當前位置:首頁 » 操作系統 » 圖解演算法c

圖解演算法c

發布時間: 2023-07-13 18:40:41

A. 大數據經典演算法解析(1)一C4.5演算法

姓名:崔升    學號:14020120005

【嵌牛導讀】:

C4.5作為一種經典的處理大數據的演算法,是我們在學習互聯網大數據時不得不去了解的一種常用演算法

【嵌牛鼻子】:經典大數據演算法之C4.5簡單介紹

【嵌牛提問】:C4.5是一種怎麼的演算法,其決策機制靠什麼實現?

【嵌牛正文】:

決策樹模型:

決策樹是一種通過對特徵屬性的分類對樣本進行分類的樹形結構,包括有向邊與三類節點:

根節點(root node),表示第一個特徵屬性,只有出邊沒有入邊;

內部節點(internal node),表示特徵屬性,有一條入邊至少兩條出邊

葉子節點(leaf node),表示類別,只有一條入邊沒有出邊。

上圖給出了(二叉)決策樹的示例。決策樹具有以下特點:

對於二叉決策樹而言,可以看作是if-then規則集合,由決策樹的根節點到葉子節點對應於一條分類規則;

分類規則是 互斥並且完備 的,所謂 互斥 即每一條樣本記錄不會同時匹配上兩條分類規則,所謂 完備 即每條樣本記錄都在決策樹中都能匹配上一條規則。

分類的本質是對特徵空間的劃分,如下圖所示,

決策樹學習:

決策樹學習的本質是從訓練數據集中歸納出一組分類規則[2]。但隨著分裂屬性次序的不同,所得到的決策樹也會不同。如何得到一棵決策樹既對訓練數據有較好的擬合,又對未知數據有很好的預測呢?

首先,我們要解決兩個問題:

如何選擇較優的特徵屬性進行分裂?每一次特徵屬性的分裂,相當於對訓練數據集進行再劃分,對應於一次決策樹的生長。ID3演算法定義了目標函數來進行特徵選擇。

什麼時候應該停止分裂?有兩種自然情況應該停止分裂,一是該節點對應的所有樣本記錄均屬於同一類別,二是該節點對應的所有樣本的特徵屬性值均相等。但除此之外,是不是還應該其他情況停止分裂呢?

2. 決策樹演算法

特徵選擇

特徵選擇指選擇最大化所定義目標函數的特徵。下面給出如下三種特徵(Gender, Car Type, Customer ID)分裂的例子:

圖中有兩類類別(C0, C1),C0: 6是對C0類別的計數。直觀上,應選擇Car Type特徵進行分裂,因為其類別的分布概率具有更大的傾斜程度,類別不確定程度更小。

為了衡量類別分布概率的傾斜程度,定義決策樹節點tt的不純度(impurity),其滿足:不純度越小,則類別的分布概率越傾斜;下面給出不純度的的三種度量:

其中,p(ck|t)p(ck|t)表示對於決策樹節點tt類別ckck的概率。這三種不純度的度量是等價的,在等概率分布是達到最大值。

為了判斷分裂前後節點不純度的變化情況,目標函數定義為信息增益(information gain):

I(⋅)I(⋅)對應於決策樹節點的不純度,parentparent表示分裂前的父節點,NN表示父節點所包含的樣本記錄數,aiai表示父節點分裂後的某子節點,N(ai)N(ai)為其計數,nn為分裂後的子節點數。

特別地,ID3演算法選取 熵值 作為不純度I(⋅)I(⋅)的度量,則

cc指父節點對應所有樣本記錄的類別;AA表示選擇的特徵屬性,即aiai的集合。那麼,決策樹學習中的信息增益ΔΔ等價於訓練數據集中 類與特徵的互信息 ,表示由於得知特徵AA的信息訓練數據集cc不確定性減少的程度。

在特徵分裂後,有些子節點的記錄數可能偏少,以至於影響分類結果。為了解決這個問題,CART演算法提出了只進行特徵的二元分裂,即決策樹是一棵二叉樹;C4.5演算法改進分裂目標函數,用信息增益比(information gain ratio)來選擇特徵:

