當前位置:首頁 » 操作系統 » linux調度任務

linux調度任務

發布時間: 2023-07-10 00:20:09

linux 進程管理之進程調度與切換

我們知道,進程運行需要各種各樣的系統資源,如內存、文件、列印機和最

寶貴的 CPU 等,所以說,調度的實質就是資源的分配。系統通過不同的調度演算法(Scheling Algorithm)來實現這種資源的分配。通常來說,選擇什麼樣的調度演算法取決於資源分配的策略(Scheling Policy)。

有關調度相關的結構保存在 task_struct 中,如下:

active_mm 是為內核線程而引入的,因為內核線程沒有自己的地址空間,為了讓內核線程與普通進程具有統一的上下文切換方式,當內核線程進行上下文切換時,讓切換進來的線程的 active_mm 指向剛被調度出去的進程的 active_mm(如果進程的mm 域不為空,則其 active_mm 域與 mm 域相同)。

在 linux 2.6 中 sched_class 表示該進程所屬的調度器類有3種:

進程的調度策略有5種,用戶可以調用調度器里不同的調度策略:

在每個 CPU 中都有一個自身的運行隊列 rq,每個活動進程只出現在一個運行隊列中,在多個 CPU 上同時運行一個進程是不可能的。

運行隊列是使用如下結構實現的:

tast 作為調度實體加入到 CPU 中的調度隊列中。

系統中所有的運行隊列都在 runqueues 數組中,該數組的每個元素分別對應於系統中的一個 CPU。在單處理器系統中,由於只需要一個就緒隊列,因此數組只有一個元素。

內核也定義了一下便利的宏,其含義很明顯。

Linux、c/c++伺服器開發篇-------我們來聊聊進程的那些事

Linux內核 進程間通信組件的實現

學習地址:C/C++Linux伺服器開發/後台架構師【零聲教育】-學習視頻教程-騰訊課堂

需要C/C++ Linux伺服器架構師學習資料加qun812855908獲取(資料包括 C/C++,Linux,golang技術,Nginx,ZeroMQ,MySQL,Redis,fastdfs,MongoDB,ZK,流媒體,CDN,P2P,K8S,Docker,TCP/IP,協程,DPDK,ffmpeg 等),免費分享

在分析調度流程之前,我們先來看在什麼情況下要執行調度程序,我們把這種情況叫做調度時機。

Linux 調度時機主要有。

時機1,進程要調用 sleep() 或 exit() 等函數進行狀態轉換,這些函數會主動調用調度程序進行進程調度。

時機2,由於進程的時間片是由時鍾中斷來更新的,因此,這種情況和時機4 是一樣的。

時機3,當設備驅動程序執行長而重復的任務時,直接調用調度程序。在每次反復循環中,驅動程序都檢查 need_resched 的值,如果必要,則調用調度程序 schele() 主動放棄 CPU。

時機4 , 如前所述, 不管是從中斷、異常還是系統調用返回, 最終都調用 ret_from_sys_call(),由這個函數進行調度標志的檢測,如果必要,則調用調用調度程序。那麼,為什麼從系統調用返回時要調用調度程序呢?這當然是從效率考慮。從系統調用返回意味著要離開內核態而返回到用戶態,而狀態的轉換要花費一定的時間,因此,在返回到用戶態前,系統把在內核態該處理的事全部做完。

Linux 的調度程序是一個叫 Schele() 的函數,這個函數來決定是否要進行進程的切換,如果要切換的話,切換到哪個進程等。

從代碼分析來看,Schele 主要完成了2個功能:

進程上下文切換包括進程的地址空間的切換和執行環境的切換。

對於 switch_mm 處理,關鍵的一步就是它將新進程頁面目錄的起始物理地址裝入到寄存器 CR3 中。CR3 寄存器總是指向當前進程的頁面目錄。

switch_to 把寄存器中的值比如esp等存放到進程thread結構中,保存現場一邊後續恢復,同時調用 __switch_to 完成了堆棧的切換。

在進程的 task_struct 結構中有個重要的成分 thread,它本身是一個數據結構 thread_struct, 裡面記錄著進程在切換時的(系統空間)堆棧指針,取指令地址(也就是「返回地址」)等關鍵性的信息。

關於__switch_to 的工作就是處理 TSS (任務狀態段)。

TSS 全稱task state segment,是指在操作系統進程管理的過程中,任務(進程)切換時的任務現場信息。

linux 為每一個 CPU 提供一個 TSS 段,並且在 TR 寄存器中保存該段。

linux 中之所以為每一個 CPU 提供一個 TSS 段,而不是為每個進程提供一個TSS 段,主要原因是 TR 寄存器永遠指向它,在任務切換的適合不必切換 TR 寄存器,從而減小開銷。

