理許多數據類型,同時可以並行處理各種數據;缺點是需要的參數太多,編碼困難,一般計算量比較大。遺傳演算法常用於優化神經元網路,能夠解決其他技術難以解決的問題。
5、聚類分析法
聚類分析是把一組數據按照相似性和差異性分為幾個類別,其目的是使得屬於同一類別的數據間的相似性盡可能大,不同類別中的數據間的相似性盡可能小。根據定義可以把其分為四類:基於層次的聚類方法;分區聚類演算法;基於密度的聚類演算法;網格的聚類演算法。常用的經典聚類方法有K-mean,K-medoids,ISODATA等。
6、模糊集法
模糊集法是利用模糊集合理論對問題進行模糊評判、模糊決策、模糊模式識別和模糊聚類分析。模糊集合理論是用隸屬度來描述模糊事物的屬性。系統的復雜性越高,模糊性就越強。
7、web頁挖掘
通過對Web的挖掘,可以利用Web的海量數據進行分析,收集政治、經濟、政策、科技、金融、各種市場、競爭對手、供求信息、客戶等有關的信息,集中精力分析和處理那些對企業有重大或潛在重大影響的外部環境信息和內部經營信息,並根據分析結果找出企業管理過程中出現的各種問題和可能引起危機的先兆,對這些信息進行分析和處理,以便識別、分析、評價和管理危機。
8、邏輯回歸分析
反映的是事務資料庫中屬性值在時間上的特徵,產生一個將數據項映射到一個實值預測變數的函數,發現變數或屬性間的依賴關系,其主要研究問題包括數據序列的趨勢特徵、數據序列的預測以及數據間的相關關系等。
9、粗糙集法
是一種新的處理含糊、不精確、不完備問題的數學工具,可以處理數據約簡、數據相關性發現、數據意義的評估等問題。其優點是演算法簡單,在其處理過程中可以不需要關於數據的先驗知識,可以自動找出問題的內在規律;缺點是難以直接處理連續的屬性,須先進行屬性的離散化。因此,連續屬性的離散化問題是制約粗糙集理論實用化的難點。
10、連接分析
它是以關系為主體,由人與人、物與物或是人與物的關系發展出相當多的應用。例如電信服務業可藉連結分析收集到顧客使用電話的時間與頻率,進而推斷顧客使用偏好為何,提出有利於公司的方案。除了電信業之外,愈來愈多的營銷業者亦利用連結分析做有利於企業的研究。
⑤ 數據挖掘的經典演算法
1. C4.5:是機器學習演算法中的一種分類決策樹演算法,其核心演算法是ID3演算法。
2. K-means演算法:是一種聚類演算法。
3.SVM:一種監督式學習的方法,廣泛運用於統計分類以及回歸分析中
4.Apriori :是一種最有影響的挖掘布爾關聯規則頻繁項集的演算法。
5.EM:最大期望值法。
6.pagerank:是google演算法的重要內容。
7. Adaboost:是一種迭代演算法,其核心思想是針對同一個訓練集訓練不同的分類器然後把弱分類器集合起來,構成一個更強的最終分類器。
8.KNN:是一個理論上比較成熟的的方法,也是最簡單的機器學習方法之一。
9.Naive Bayes:在眾多分類方法中,應用最廣泛的有決策樹模型和樸素貝葉斯(Naive Bayes)
10.Cart:分類與回歸樹,在分類樹下面有兩個關鍵的思想,第一個是關於遞歸地劃分自變數空間的想法,第二個是用驗證數據進行減枝。
關聯規則規則定義
在描述有關關聯規則的一些細節之前,我們先來看一個有趣的故事: 尿布與啤酒的故事。
在一家超市裡,有一個有趣的現象:尿布和啤酒赫然擺在一起出售。但是這個奇怪的舉措卻使尿布和啤酒的銷量雙雙增加了。這不是一個笑話,而是發生在美國沃爾瑪連鎖店超市的真實案例,並一直為商家所津津樂道。沃爾瑪擁有世界上最大的數據倉庫系統,為了能夠准確了解顧客在其門店的購買習慣,沃爾瑪對其顧客的購物行為進行購物籃分析,想知道顧客經常一起購買的商品有哪些。沃爾瑪數據倉庫里集中了其各門店的詳細原始交易數據。在這些原始交易數據的基礎上,沃爾瑪利用數據挖掘方法對這些數據進行分析和挖掘。一個意外的發現是:跟尿布一起購買最多的商品竟是啤酒!經過大量實際調查和分析,揭示了一個隱藏在尿布與啤酒背後的美國人的一種行為模式:在美國,一些年輕的父親下班後經常要到超市去買嬰兒尿布,而他們中有30%~40%的人同時也為自己買一些啤酒。產生這一現象的原因是:美國的太太們常叮囑她們的丈夫下班後為小孩買尿布,而丈夫們在買尿布後又隨手帶回了他們喜歡的啤酒。