因而,特徵選擇的過程等同於計算每個特徵的信息增益,選擇最大信息增益的特徵進行分裂。此即回答前面所提出的第一個問題(選擇較優特徵)。ID3演算法設定一閾值,當最大信息增益小於閾值時,認為沒有找到有較優分類能力的特徵,沒有往下繼續分裂的必要。根據最大表決原則,將最多計數的類別作為此葉子節點。即回答前面所提出的第二個問題(停止分裂條件)。

決策樹生成:

ID3演算法的核心是根據信息增益最大的准則,遞歸地構造決策樹;演算法流程如下:

如果節點滿足停止分裂條件(所有記錄屬同一類別 or 最大信息增益小於閾值),將其置為葉子節點;

選擇信息增益最大的特徵進行分裂;

重復步驟1-2,直至分類完成。

C4.5演算法流程與ID3相類似,只不過將信息增益改為 信息增益比 。

3. 決策樹剪枝

過擬合

生成的決策樹對訓練數據會有很好的分類效果,卻可能對未知數據的預測不準確,即決策樹模型發生過擬合(overfitting)——訓練誤差(training error)很小、泛化誤差(generalization error,亦可看作為test error)較大。下圖給出訓練誤差、測試誤差(test error)隨決策樹節點數的變化情況:

可以觀察到,當節點數較小時,訓練誤差與測試誤差均較大,即發生了欠擬合(underfitting)。當節點數較大時,訓練誤差較小,測試誤差卻很大,即發生了過擬合。只有當節點數適中是,訓練誤差居中,測試誤差較小;對訓練數據有較好的擬合,同時對未知數據有很好的分類准確率。

發生過擬合的根本原因是分類模型過於復雜,可能的原因如下:

訓練數據集中有噪音樣本點,對訓練數據擬合的同時也對噪音進行擬合,從而影響了分類的效果;

決策樹的葉子節點中缺乏有分類價值的樣本記錄,也就是說此葉子節點應被剪掉。

剪枝策略

為了解決過擬合,C4.5通過剪枝以減少模型的復雜度。[2]中提出一種簡單剪枝策略,通過極小化決策樹的整體損失函數(loss function)或代價函數(cost function)來實現,決策樹TT的損失函數為:

其中,C(T)C(T)表示決策樹的訓練誤差,αα為調節參數,|T||T|為模型的復雜度。當模型越復雜時,訓練的誤差就越小。上述定義的損失正好做了兩者之間的權衡。

如果剪枝後損失函數減少了,即說明這是有效剪枝。具體剪枝演算法可以由動態規劃等來實現。

4. 參考資料

[1] Pang-Ning Tan, Michael Steinbach, Vipin Kumar, Introction to Data Mining .

[2] 李航,《統計學習方法》.

[3] Naren Ramakrishnan, The Top Ten Algorithms in Data Mining.

B. c語言演算法有哪些 並舉例和分析

演算法大全(C,C++)
一、 數論演算法

1.求兩數的最大公約數
function gcd(a,b:integer):integer;
begin
if b=0 then gcd:=a
else gcd:=gcd (b,a mod b);
end ;

2.求兩數的最小公倍數
function lcm(a,b:integer):integer;
begin
if a<b then swap(a,b);
lcm:=a;
while lcm mod b>0 do inc(lcm,a);
end;

3.素數的求法
A.小范圍內判斷一個數是否為質數:
function prime (n: integer): Boolean;
var I: integer;
begin
for I:=2 to trunc(sqrt(n)) do
if n mod I=0 then begin
prime:=false; exit;
end;
prime:=true;
end;

B.判斷longint范圍內的數是否為素數(包含求50000以內的素數表):
procere getprime;
var
i,j:longint;
p:array[1..50000] of boolean;
begin
fillchar(p,sizeof(p),true);
p[1]:=false;
i:=2;
while i<50000 do begin
if p[i] then begin
j:=i*2;
while j<50000 do begin
p[j]:=false;
inc(j,i);
end;
end;
inc(i);
end;
l:=0;
for i:=1 to 50000 do
if p[i] then begin
inc(l);pr[l]:=i;
end;
end;{getprime}

function prime(x:longint):integer;
var i:integer;
begin
prime:=false;
for i:=1 to l do
if pr[i]>=x then break
else if x mod pr[i]=0 then exit;
prime:=true;
end;{prime}