在從用戶態切換到內核態時,可以通過獲取 TSS 段中的 esp0 來獲取當前進程的內核棧 棧頂指針,從而可以保存用戶態的 cs,esp,eip 等上下文。

TSS 在任務切換過程中起著重要作用,通過它實現任務的掛起和恢復。所謂任務切換是指,掛起當前正在執行的任務,恢復或啟動另一任務的執行。

在任務切換過程中,首先,處理器中各寄存器的當前值被自動保存到 TR(任務寄存器)所指定的任務的 TSS 中;然後,下一任務的 TSS 被裝入 TR;最後,從 TR 所指定的 TSS 中取出各寄存器的值送到處理器的各寄存器中。由此可見,通過在 TSS 中保存任務現場各寄存器狀態的完整映象,實現任務的切換。

因此,__switch_to 核心內容就是將 TSS 中的內核空間(0級)堆棧指針換成 next->esp0。這是因為 CPU 在穿越中斷門或者陷阱門時要根據新的運行級別從TSS中取得進程在系統空間的堆棧指針。

thread_struct.esp0 指向進程的系統空間堆棧的頂端。當一個進程被調度運行時,內核會將這個變數寫入 TSS 的 esp0 欄位,表示這個進程進入0級運行時其堆棧的位置。換句話說,進程的 thread_struct 結構中的 esp0 保存著其系統空間堆棧指針。當進程穿過中斷門、陷阱門或者調用門進入系統空間時,處理器會從這里恢復期系統空間棧。

由於棧中變數的訪問依賴的是段、頁、和 esp、ebp 等這些寄存器,所以當段、頁、寄存器切換完以後,棧中的變數就可以被訪問了。

因此 switch_to 完成了進程堆棧的切換,由於被切進的進程各個寄存器的信息已完成切換,因此 next 進程得以執行指令運行。

由於 A 進程在調用 switch_to 完成了與 B 進程堆棧的切換,也即是寄存器中的值都是 B 的,所以 A 進程在 switch_to 執行完後,A停止運行,B開始運行,當過一段時間又把 A 進程切進去後,A 開始從switch_to 後面的代碼開始執行。

schele 的調用流程如下:





⑵ Linux中如何啟動進程進程調度命令有哪些

Linux技術的發展引起了很多企業和個人的關注。市場對Linux運維的需求逐漸增加,學習Linux技術的人越來越多。在Linux運維中,進程是必須學習掌握的技能。那麼Linux中如何啟動進程?常用的進程調度命令有哪些?

執行中的程序稱作進程。當程序的可執行文件存儲在存儲器中並運行時,每個進程將被動態分配系統資源、內存、安全屬性和相關狀態。多個進程可以與同一個程序相關聯,並在同一時間執行,而不會相互干擾。操作系統將有效地管理和跟蹤所有正在運行的進程。

Linux中如何啟動進程?啟動進程的方法是什麼?

手工啟動。用戶在輸入端發出命令,直接啟動進程。分為前台啟動和後台啟動。前台啟動:直接在SHELL中輸入命令進行啟動。後台啟動:啟動一個目前並不緊急的進程。

調度啟動。系統管理員根據系統資源和進程佔用資源的情況,事先進行調度安排,指定任務運行的時間和場合,到時候系統會自動完成該任務。

常用的進程調度命令有哪些?

常用的進程調度命令有:at、batch、crontab。

以上便是關於「如何啟動或終止進程?常用的進程調度命令有哪些?」的相關介紹。想要成為一名優秀的Linux運維工程師,需要掌握更多的Linux知識。

⑶ Linux下定時任務(系統任務調度、用戶任務調度)crontab使用詳解

crond是Linux下用來周期性的執行某種任務或等待處理某些事件的一個守護進程,與windows下的計劃任務類似,在CentOS Linux release 7.2.1511中默認是開機啟動的,大家可以使用命令:systemctl status crond進行查看。 crond進程定期(每分鍾)檢查是否有要執行的任務,如果有要執行的任務,則自動執行該任務。用戶在cron表
(也被稱為crontab文件)指定了定時任務,crontab也就是我們常見的定時任務設置命令。Linux下的任務調度分為兩類,系統任務調度和用戶任務調度。

