當前位置:首頁 » 操作系統 » 匹配演算法有

匹配演算法有

發布時間: 2023-07-10 12:09:32

㈠ 圖像匹配的演算法

迄今為止,人們已經提出了各種各樣的圖像匹配演算法,但從總體上講,這些匹配演算法可以分成關系結構匹配方法、結合特定理論工具的匹配方法、基於灰度信息的匹配方法、基於亞像元匹配方法、基於內容特徵的匹配方法五大類型 基於內容特徵的匹配首先提取反映圖像重要信息的特徵,而後以這些特徵為模型進行匹配。局部特徵有點、邊緣、線條和小的區域,全局特徵包括多邊形和稱為結構的復雜的圖像內容描述。特徵提取的結果是一個含有特徵的表和對圖像的描述,每一個特徵由一組屬性表示,對屬性的進一步描述包括邊緣的定向和弧度,邊與線的長度和曲率,區域的大小等。除了局部特徵的屬性外,還用這些局部特徵之間的關系描述全局特徵,這些關系可以是幾何關系,例如兩個相鄰的三角形之間的邊,或兩個邊之間的距離可以是輻射度量關系,例如灰度值差別,或兩個相鄰區域之間的灰度值方差或拓撲關系,例如一個特徵受限於另一個特徵。人們一般提到的基於特徵的匹配絕大多數都是指基於點、線和邊緣的局部特徵匹配,而具有全局特徵的匹配實質上是我們上面提到的關系結構匹配方法。特徵是圖像內容最抽象的描述,與基於灰度的匹配方法比,特相對於幾何圖像和輻射影響來說更不易變化,但特徵提取方法的計算代價通常較,並且需要一些自由參數和事先按照經驗選取的閉值,因而不便於實時應用同時,在紋理較少的圖像區域提取的特徵的密度通常比較稀少,使局部特徵的提 取比較困難。另外,基於特徵的匹配方法的相似性度量也比較復雜,往往要以特徵屬性、啟發式方法及閉方法的結合來確定度量方法。基於圖像特徵的匹配方法可以克服利用圖像灰度信息進行匹配的缺點,由於圖像的特徵點比象素點要少很多,因而可以大大減少匹配過程的計算量同時,特徵點的匹配度量值對位置的變化比較敏感,可以大大提高匹配的精確程度而且,特徵點的提取過程可以減少雜訊的影響,對灰度變化,圖像形變以及遮擋等都有較好的適應能力。所以基於圖像特徵的匹配在實際中的應用越來越廣-泛。所使用的特徵基元有點特徵明顯點、角點、邊緣點等、邊緣線段等。

㈡ 基於特徵的影像匹配演算法有哪些

基於局部約束的方法:有區域匹配(主要是基於窗口)、特徵匹配(基於特徵點,如SIFT)、相位匹配(主要用濾波來做)。
基於全局約束的方法:主要有動態規劃演算法、圖割演算法、人工智慧演算法、協同演算法、置信度傳播演算法、非線性擴散演算法等。
那個發展史就找兩本攝影測量的書或下幾篇論文看看就知道了

㈢ KMP模式匹配演算法是什麼

KMP模式匹配演算法是一種改進演算法,是由D.E.Knuth、J.H.Morris和v.R.Pratt提出來的,因此人們稱它為「克努特-莫里斯-普拉特操作」,簡稱KMP演算法。此演算法可以在O(n+m)的時間數量級上完成串的模式匹配操作。其改進在於:每當一趟匹配過程出現字元不相等時,主串指針i不用回溯,而是利用已經得到的「部分匹配」結果,將模式串的指針j向右「滑動」盡可能遠的一段距離後,繼續進行比較。