按常規思維,尿布與啤酒風馬牛不相及,若不是藉助數據挖掘技術對大量交易數據進行挖掘分析,沃爾瑪是不可能發現數據內在這一有價值的規律的。
數據關聯是資料庫中存在的一類重要的可被發現的知識。若兩個或多個變數的取值之間存在某種規律性,就稱為關聯。關聯可分為簡單關聯、時序關聯、因果關聯。關聯分析的目的是找出資料庫中隱藏的關聯網。有時並不知道資料庫中數據的關聯函數,即使知道也是不確定的,因此關聯分析生成的規則帶有可信度。關聯規則挖掘發現大量數據中項集之間有趣的關聯或相關聯系。Agrawal等於1993年首先提出了挖掘顧客交易資料庫中項集間的關聯規則問題,以後諸多的研究人員對關聯規則的挖掘問題進行了大量的研究。他們的工作包括對原有的演算法進行優化,如引入隨機采樣、並行的思想等,以提高演算法挖掘規則的效率;對關聯規則的應用進行推廣。關聯規則挖掘在數據挖掘中是一個重要的課題,最近幾年已被業界所廣泛研究。
⑥ 帶你了解數據挖掘中的經典演算法
數據挖掘的演算法有很多,而不同的演算法有著不同的優點,同時也發揮著不同的作用。可以這么說,演算法在數據挖掘中做出了極大的貢獻,如果我們要了解數據挖掘的話就不得不了解這些演算法,下面我們就繼續給大家介紹一下有關數據挖掘的演算法知識。
1.The Apriori algorithm,
Apriori演算法是一種最有影響的挖掘布爾關聯規則頻繁項集的演算法。其核心是基於兩階段頻集思想的遞推演算法。該關聯規則在分類上屬於單維、單層、布爾關聯規則。在這里,所有支持度大於最小支持度的項集稱為頻繁項集,簡稱頻集。這個演算法是比較復雜的,但也是十分實用的。
2.最大期望演算法
在統計計算中,最大期望演算法是在概率模型中尋找參數最大似然估計的演算法,其中概率模型依賴於無法觀測的隱藏變數。最大期望經常用在機器學習和計算機視覺的數據集聚領域。而最大期望演算法在數據挖掘以及統計中都是十分常見的。
3.PageRank演算法
PageRank是Google演算法的重要內容。PageRank里的page不是指網頁,而是創始人的名字,即這個等級方法是以佩奇來命名的。PageRank根據網站的外部鏈接和內部鏈接的數量和質量倆衡量網站的價值。PageRank背後的概念是,每個到頁面的鏈接都是對該頁面的一次投票,被鏈接的越多,就意味著被其他網站投票越多。這個就是所謂的「鏈接流行度」,這個標准就是衡量多少人願意將他們的網站和你的網站掛鉤。PageRank這個概念引自學術中一篇論文的被引述的頻度——即被別人引述的次數越多,一般判斷這篇論文的權威性就越高。
3.AdaBoost演算法
Adaboost是一種迭代演算法,其核心思想是針對同一個訓練集訓練不同的分類器,然後把這些弱分類器集合起來,構成一個更強的最終分類器。其演算法本身是通過改變數據分布來實現的,它根據每次訓練集之中每個樣本的分類是否正確,以及上次的總體分類的准確率,來確定每個樣本的權值。將修改過權值的新數據集送給下層分類器進行訓練,最後將每次訓練得到的分類器最後融合起來,作為最後的決策分類器。這種演算法給數據挖掘工作解決了不少的問題。
數據挖掘演算法有很多,這篇文章中我們給大家介紹的演算法都是十分經典的演算法,相信大家一定可以從中得到有價值的信息。需要告訴大家的是,我們在進行數據挖掘工作之前一定要事先掌握好數據挖掘需呀掌握的各類演算法,這樣我們才能在工總中得心應手,如果基礎不牢固,那麼我們遲早是會被淘汰的。職場如戰場,我們一定要全力以赴。
⑦ 常用的數據挖掘演算法有哪幾類
常用的數據挖掘演算法分為以下幾類:神經網路,遺傳演算法,回歸演算法,聚類分析演算法,貝耶斯演算法。
目前已經進入大數據的時代,所以數據挖掘和大數據分析的就業前景非常好,學好大數據分析和數據挖掘可以在各個領域中發揮自己的價值;同時,大數據分析並不是一蹴而就的事情,而是需要你日積月累的數據處理經驗,不是會被輕易替代的。一家公司的各項工作,基本上都都用數據體現出來,一位高級的數據分析師職位通常是數據職能架構中領航者,擁有較高的分析和思辨能力,對於業務的理解到位,並且深度知曉公司的管理和商業行為,他可以負責一個子產品或模塊級別的項目,帶領團隊來全面解決問題,把控手下數據分析師的工作質量。