二、圖論演算法

1.最小生成樹

A.Prim演算法:

procere prim(v0:integer);
var
lowcost,closest:array[1..maxn] of integer;
i,j,k,min:integer;
begin
for i:=1 to n do begin
lowcost[i]:=cost[v0,i];
closest[i]:=v0;
end;
for i:=1 to n-1 do begin
{尋找離生成樹最近的未加入頂點k}
min:=maxlongint;
for j:=1 to n do
if (lowcost[j]<min) and (lowcost[j]<>0) then begin
min:=lowcost[j];
k:=j;
end;
lowcost[k]:=0; {將頂點k加入生成樹}
{生成樹中增加一條新的邊k到closest[k]}
{修正各點的lowcost和closest值}
for j:=1 to n do
if cost[k,j]<lwocost[j] then begin
lowcost[j]:=cost[k,j];
closest[j]:=k;
end;
end;
end;{prim}

B.Kruskal演算法:(貪心)

按權值遞增順序刪去圖中的邊,若不形成迴路則將此邊加入最小生成樹。
function find(v:integer):integer; {返回頂點v所在的集合}
var i:integer;
begin
i:=1;
while (i<=n) and (not v in vset[i]) do inc(i);
if i<=n then find:=i else find:=0;
end;

procere kruskal;
var
tot,i,j:integer;
begin
for i:=1 to n do vset[i]:=[i];{初始化定義n個集合,第I個集合包含一個元素I}
p:=n-1; q:=1; tot:=0; {p為尚待加入的邊數,q為邊集指針}
sort;
{對所有邊按權值遞增排序,存於e[I]中,e[I].v1與e[I].v2為邊I所連接的兩個頂點的序號,e[I].len為第I條邊的長度}
while p>0 do begin
i:=find(e[q].v1);j:=find(e[q].v2);
if i<>j then begin
inc(tot,e[q].len);
vset[i]:=vset[i]+vset[j];vset[j]:=[];
dec(p);
end;
inc(q);
end;
writeln(tot);
end;

2.最短路徑

A.標號法求解單源點最短路徑:
var
a:array[1..maxn,1..maxn] of integer;
b:array[1..maxn] of integer; {b[i]指頂點i到源點的最短路徑}
mark:array[1..maxn] of boolean;

procere bhf;
var
best,best_j:integer;
begin
fillchar(mark,sizeof(mark),false);
mark[1]:=true; b[1]:=0;{1為源點}
repeat
best:=0;
for i:=1 to n do
If mark[i] then {對每一個已計算出最短路徑的點}
for j:=1 to n do
if (not mark[j]) and (a[i,j]>0) then
if (best=0) or (b[i]+a[i,j]<best) then begin
best:=b[i]+a[i,j]; best_j:=j;
end;
if best>0 then begin
b[best_j]:=best;mark[best_j]:=true;
end;
until best=0;
end;{bhf}

B.Floyed演算法求解所有頂點對之間的最短路徑:
procere floyed;
begin
for I:=1 to n do
for j:=1 to n do
if a[I,j]>0 then p[I,j]:=I else p[I,j]:=0; {p[I,j]表示I到j的最短路徑上j的前驅結點}
for k:=1 to n do {枚舉中間結點}
for i:=1 to n do
for j:=1 to n do
if a[i,k]+a[j,k]<a[i,j] then begin
a[i,j]:=a[i,k]+a[k,j];
p[I,j]:=p[k,j];
end;
end;