1.KMP模式匹配演算法分析回顧圖4-5所示的匹配過程示例,在第三趟匹配中,當i=7、j=5字元比較不等時,又從i=4、j=1重新開始比較。然而,經仔細觀察發現,i=4和j=1、i=5和j=1以及i=6和j=1這三次比較都是不必進行的。因為從第三趟部分匹配的結果就可得出,主串中的第4、5和6個字元必然是b、c和a(即模式串第2、第2和第4個字元)。因為模式中的第一個字元是a,因此它無須再和這三個字元進行比較,而僅需將模式向右滑動2個字元的位置進行i=7、j=2時的字元比較即可。同理,在第一趟匹配中出現字元不等時,僅需將模式串向右移動兩個字元的位置繼續進行i=2、j=1時的字元比較。由此,在整個匹配過程中,i指針沒有回溯,如圖1所示。

圖1改進演算法的模式匹配過程示意

㈣ 【演算法筆記】字元串匹配

BF 演算法中的 BF 是 Brute Force 的縮寫,中文叫作暴力匹配演算法,也叫樸素匹配演算法:

主串和模式串:
在字元串 A 中查找字元串 B,那字元串 A 就是主串,字元串 B 就是模式串。我們把主串的長度記作 n,模式串的長度記作 m

我們在主串中,檢查起始位置分別是 0、1、2…n-m 且長度為 m 的 n-m+1 個子串,看有沒有跟模式串匹配的。

BF 演算法的時間復雜度是 O(n*m)

等價於

比如匹配Google 和Goo 是最好時間復雜度,匹配Google 和ble是匹配失敗的最好時間復雜度。

KMP演算法是一種改進的字元串匹配演算法,由D.E.Knuth與J.H.Morris和V.R.Pratt同時發現,因此人們稱它為克努特—莫里斯—普拉特演算法。KMP演算法主要分為兩個步驟:字元串的自我匹配,目標串和模式串之間的匹配。

看來網上很多的文章,感覺很多的都沒有說清楚,這里直接復制阮一峰的內容,講的很清晰
內容來自 http://www.ruanyifeng.com/blog/

首先,字元串"BBC ABCDAB ABCDABCDABDE"的第一個字元與搜索詞"ABCDABD"的第一個字元,進行比較。因為B與A不匹配,所以搜索詞後移一位。

因為B與A不匹配,搜索詞再往後移。

就這樣,直到字元串有一個字元,與搜索詞的第一個字元相同為止。

接著比較字元串和搜索詞的下一個字元,還是相同。

直到字元串有一個字元,與搜索詞對應的字元不相同為止。

這時,最自然的反應是,將搜索詞整個後移一位,再從頭逐個比較。這樣做雖然可行,但是效率很差,因為你要把"搜索位置"移到已經比較過的位置,重比一遍。

一個基本事實是,當空格與D不匹配時,你其實知道前面六個字元是"ABCDAB"。KMP演算法的想法是,設法利用這個已知信息,不要把"搜索位置"移回已經比較過的位置,繼續把它向後移,這樣就提高了效率。

怎麼做到這一點呢?可以針對搜索詞,算出一張《部分匹配表》(Partial Match Table)。這張表是如何產生的,後面再介紹,這里只要會用就可以了。

已知空格與D不匹配時,前面六個字元"ABCDAB"是匹配的。查表可知,最後一個匹配字元B對應的"部分匹配值"為2,因此按照下面的公式算出向後移動的位數:

因為 6 - 2 等於4,所以將搜索詞向後移動4位。

因為空格與C不匹配,搜索詞還要繼續往後移。這時,已匹配的字元數為2("AB"),對應的"部分匹配值"為0。所以,移動位數 = 2 - 0,結果為 2,於是將搜索詞向後移2位。

因為空格與A不匹配,繼續後移一位。

逐位比較,直到發現C與D不匹配。於是,移動位數 = 6 - 2,繼續將搜索詞向後移動4位。

逐位比較,直到搜索詞的最後一位,發現完全匹配,於是搜索完成。如果還要繼續搜索(即找出全部匹配),移動位數 = 7 - 0,再將搜索詞向後移動7位,這里就不再重復了。