系統任務調度 :系統周期性所要執行的工作,比如寫緩存數據到硬碟、日誌清理等。/etc/crontab文件就是系統任務調度的配置文件。

用戶任務調度 :用戶定期要執行的工作,比如用戶數據備份、定時郵件提醒等。用戶可以使用 crontab 工具來定製自己的計劃任務。所有用戶定義的crontab文件都被保存在/var/spool/cron目錄中。其文件名與用戶名一致,使用者許可權文件如下:

通過以上幫助信息,我們可以知道crond是執行任務計劃的一個守護進程。在使用crontab之前我們可以根據幫助信息來設置相關選項,一般情況下我們都使用默認值。

1.建立演示賬號crontab。

2.星號(*)使用舉例。

以上例子中完整演示了crontab從建立到執行的過程。「5 0 * * * echo "GeekDevOps"」表示在每天00:05執行命令:echo "GeekDevOps"。後面的星號表示只要前面條件滿足都執行。例子中的-u選項指定了用戶:crontab,-l選項列舉了相關用戶的用戶任務調度,不指定用戶則默認為root。執行結果默認寫入到用戶mail目錄下的相關文件中。

3.逗號(,)的使用舉例。

現在我們已經把用戶切換到crontab下,因此無需額外指定-u選項相關內容。「3 2,6,8 * * *」表示每天的02:03:00、06:03:00、08:03:00分別執行一次命令:ls /usr/local。

4.減號(-)的使用舉例。

例子中的「0 2-6 * * 6 df -h /」表示用戶crontab在每周六的02:00、03:00、04:00、05:00、06:00執行命令:df -h / 。

5.斜杠(/)的使用舉例。

例子中表示每隔2分鍾執行一次命令:echo "GeekDevOps">>/root/GeekDevOps.txt。

6.crontab的使用非常簡單,很容易理解,只要在取值范圍內設置執行的值基本是沒有問題的。現在我們要刪除已經設置的這些定時任務。

例子中,選項-r表示刪除所有定時任務。選項-i表示在刪除前進行再次確定,輸入y或者Y才能真正刪除。

7.備份我們設置的用戶任務調度配置文件。

8.系統任務調度的使用舉例。

系統任務調度與用戶任務調度不一樣,需要直接在/etc/crontab裡面配置,如果需要指定用戶,還需要在執行命令前指定用戶名。通過crontab -l 命令是查看不到系統任務調度任務的。

⑷ linux內核怎麼調度系統

1.調度器的概述

多任務操作系統分為非搶占式多任務和搶占式多任務。與大多數現代操作系統一樣,Linux採用的是搶占式多任務模式。這表示對CPU的佔用時間由操作系統決定的,具體為操作系統中的調度器。調度器決定了什麼時候停止一個進程以便讓其他進程有機會運行,同時挑選出一個其他的進程開始運行。

2.調度策略

在Linux上調度策略決定了調度器是如何選擇一個新進程的時間。調度策略與進程的類型有關,內核現有的調度策略如下:

#define SCHED_NORMAL 0#define SCHED_FIFO 1#define SCHED_RR 2#define SCHED_BATCH 3/* SCHED_ISO: reserved but not implemented yet */#define SCHED_IDLE 5

0: 默認的調度策略,針對的是普通進程。
1:針對實時進程的先進先出調度。適合對時間性要求比較高但每次運行時間比較短的進程。
2:針對的是實時進程的時間片輪轉調度。適合每次運行時間比較長得進程。
3:針對批處理進程的調度,適合那些非交互性且對cpu使用密集的進程。
SCHED_ISO:是內核的一個預留欄位,目前還沒有使用
5:適用於優先順序較低的後台進程。
註:每個進程的調度策略保存在進程描述符task_struct中的policy欄位

3.調度器中的機制

內核引入調度類(struct sched_class)說明了調度器應該具有哪些功能。內核中每種調度策略都有該調度類的一個實例。(比如:基於公平調度類為:fair_sched_class,基於實時進程的調度類實例為:rt_sched_class),該實例也是針對每種調度策略的具體實現。調度類封裝了不同調度策略的具體實現,屏蔽了各種調度策略的細節實現。
調度器核心函數schele()只需要調用調度類中的介面,完成進程的調度,完全不需要考慮調度策略的具體實現。調度類連接了調度函數和具體的調度策略。