C. Dijkstra 演算法:

var
a:array[1..maxn,1..maxn] of integer;
b,pre:array[1..maxn] of integer; {pre[i]指最短路徑上I的前驅結點}
mark:array[1..maxn] of boolean;
procere dijkstra(v0:integer);
begin
fillchar(mark,sizeof(mark),false);
for i:=1 to n do begin
d[i]:=a[v0,i];
if d[i]<>0 then pre[i]:=v0 else pre[i]:=0;
end;
mark[v0]:=true;
repeat {每循環一次加入一個離1集合最近的結點並調整其他結點的參數}
min:=maxint; u:=0; {u記錄離1集合最近的結點}
for i:=1 to n do
if (not mark[i]) and (d[i]<min) then begin
u:=i; min:=d[i];
end;
if u<>0 then begin
mark[u]:=true;
for i:=1 to n do
if (not mark[i]) and (a[u,i]+d[u]<d[i]) then begin
d[i]:=a[u,i]+d[u];
pre[i]:=u;
end;
end;
until u=0;
end;

3.計算圖的傳遞閉包

Procere Longlink;
Var
T:array[1..maxn,1..maxn] of boolean;
Begin
Fillchar(t,sizeof(t),false);
For k:=1 to n do
For I:=1 to n do
For j:=1 to n do T[I,j]:=t[I,j] or (t[I,k] and t[k,j]);
End;

4.無向圖的連通分量

A.深度優先
procere dfs ( now,color: integer);
begin
for i:=1 to n do
if a[now,i] and c[i]=0 then begin {對結點I染色}
c[i]:=color;
dfs(I,color);
end;
end;

B 寬度優先(種子染色法)

5.關鍵路徑

幾個定義: 頂點1為源點,n為匯點。
a. 頂點事件最早發生時間Ve[j], Ve [j] = max{ Ve [j] + w[I,j] },其中Ve (1) = 0;
b. 頂點事件最晚發生時間 Vl[j], Vl [j] = min{ Vl[j] – w[I,j] },其中 Vl(n) = Ve(n);
c. 邊活動最早開始時間 Ee[I], 若邊I由<j,k>表示,則Ee[I] = Ve[j];
d. 邊活動最晚開始時間 El[I], 若邊I由<j,k>表示,則El[I] = Vl[k] – w[j,k];
若 Ee[j] = El[j] ,則活動j為關鍵活動,由關鍵活動組成的路徑為關鍵路徑。
求解方法:
a. 從源點起topsort,判斷是否有迴路並計算Ve;
b. 從匯點起topsort,求Vl;
c. 算Ee 和 El;

6.拓撲排序

找入度為0的點,刪去與其相連的所有邊,不斷重復這一過程。
例 尋找一數列,其中任意連續p項之和為正,任意q 項之和為負,若不存在則輸出NO.

7.迴路問題

Euler迴路(DFS)
定義:經過圖的每條邊僅一次的迴路。(充要條件:圖連同且無奇點)

Hamilton迴路
定義:經過圖的每個頂點僅一次的迴路。

一筆畫
充要條件:圖連通且奇點個數為0個或2個。

9.判斷圖中是否有負權迴路 Bellman-ford 演算法

x[I],y[I],t[I]分別表示第I條邊的起點,終點和權。共n個結點和m條邊。
procere bellman-ford
begin
for I:=0 to n-1 do d[I]:=+infinitive;
d[0]:=0;
for I:=1 to n-1 do
for j:=1 to m do {枚舉每一條邊}
if d[x[j]]+t[j]<d[y[j]] then d[y[j]]:=d[x[j]]+t[j];
for I:=1 to m do
if d[x[j]]+t[j]<d[y[j]] then return false else return true;
end;

10.第n最短路徑問題

*第二最短路徑:每舉最短路徑上的每條邊,每次刪除一條,然後求新圖的最短路徑,取這些路徑中最短的一條即為第二最短路徑。
*同理,第n最短路徑可在求解第n-1最短路徑的基礎上求解。

三、背包問題

*部分背包問題可有貪心法求解:計算Pi/Wi
數據結構:
w[i]:第i個背包的重量;
p[i]:第i個背包的價值;

1.0-1背包: 每個背包只能使用一次或有限次(可轉化為一次):