下面介紹《部分匹配表》是如何產生的。

首先,要了解兩個概念:"前綴"和"後綴"。 "前綴"指除了最後一個字元以外,一個字元串的全部頭部組合;"後綴"指除了第一個字元以外,一個字元串的全部尾部組合。

"部分匹配值"就是"前綴"和"後綴"的最長的共有元素的長度。以"ABCDABD"為例,

"部分匹配"的實質是,有時候,字元串頭部和尾部會有重復。比如,"ABCDAB"之中有兩個"AB",那麼它的"部分匹配值"就是2("AB"的長度)。搜索詞移動的時候,第一個"AB"向後移動4位(字元串長度-部分匹配值),就可以來到第二個"AB"的位置。

BM(Boyer-Moore)演算法。它是一種非常高效的字元串匹配演算法,有實驗統計,它的性能是著名的KMP 演算法的 3 到 4 倍。

BM 演算法包含兩部分,分別是壞字元規則(bad character rule)和好後綴規則(good suffix shift)

未完待續

參考文章:
字元串匹配的Boyer-Moore演算法

㈤ 串的模式匹配演算法

本文主要講述了串的模式匹配演算法,包括BF演算法、RK演算法、KMP演算法、BM演算法,使用不同的演算法實現目標串查找子串,重點在於分析的過程,通過不同的演算法分析提高邏輯思維能力

模式匹配的目的就是在目標串中查找與模式串相等的子串。在這里稱呼主串為s,模式串為t,主串的長度為n,模式串的長度為m

暴力演算法,將目標串和模式串的每個字元都進行一一比較。性能最差,但是使用最廣,因為實現簡單,而且在字元串較小的情況下耗費的性能也很小。

O(n*m)

RK演算法把字元串比較問題,轉換為了Hash值比較問題。
將模式串t的每個字元的比較改成了將串作為整體與目標串進行哈希值比較,這樣就減少了比較次數
以前模式串與子串的比較需要比較每個字元,現在只要整體比較依次哈希值就可以。所以減少了比較次數。

哈希演算法

這里我們可以發現一個Hash沖突問題,比如"abc"和"bc"的Hash值是一樣的,因為最高位是0。所以還需要進行哈希沖突演算法。

哈希沖突演算法:

利用前一個結果計算下一個哈希值
這是因為目標串的相鄰子串,其實相差的只有第一個字元和最後一個字元,其他字元是相同的,
所以我們可以利用前一個計算結果減去前一個字元串的第一個字元串,加上這個字元串的最後一個字元就夠了。

針對BF的弊端,在KMP演算法中可以進行多字元的跳躍對比,以此來避免目標串的不必要回溯。

例子:

簡單說明一下:

真子串:

匹配:

例如:目標串:"abxabcabcaby",模式串:"abcaby"

模式串的最大真子串為ab,
我們在匹配時,發現目標串的子串abcabc與模式串的前字元都匹配,最後一個字元不匹配
所以就從目標串的abcabc的後面abc開始與模式串進行匹配,而不需要匹配前面的abc了。

也就是從上一個a字元直接跳躍到了下一個a字元,而不是從b字元開始。

會存在一種情況:

實現思想:

它是一種非常高效的字元串匹配演算法,有實驗統計,它的性能是著名的KMP演算法的三四倍。BM演算法的原理很多復雜,比較難懂,學起來比較燒腦。
實現思想和KMP演算法基本上是一樣的,都是先計算模式串的真子串,之後再查找真子串的大小,當出現不匹配時,直接在真子串後進行匹配,區別於KMP演算法,它是從後往前匹配的

這里比上面的KMP演算法增加了一個壞字元規則,可以更快的跳躍,當然KMP演算法本身也可以使用壞字元規則

壞字元規則

好後綴規則

㈥ 字元串匹配演算法的使用(未完待整理)

字元串的匹配在Java中都知道使用indexOf函數來實現,那麼其匹配演算法是怎麼樣的呢?