想要了解更多有關數據挖掘演算法的信息,可以了解一下CDA數據分析師的課程。課程教你學企業需要的敏捷演算法建模能力,可以學到前沿且實用的技術,挖掘數據的魅力;教你用可落地、易操作的數據科學思維和技術模板構建出優秀模型,只教實用干貨,以專精技術能力提升業務效果與效率。點擊預約免費試聽課。
⑧ 數據挖掘中的經典演算法
大家都知道,數據挖掘中有很多的演算法,不同的演算法有著不同的優勢,它們在數據挖掘領域都產生了極為深遠的影響。那麼大家知道不知知道數據挖掘中的經典演算法都有哪些呢?在這篇文章中我們就給大家介紹數據挖掘中三個經典的演算法,希望這篇文章能夠更好的幫助大家。
1.K-Means演算法
K-means algorithm演算法是一個聚類演算法,把n的對象根據他們的屬性分為k個分割,k大於n。它與處理混合正態分布的最大期望演算法很相似,因為他們都試圖找到數據中自然聚類的中心。它假設對象屬性來自於空間向量,並且目標是使各個群組內部的均方誤差總和最小。這種演算法在數據挖掘中是十分常見的演算法。
2.支持向量機
而Support vector machines就是支持向量機,簡稱SV機(論文中一般簡稱SVM)。它是一種監督式學習的方法,這種方法廣泛的應用於統計分類以及回歸分析中。支持向量機將向量映射到一個更高維的空間里,在這個空間里建立有一個最大間隔超平面。在分開數據的超平面的兩邊建有兩個互相平行的超平面。分隔超平面使兩個平行超平面的距離最大化。假定平行超平面間的距離或差距越大,分類器的總誤差越小。這些優點也就成就了這種演算法。
3.C4.5演算法
然後我們給大家說一下C4.5演算法,C4.5演算法是機器學習演算法中的一種分類決策樹演算法,其核心演算法是ID3演算法. C4.5演算法繼承了ID3演算法的優點,並對ID3演算法進行了改進,這種改進具體體現在四個方面,第一就是在樹構造過程中進行剪枝,第二就是能夠完成對連續屬性的離散化處理,第三就是用信息增益率來選擇屬性,克服了用信息增益選擇屬性時偏向選擇取值多的屬性的不足,第四就是能夠對不完整數據進行處理。那麼這種演算法的優點是什麼呢?優點就是產生的分類規則易於理解,准確率較高。其缺點是:在構造樹的過程中,需要對數據集進行多次的順序掃描和排序,因而導致演算法的低效。
相信大家看了這篇文章以後對The k-means algorithm演算法、Support vector machines、C4.5演算法有了比較是深刻的了解,其實這三種演算法那都是十分重要的演算法,能夠幫助數據挖掘解決更多的問題。大家在學習數據挖掘的時候一定要注意好這些問題。
⑨ 數據挖掘有哪些方法
1、神經元網路辦法
神經元網路由於本身優良的健壯性、自組織自適應性、並行計算、遍及貯存和高寬比容錯機制等特色特別適合處理數據發掘的難題,因而近些年愈來愈遭受大家的關心。
2、遺傳演算法
遺傳演算法是一種依據微生物自然選擇學說與基因遺傳原理的恣意優化演算法,是一種仿生技能全局性提升辦法。遺傳演算法具有的暗含並行性、便於和其他實體模型交融等特性促使它在數據發掘中被多方面運用。
3、決策樹演算法辦法
決策樹演算法是一種常見於預測模型的優化演算法,它依據將很多數據信息有目地歸類,從這當中尋找一些有使用價值的,潛在性的信息。它的要害優勢是敘說簡易,歸類速度更快,十分適宜規模性的數據處理辦法。
4、遮蓋正例抵觸典例辦法
它是使用遮蓋悉數正例、抵觸悉數典例的觀念來找尋規范。最先在正例結合中隨意選擇一個種子,到典例結合中逐一較為。與欄位名賦值組成的選擇子相溶則舍棄,反過來則保存。按此觀念循環系統悉數正例種子,將獲得正例的規范(選擇子的合取式)。
5、數據剖析辦法
在資料庫查詢欄位名項中心存有二種相關:函數關系和相關剖析,對他們的剖析可選用應用統計學辦法,即使用統計學原理對資料庫查詢中的信息展開剖析。可展開常見統計剖析、多元回歸剖析、相關性剖析、差異剖析等。
6、含糊集辦法
即使用含糊不清結合基礎理論對具體難題展開含糊不清評定、含糊不清管理決策、含糊不清系統識別和含糊聚類剖析。系統軟體的多元性越高,抽象性越強,一般含糊不清結合基礎理論是用從屬度來描繪含糊不清事情的亦此亦彼性的。