A.求最多可放入的重量。
NOIP2001 裝箱問題
有一個箱子容量為v(正整數,o≤v≤20000),同時有n個物品(o≤n≤30),每個物品有一個體積 (正整數)。要求從 n 個物品中,任取若千個裝入箱內,使箱子的剩餘空間為最小。
l 搜索方法
procere search(k,v:integer); {搜索第k個物品,剩餘空間為v}
var i,j:integer;
begin
if v<best then best:=v;
if v-(s[n]-s[k-1])>=best then exit; {s[n]為前n個物品的重量和}
if k<=n then begin
if v>w[k] then search(k+1,v-w[k]);
search(k+1,v);
end;
end;

l DP
F[I,j]為前i個物品中選擇若干個放入使其體積正好為j的標志,為布爾型。
實現:將最優化問題轉化為判定性問題
f [I, j] = f [ i-1, j-w[i] ] (w[I]<=j<=v) 邊界:f[0,0]:=true.
For I:=1 to n do
For j:=w[I] to v do F[I,j]:=f[I-1,j-w[I]];
優化:當前狀態只與前一階段狀態有關,可降至一維。
F[0]:=true;
For I:=1 to n do begin
F1:=f;
For j:=w[I] to v do
If f[j-w[I]] then f1[j]:=true;
F:=f1;
End;

B.求可以放入的最大價值。
F[I,j] 為容量為I時取前j個背包所能獲得的最大價值。
F [i,j] = max { f [ i – w [ j ], j-1] + p [ j ], f[ i,j-1] }

C.求恰好裝滿的情況數。
DP:
Procere update;
var j,k:integer;
begin
c:=a;
for j:=0 to n do
if a[j]>0 then
if j+now<=n then inc(c[j+now],a[j]);
a:=c;
end;

2.可重復背包

A求最多可放入的重量。
F[I,j]為前i個物品中選擇若干個放入使其體積正好為j的標志,為布爾型。
狀態轉移方程為
f[I,j] = f [ I-1, j – w[I]*k ] (k=1.. j div w[I])

B.求可以放入的最大價值。
USACO 1.2 Score Inflation
進行一次競賽,總時間T固定,有若干種可選擇的題目,每種題目可選入的數量不限,每種題目有一個ti(解答此題所需的時間)和一個si(解答此題所得的分數),現要選擇若干題目,使解這些題的總時間在T以內的前提下,所得的總分最大,求最大的得分。
*易想到:
f[i,j] = max { f [i- k*w[j], j-1] + k*p[j] } (0<=k<= i div w[j])
其中f[i,j]表示容量為i時取前j種背包所能達到的最大值。
*實現:
Begin
FillChar(f,SizeOf(f),0);
For i:=1 To M Do
For j:=1 To N Do
If i-problem[j].time>=0 Then
Begin
t:=problem[j].point+f[i-problem[j].time];
If t>f[i] Then f[i]:=t;
End;
Writeln(f[M]);
End.

C.求恰好裝滿的情況數。
Ahoi2001 Problem2
求自然數n本質不同的質數和的表達式的數目。
思路一,生成每個質數的系數的排列,在一一測試,這是通法。
procere try(dep:integer);
var i,j:integer;
begin
cal; {此過程計算當前系數的計算結果,now為結果}
if now>n then exit; {剪枝}
if dep=l+1 then begin {生成所有系數}
cal;
if now=n then inc(tot);
exit;
end;
for i:=0 to n div pr[dep] do begin
xs[dep]:=i;
try(dep+1);
xs[dep]:=0;
end;
end;

思路二,遞歸搜索效率較高
procere try(dep,rest:integer);
var i,j,x:integer;
begin
if (rest<=0) or (dep=l+1) then begin
if rest=0 then inc(tot);
exit;
end;
for i:=0 to rest div pr[dep] do
try(dep+1,rest-pr[dep]*i);
end;
{main: try(1,n); }

思路三:可使用動態規劃求解
USACO1.2 money system
V個物品,背包容量為n,求放法總數。
轉移方程:

Procere update;
var j,k:integer;
begin
c:=a;
for j:=0 to n do
if a[j]>0 then
for k:=1 to n div now do
if j+now*k<=n then inc(c[j+now*k],a[j]);
a:=c;
end;
{main}
begin
read(now); {讀入第一個物品的重量}
i:=0; {a[i]為背包容量為i時的放法總數}
while i<=n do begin
a[i]:=1; inc(i,now); end; {定義第一個物品重的整數倍的重量a值為1,作為初值}
for i:=2 to v do
begin
read(now);
update; {動態更新}
end;
writeln(a[n]);

四、排序演算法

A.快速排序:

procere qsort(l,r:integer);
var i,j,mid:integer;
begin
i:=l;j:=r; mid:=a[(l+r) div 2]; {將當前序列在中間位置的數定義為中間數}
repeat
while a[i]<mid do inc(i); {在左半部分尋找比中間數大的數}
while a[j]>mid do dec(j);{在右半部分尋找比中間數小的數}
if i<=j then begin {若找到一組與排序目標不一致的數對則交換它們}
swap(a[i],a[j]);
inc(i);dec(j); {繼續找}
end;
until i>j;
if l<j then qsort(l,j); {若未到兩個數的邊界,則遞歸搜索左右區間}
if i<r then qsort(i,r);
end;{sort}

B.插入排序:

思路:當前a[1]..a[i-1]已排好序了,現要插入a[i]使a[1]..a[i]有序。
procere insert_sort;
var i,j:integer;
begin
for i:=2 to n do begin
a[0]:=a[i];
j:=i-1;
while a[0]<a[j] do begin
a[j+1]:=a[j];
j:=j-1;
end;
a[j+1]:=a[0];
end;
end;{inset_sort}

C.選擇排序:
procere sort;
var i,j,k:integer;
begin
for i:=1 to n-1 do
for j:=i+1 to n do
if a[i]>a[j] then swap(a[i],a[j]);
end;

D. 冒泡排序
procere bubble_sort;
var i,j,k:integer;
begin
for i:=1 to n-1 do
for j:=n downto i+1 do
if a[j]<a[j-1] then swap( a[j],a[j-1]); {每次比較相鄰元素的關系}
end;

E.堆排序:
procere sift(i,m:integer);{調整以i為根的子樹成為堆,m為結點總數}
var k:integer;
begin
a[0]:=a[i]; k:=2*i;{在完全二叉樹中結點i的左孩子為2*i,右孩子為2*i+1}
while k<=m do begin
if (k<m) and (a[k]<a[k+1]) then inc(k);{找出a[k]與a[k+1]中較大值}
if a[0]<a[k] then begin a[i]:=a[k];i:=k;k:=2*i; end
else k:=m+1;
end;
a[i]:=a[0]; {將根放在合適的位置}
end;

procere heapsort;
var
j:integer;
begin
for j:=n div 2 downto 1 do sift(j,n);
for j:=n downto 2 do begin
swap(a[1],a[j]);
sift(1,j-1);
end;

C. 詳解C語言演算法

完整的程序如下:
typedef int status;
#define OK 1
#define ERROR 0
#define TRUE 1
#define FALSE 0
#define MAXSIZE 10
#include<stdarg.h>
#include<iostream.h>
#include<stdlib.h>
typedef int ElemType;
#define MAXDIM 8
typedef struct{
ElemType * base;
int dim;
int *bounds;
int *constants;
}Array;

status InitArray(Array &A,int dim,...)
{va_list ap;
if(dim<1||dim>MAXDIM) return ERROR;
A.dim=dim;
int i;
int total=1;
A.bounds=(int *)malloc(dim*sizeof(int));
if(!A.bounds) return ERROR;
va_start(ap,dim);
for(i=0;i<dim;i++)
{A.bounds[i]=va_arg(ap,int);
if(A.bounds[i]<0) return ERROR;
total*=A.bounds[i];
}
va_end(ap);
A.base=(ElemType*)malloc(total*sizeof(ElemType));
if(!A.base) return ERROR;
A.constants=(int *)malloc(dim*sizeof(int));
if(!A.constants) return ERROR;
A.constants[dim-1]=1;
for(i=dim-2;i>=0;i--)
A.constants[i]=A.constants[i+1]*A.bounds[i+1];
return OK;
}