單模式和多模式的區別就是一次遍歷主串能否將多個模式的字元串都查找出來。

英文全稱為Brute Force,暴力匹配演算法,匹配字元串的方法比較暴力,也比較簡單易懂。其大概的思路就是:

我們可以看到,在極端情況下,在主串 aaaa...aab 中尋找模式串 aab ,那麼總共需要尋找(n-m+1)次,且每次都需要比對m次,那麼時間復雜度將是 (n-m+1)*m ,即 O(n*m) ;但實際上並不會這么低效,因為我們的使用場景中主串和模式串都不會太長,而且在每個子串和模式串進行比對時,只要中途有一個不匹配,那麼當前比對就會提前結束,因此大部分情況下,時間復雜度都會比 O(n*m) 要好。

我們在BF演算法的基礎上引入哈希演算法,我們不需要將每個子串與模式串逐個字元地進行比較,而是計算得出每個子串的hash值,然後和模式串的hash值進行比較,如果有相等的,那就說明有子串和模式串匹配上了。

雖然我們只需要比對模式串和子串的hash值就能得到匹配結果,次數為(n-m+1),但是對每個子串進行hash計算的時候,是要遍歷每個字元的,因此次數也是m,那麼總的時間復雜度還是 O(n*m) ,並沒有明顯地提升。

那麼我們該如何想出一個辦法,使得每個子串hash值的計算時間得到提升呢?這就是RK演算法的精髓,假設子串包含的字元集中元素個數為k,那麼就用k進制數來代表這個子串,然後hash的過程就是將這個k進制的數轉換為十進制的數,這個十進制的數就是該子串的hash值。

相鄰子串的hash值計算是有規律的,我們只需要遍歷一次主串就能得到所有子串的hash值,演算法復雜度為O(n),而不是像原先一樣,每個子串都需要O(m)的時間復雜度。

然後將模式串的hash值和所有子串的hash值進行比較,每次比較的時間復雜度是 O(1) ,總共比較(n-m+1)次,所以RK演算法的總的時間開銷為 O(n)+O(1)*O(n-m+1) ,即為 O(n) ,時間復雜度比BF演算法更加高效。

當然,有hash的地方就有可能會存在hash沖突,有可能子串和hash值和模式串的hash值是一樣的,但內容就是不一樣,此時怎麼辦呢?其實很簡單,對於hash值一樣的子串,我們增加雙保險,再比較一下這m個字元是否都一樣即可,總的時間開銷為 O(n)+O(1)*O(n-m+1)+O(m) ,即為 O(n) 。

如果極端情況下出現了很多hash沖突呢?我們對於每個和模式串相同hash值的子串都需要逐一再進行比較,那麼總的時間開銷就會為 O(n)+O(1)*O(n-m+1)+O(m)*O(n-m+1) ,即為 O(n*m) ,不過這種概率太小了,大部分情況下都不會這樣。

在真正的文本編輯器中查找和替換某個字元串時,使用的演算法既不是上述的BF演算法,也不是RK演算法;BF演算法只適合不是很長的主串,RK演算法則要設計一個沖突概率很低的hash演算法,這個比較困難,所以實際使用的是BM演算法,它是工程中非常常用的一種字元串匹配演算法,效率也是最高的。

演算法的思想和過程有些復雜,待以後整理。

KMP演算法在本質上是和BM演算法一樣的。演算法的思想和過程有些復雜,待以後整理。

瀏覽器輸入框中的智能輸入匹配是怎麼實現的,它是怎麼做動態字元串匹配查找的呢?這就用到了Trie樹。

又名字典樹,是一種專門用來快速查找字元串前綴匹配結果的樹形結構,其本質就是將所有字元串的重復的前綴合並在一起,構造一個多叉樹。

其中,根節點不包含任何信息,每個節點表示一個字元,從根節點到紅色節點的一條路徑表示存儲的一個字元串。當我們在如上Trie樹中查找"he"時,發現"he"並非是一個字元串,而是"hello"和"her"的公共前綴,那麼就會找到這兩個字元串返回。