  • 武特師兄關於sche_class和sche_entity的解釋,一語中的。

  • 調度類就是代表的各種調度策略,調度實體就是調度單位,這個實體通常是一個進程,但是自從引入了cgroup後,這個調度實體可能就不是一個進程了,而是一個組

  • 4.schele()函數

    linux 支持兩種類型的進程調度,實時進程和普通進程。實時進程採用SCHED_FIFO 和SCHED_RR調度策略,普通進程採用SCHED_NORMAL策略。
    preempt_disable():禁止內核搶占
    cpu_rq():獲取當前cpu對應的就緒隊列。
    prev = rq->curr;獲取當前進程的描述符prev
    switch_count = &prev->nivcsw;獲取當前進程的切換次數。
    update_rq_clock() :更新就緒隊列上的時鍾
    clear_tsk_need_resched()清楚當前進程prev的重新調度標志。
    deactive_task():將當前進程從就緒隊列中刪除。
    put_prev_task() :將當前進程重新放入就緒隊列
    pick_next_task():在就緒隊列中挑選下一個將被執行的進程。
    context_switch():進行prev和next兩個進程的切換。具體的切換代碼與體系架構有關,在switch_to()中通過一段匯編代碼實現。
    post_schele():進行進程切換後的後期處理工作。

    5.pick_next_task函數

    選擇下一個將要被執行的進程無疑是一個很重要的過程,我們來看一下內核中代碼的實現
    對以下這段代碼說明:
    1.當rq中的運行隊列的個數(nr_running)和cfs中的nr_runing相等的時候,表示現在所有的都是普通進程,這時候就會調用cfs演算法中的pick_next_task(其實是pick_next_task_fair函數),當不相等的時候,則調用sched_class_highest(這是一個宏,指向的是實時進程),這下面的這個for(;;)循環中,首先是會在實時進程中選取要調度的程序(p = class->pick_next_task(rq);)。如果沒有選取到,會執行class=class->next;在class這個鏈表中有三種類型(fair,idle,rt).也就是說會調用到下一個調度類。

  • static inline struct task_struct *pick_next_task(struct rq *rq){ const struct sched_class *class; struct task_struct *p; /*

  • * Optimization: we know that if all tasks are in

  • * the fair class we can call that function directly:

  • *///基於公平調度的普通進程

  • if (likely(rq->nr_running == rq->cfs.nr_running)) {

  • p = fair_sched_class.pick_next_task(rq); if (likely(p)) return p;

  • }//基於實時調度的實時進程

  • class = sched_class_highest; for ( ; ; ) {

  • p = class->pick_next_task(rq); //實時進程的類

  • if (p) return p; /*

  • * Will never be NULL as the idle class always

  • * returns a non-NULL p:

  • */

  • class = class->next; //rt->next = fair; fair->next = idle

  • }

  • }

  • 在這段代碼中體現了Linux所支持的兩種類型的進程,實時進程和普通進程。回顧下:實時進程可以採用SCHED_FIFO 和SCHED_RR調度策略,普通進程採用SCHED_NORMAL調度策略。
    在這里首先說明一個結構體struct rq,這個結構體是調度器管理可運行狀態進程的最主要的數據結構。每個cpu上都有一個可運行的就緒隊列。剛才在pick_next_task函數中看到了在選擇下一個將要被執行的進程時實際上用的是struct rq上的普通進程的調度或者實時進程的調度,那麼具體是如何調度的呢?在實時調度中,為了實現O(1)的調度演算法,內核為每個優先順序維護一個運行隊列和一個DECLARE_BITMAP,內核根據DECLARE_BITMAP的bit數值找出非空的最高級優先隊列的編號,從而可以從非空的最高級優先隊列中取出進程進行運行。
    我們來看下內核的實現

  • struct rt_prio_array {

  • DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */

  • struct list_head queue[MAX_RT_PRIO];

  • };

  • 數組queue[i]裡面存放的是優先順序為i的進程隊列的鏈表頭。在結構體rt_prio_array 中有一個重要的數據構DECLARE_BITMAP,它在內核中的第一如下:

  • define DECLARE_BITMAP(name,bits)

  • unsigned long name[BITS_TO_LONGS(bits)]

  • 5.1對於實時進程的O(1)演算法

    這個數據是用來作為進程隊列queue[MAX_PRIO]的索引點陣圖。bitmap中的每一位與queue[i]對應,當queue[i]的進程隊列不為空時,Bitmap的相應位就為1,否則為0,這樣就只需要通過匯編指令從進程優先順序由高到低的方向找到第一個為1的位置,則這個位置就是就緒隊列中最高的優先順序(函數sched_find_first_bit()就是用來實現該目的的)。那麼queue[index]->next就是要找的候選進程。
    如果還是不懂,那就來看兩個圖