status DestoryArray(Array &A)
{if(!A.base) return ERROR;
free(A.base);
if(!A.bounds) return ERROR;
free(A.bounds);
if(!A.constants) return ERROR;
free(A.constants);
A.dim=0;
return OK;
}

status Locate(Array A,int & off,...)
{va_list ap;
va_start(ap,off);
off=0;
int ind;
int i;
for(i=0;i<A.dim;i++)
{ind=va_arg(ap,int);
if(ind>A.bounds[i]||ind<0) return ERROR;
off+=ind*A.constants[i];
}
va_end(ap);
return OK;
}

status Value(Array A,ElemType & e,...)
{int off;
va_list ap;
va_start(ap,e);
Locate(A,off,ap);
e=A.base[off];
va_end(ap);
return OK;
}

status Assign(Array A,ElemType e,...)
{int off;
va_list ap;
va_start(ap,e);
Locate(A,off,ap);
A.base[off]=e;
va_end(ap);
return OK;
}
int main()
{Array A;
InitArray(A,2,2,5);
int i;
for(i=0;i<10;i++)
{ cout<<"請輸入數據"<<endl;
cin>>A.base[i];
}

ElemType e;
int off;
Locate(A,off,2,3);
cout<<"偏移是"<<off<<endl;
Value(A,e,2,4);
cout<<"第二行第四列是"<<e<<endl;
cin>>e;
Assign(A,e,2,2);
Value(A,e,2,2);
cout<<"第二行第二列是"<<e<<endl;
DestoryArray(A);
return 0;
}

執行InitArray(A,2,2,5)後
A.bounds[0]=2, A.bounds[1]=5
A.constants[1]=1, A.constants[0]=5
並且為A.base分配了10個ElemType型的元素空間

PS:關鍵是搞懂省略號參數列表的用法

D. 蝴蝶演算法口訣圖解

蝴蝶演算法口訣圖解,如下:

蝴蝶演算法(Butterfly Algorithm)是根據蝴蝶受香味吸引飛行的行為而提出的優化演算法。演算法於2015年提出,效果中規中矩,不過相關的論文數量也不少了。演算法的流程和結構非常簡單,不過論文對演算法的細節描述不夠清晰,有些參數意義不明。讓罩

其中,x:表示第i個蝴蝶在第t次迭代中的解向量,這里a*表示目前為止的最優解。第2隻 蝴 蝶的 香 味用 f;來表示,r為0到1的隨機坦御鬧數。局部搜索可表示為x+1 =對 + (r2 *x -x) * f

其中r為0到1的隨機數,x和x:表示從解空間中隨機選擇的第k只和第 j只蝴蝶。在蝴蝶的覓食過程中,全局和局部搜索都會發生,為此,設定一個開關概率p來轉換普通的全局搜索和容集的局部搜索。每次迭代用式(4)隨機產生一個數r,與開關概率p進行比較來決定進行全局搜索還是局部搜索。

E. c語言演算法流程圖中的N和Y是什麼意思

No和Yes的縮寫。
一般用在 if 語句的兩個分支,
一個分支用 N 標識,表示條件不成立執行這個分支;
另一個分支用 Y 標識,表示條件成立執行這個分支。

熱點內容
編程右交換 發布:2025-03-16 15:28:43 瀏覽:397
根號的除法運演算法則 發布:2025-03-16 15:26:35 瀏覽:762
冰箱壓縮機照片 發布:2025-03-16 15:25:34 瀏覽:881
博雅象棋伺服器地址 發布:2025-03-16 15:02:26 瀏覽:815
如何實現職業化配置管理 發布:2025-03-16 14:55:41 瀏覽:967
一編程就頭疼 發布:2025-03-16 14:39:25 瀏覽:501
如何連接自己的個人伺服器 發布:2025-03-16 14:33:14 瀏覽:746
安卓緩存照片進相冊里怎麼取消 發布:2025-03-16 14:33:08 瀏覽:738
a站怎麼緩存 發布:2025-03-16 14:31:28 瀏覽:991
javascriptdes演算法 發布:2025-03-16 14:23:57 瀏覽:320