Trie樹在內存中是如何存儲的呢?因為每一個節點都可能是包含所有字元的,所以每一個節點都是一個數組(或者散列表),用來存儲每個字元及其後綴節點的指針。

使用Trie樹,最開始構建的時候,時間復雜度為 O(n) ,其中n為所有字元串長度之和,但是一旦構建完成,頻繁地查詢某個字元串是非常高效的,時間復雜度為 O(k) ,其中k為查找字元串的長度。

Trie樹雖然查詢效率很高,但是比較浪費內存,每一個節點都必須維護一個數組存放所有可能的字元數據及其指向下一個節點的指針,因此在所有字元串公共前綴並不多的時候,內存空間浪費地就更多了。這種問題其實也有對應的解決辦法,我們可以不使用數組,而是使用有序數組、散列表、紅黑樹來存放,可以相應地降低性能來節省內存空間。

Trie樹除了可以實現瀏覽器動態輸入內容查找候選項的功能外,還可以實現多模式地敏感詞匹配功能。假設我們需要對用戶輸入的內容進行敏感詞檢查,將所有的敏感內容用***代替,那麼該如何實現呢?

首先我們可以維護一個敏感詞字典,使用上述四種單模式匹配演算法也可以實現,但是需要遍歷N次用戶輸入的內容,其中N是所有敏感詞的模式串,顯得非常低效。但是我們如果將敏感詞字典維護為一個Trie樹,然後將用戶輸入的內容從位置0開始在Trie樹中進行查詢,如果匹配到紅色節點,那麼說明有敏感詞;如果沒有匹配到紅色節點,就從用戶輸入內容的下一個位置開始繼續在Trie樹中查詢,直至將用戶輸入內容遍歷完,因此我們只是遍歷了一遍主串。

然而更高效的多模式字元串匹配使用地更多的是如下的AC自動機。

如果把Trie樹比作BF演算法,KMP演算法是BF演算法的改進,那麼AC自動機就是利用同樣的思想改進了Trie樹。

演算法的思想和過程有些復雜,待以後整理。

㈦ 字元串匹配的傳統演算法

傳統的匹配演算法
串匹配演算法雖然發展了幾十年,然而非常實用的演算法是近年才出現。串匹配問題的研究存在理論研究和實際應用的脫節。那些專門從事演算法研究的學者關心的只是理論上看起來很美妙的演算法——具有很好的時間復雜度。而開發人員只追求實際應用中盡可能快的演算法。兩者之間從不注意對方在干什麼。將理論研究和實際應用結合的演算法(如BNDM演算法)只是近年才出現。在實際應用中常常很難找到適合需求的演算法——這樣的演算法實際上是存在的,但是只有資深專家才比較了解。考慮如下情況,一位軟體開發人員,或者一位計算生物學家,或者一位研究人員,又或者一位學生,對字元串匹配領域並沒有深入了解,可是現在需要處理一個文本搜索問題。那些汗牛充棟的書籍使得閱讀者淹沒在各種匹配演算法的海洋中,卻沒有足夠的知識選擇最適用的演算法。最後,常常導致這樣的局面:選擇一種最簡單的演算法加以實現。這往往導致很差的性能,從而影響整個開發系統的質量。更糟糕的是,選擇了一個理論上看起來很漂亮的演算法,並且花費了大量精力去實現。結果,卻發現實際效果和一個簡單演算法差不多,甚至還不如簡單演算法。因此,應該選用一種「實用」演算法,即在實際應用中性能較好,並且一個普通程序員能在幾小時內完成演算法的實現代碼。另外,在字元串匹配研究領域中,一個人所共知的事實是「演算法的思想越簡單,實際應用的效果越好」。
傳統的串匹配演算法可以概括為前綴搜索、後綴搜索、子串搜索。代表演算法有KMP,Shift-And,Shift-Or,BM,Horspool,BNDM,BOM等。所用到的技術包括滑動窗口、位並行、自動機、後綴樹等。

㈧ 雙目視覺的匹配演算法是不是有好幾種具體是哪幾種

與普通的圖像模板匹配不同的是,立體匹配是通過在兩幅或多幅存在視點差異、幾何畸變、灰度畸變、雜訊干擾的圖像對之間進行的,不存在任何標准模板進行匹配。立體匹配方法一般包含以下三個問題:(1)基元的選擇,即選擇適當的圖像特徵如點、直線、相位等作為匹配基元;(2)匹配的准則,將關於物理世界的某些固有特徵表示為匹配所必須遵循的若干規則,使匹配結果能真實反映景物的本來面目;(3)演算法結構,通過利用適當的數學方法設計能正確匹配所選擇基元的穩定演算法。

根據匹配基元的不同,立體視覺匹配演算法目前主要分為三大類,即區域匹配、相位匹配和特徵匹配:

基於區域灰度的匹配演算法是把一幅圖像(基準圖)中某一點的灰度鄰域作為模板,在另一幅圖像(待匹配圖)中搜索具有相同(或相似)灰度值分布的對應點鄰域,從而實現兩幅圖像的匹配。這類演算法的性能取決於度量演算法及搜索策略的選擇。另外,也必須考慮匹配窗口大小、形式的選擇,大窗口對於景物中存在的遮擋或圖像不光滑的情況會更多的出現誤匹配,小窗口則不具有足夠的灰度變化信息,不同的窗口形式對匹配信息也會有不同的影響。因此應該合理選取匹配區域的大小和形式來達到較好的匹配結果。

相位匹配是近二十年發展起來的一種匹配演算法,相位作為匹配基元,即認為圖像對中的對應點局部相位是一致的。最常用的相位匹配演算法有相位相關法和相位差——頻率法,雖然該方法是一種性能穩定、具有較強的抗輻射抗透視畸變能力、簡單高效、能得到稠密視差圖的特徵匹配方法。但是,當局部結構存在的假設不成立時,相位匹配演算法因帶通輸出信號的幅度太低而失去有效性,也就是通常提到的相位奇點問題,在相位奇點附近,相位信息對位置和頻率的變化極為敏感,因此用這些像素所確定的相位差異來衡量匹配誤差將導致極不可靠的結果。此外,相位匹配演算法的收斂范圍與帶通濾波器的波長有關,通常要考慮相位卷繞,在用相位差進行視差計算時,由於所採用的相位只是原信號某一帶通條件下的相位,故視差估計只能限制在某一限定范圍之內,隨視差范圍的增大,其精確性會有所下降。

基於特徵的圖像匹配方法是目前最常用的方法之一,由於它能夠將對整個圖像進行的各種分析轉化為對圖像特徵(特徵點、特徵曲線等)的分析的優點,從而大大減小了圖像處理過程的計算量,對灰度變化、圖像變形、噪音污染以及景物遮擋等都有較好的適應能力。

基於特徵的匹配方法是為使匹配過程滿足一定的抗噪能力且減少歧義性問題而提出來的。與基於區域的匹配方法不同,基於特徵的匹配方法是有選擇地匹配能表示景物自身特性的特徵,通過更多地強調空間景物的結構信息來解決匹配歧義性問題。這類方法將匹配的搜索范圍限制在一系列稀疏的特徵上。利用特徵間的距離作為度量手段,具有最小距離的特徵對就是最相近的特徵對,也就是匹配對。特徵間的距離度量有最大最小距離、歐氏距離等。

特徵點匹配演算法嚴格意義上可以分成特徵提取、特徵匹配和消除不良匹配點三步。特徵匹配不直接依賴於灰度,具有較強的抗干擾性。該類方法首先從待匹配的圖像中提取特徵,用相似性度量和一些約束條件確定幾何變換,最後將該變換作用於待匹配圖像。匹配中常用的特徵基元有角點、邊緣、輪廓、直線、顏色、紋理等。同時,特徵匹配演算法也同樣地存在著一些不足,主要表現為:

(l)特徵在圖像中的稀疏性決定了特徵匹配只能得到稀疏的視差場,要獲得密集的視差場必須通過使用插值的過程,插值過程通常較為復雜。

(2)特徵的提取和定位的准確與否直接影響特徵匹配結果的精確度。

(3)由於其應用場合的局限性,特徵匹配往往適用於具有特徵信息顯著的環境中,在缺少顯著主導特徵環境中該方法有很大困難。

總之,特徵匹配基元包含了演算法編程上的靈活性以及令人滿意的統計特性。演算法的許多約束條件均能清楚地應用於數據結構,而數據結構的規則性使得特徵匹配非常適用於硬體設計。例如,基於線段的特徵匹配演算法將場景模型描繪成相互聯結的邊緣線段,而不是區域匹配中的平面模型,因此能很好地處理一些幾何畸變問題,對對比度和明顯的光照變化等相對穩定。特徵匹配由於不直接依賴於灰度,計算量小,比基於區域的匹配演算法速度快的多。且由於邊緣特徵往往出現在視差不連續的區域,特徵匹配較易處理立體視覺匹配中的視差不連續問題。

㈨ 王者榮耀的匹配演算法是怎麼實現的

王者榮耀的匹配機制至少分為三種,分別是匹配賽匹配機制,賞金賽匹配機制,以及排位賽匹配機制。
先來說說匹配賽排位機制吧,這個匹配機制,其實參考的並不是小夥伴的段位勝率等因素,而是把小夥伴打的所有比賽以某種演算法的形式算出一個「綜合分」,這個綜合分又被叫做隱藏分數,僅最大可能代表一個人的最真實實力。所以匹配的話,青銅遇到王者也不奇怪,畢竟有人王者實力就是不喜歡打排位。
賞金賽的匹配機制採用的是一種難度遞進的機制:最通俗的說法就是像闖關一樣,一關比一關難。對於真正的大神來說可能無所謂,但對於小白來說,前後實力差距之大真不是吹的。
最後是排位賽匹配機制:單排,雙排,三排都是按照隊伍平均段位水平去匹配,五排是按照五個人中最高的段位去匹配。一般情況下,黃金雙排不會遇到鉑金玩家,除非是另外的人里有鉑金,而假設對面有三鉑金,說明你這邊至少有對應的段位。
最後,賽季初是一段很混亂的時期,既有大神掉下來的,又要渾水摸魚上來的,除非你有真大神的實力,否則不建議打排位。總體來說,只要技術過硬,上王者基本都是時間早晚的問題。

熱點內容
s3哪個配置性價比高 發布:2025-03-17 13:06:09 瀏覽:317
氣體壓縮能量 發布:2025-03-17 13:00:16 瀏覽:75
壓縮油19 發布:2025-03-17 12:25:29 瀏覽:855
linux上網代理 發布:2025-03-17 12:23:56 瀏覽:359
c是高級語言嗎 發布:2025-03-17 12:16:31 瀏覽:523
python泛型 發布:2025-03-17 12:15:01 瀏覽:482
編程貓被盜 發布:2025-03-17 12:02:18 瀏覽:131
海關鎖密碼箱如何設置新密碼 發布:2025-03-17 11:53:50 瀏覽:560
農業卡號的密碼在哪裡改 發布:2025-03-17 11:48:57 瀏覽:966
楊瀾超級訪問 發布:2025-03-17 11:47:17 瀏覽:237