    由結果可以看出當nice的值越小的時候,其睡眠時間越短,則表示其優先順序升高了。

    7.關於獲取和設置優先順序的系統調用:sched_getscheler()和sched_setscheler

  • #include <sched.h>#include <stdlib.h>#include <stdio.h>#include <errno.h>#define DEATH(mess) { perror(mess); exit(errno); }void printpolicy (int policy){ /* SCHED_NORMAL = SCHED_OTHER in user-space */


  • if (policy == SCHED_OTHER) printf ("policy = SCHED_OTHER = %d ", policy); if (policy == SCHED_FIFO) printf ("policy = SCHED_FIFO = %d ", policy); if (policy == SCHED_RR) printf ("policy = SCHED_RR = %d ", policy);

  • }int main (int argc, char **argv){ int policy; struct sched_param p; /* obtain current scheling policy for this process */

  • //獲取進程調度的策略

  • policy = sched_getscheler (0);

  • printpolicy (policy); /* reset scheling policy */


  • printf (" Trying sched_setscheler... ");

  • policy = SCHED_FIFO;

  • printpolicy (policy);

  • p.sched_priority = 50; //設置優先順序為50

  • if (sched_setscheler (0, policy, &p))

  • DEATH ("sched_setscheler:"); printf ("p.sched_priority = %d ", p.sched_priority); exit (0);

  • }

  • 輸出結果:

  • [root@wang schele]# ./get_schele_policy policy = SCHED_OTHER = 0


  • Trying sched_setscheler...

  • policy = SCHED_FIFO = 1

  • p.sched_priority = 50

  • 可以看出進程的優先順序已經被改變。

⑸ 一文讀懂Linux任務間調度原理和整個執行過程

在前文中,我們分析了內核中進程和線程的統一結構體task_struct,並分析進程、線程的創建和派生的過程。在本文中,我們會對任務間調度進行詳細剖析,了解其原理和整個執行過程。由此,進程、線程部分的大體框架就算是介紹完了。本節主要分為三個部分:Linux內核中常見的調度策略,調度的基本結構體以及調度發生的整個流程。下面將詳細展開說明。

Linux 作為一個多任務操作系統,將每個 CPU 的時間劃分為很短的時間片,再通過調度器輪流分配給各個任務使用,因此造成多任務同時運行的錯覺。為了維護 CPU 時間,Linux 通過事先定義的節拍率(內核中表示為 HZ),觸發時間中斷,並使用全局變數 Jiffies 記錄了開機以來的節拍數。每發生一次時間中斷,Jiffies 的值就加 1。節拍率 HZ 是內核的可配選項,可以設置為 100、250、1000 等。不同的系統可能設置不同的數值,可以通過查詢 /boot/config 內核選項來查看它的配置值。

Linux的調度策略主要分為實時任務和普通任務。實時任務需求盡快返回結果,而普通任務則沒有較高的要求。在前文中我們提到了task_struct中調度策略相應的變數為policy,調度優先順序有prio, static_prio, normal_prio, rt_priority幾個。優先順序其實就是一個數值,對於實時進程來說,優先順序的范圍是 0 99;對於普通進程,優先順序的范圍是 100 139。數值越小,優先順序越高。

實時調度策略主要包括以下幾種

普通調度策略主要包括以下幾種:

首先,我們需要一個結構體去執行調度策略,即sched_class。該類有幾種實現方式

普通任務調度實體源碼如下,這裡麵包含了 vruntime 和權重 load_weight,以及對於運行時間的統計。

在調度時,多個任務調度實體會首先區分是實時任務還是普通任務,然後通過以時間為順序的紅黑樹結構組合起來,vruntime 最小的在樹的左側,vruntime最多的在樹的右側。以CFS策略為例,則會選擇紅黑樹最左邊的葉子節點作為下一個將獲得 CPU 的任務。而這顆紅黑樹,我們稱之為運行時隊列(run queue),即struct rq。

其中包含結構體cfs_rq,其定義如下,主要是CFS調度相關的結構體,主要有權值相關變數、vruntime相關變數以及紅黑樹指針,其中結構體rb_root_cached即為紅黑樹的節點

對結構體dl_rq有類似的定義,運行隊列由紅黑樹結構體構成,並按照deadline策略進行管理

對於實施隊列相應的rt_rq則有所不同,並沒有用紅黑樹實現。

下面再看看調度類sched_class,該類以函數指針的形式定義了諸多隊列操作,如

調度類分為下面幾種:

隊列操作中函數指針指向不同策略隊列的實際執行函數函數,在linux/kernel/sched/目錄下,fair.c、idle.c、rt.c等文件對不同類型的策略實現了不同的函數,如fair.c中定義了

以選擇下一個任務為例,CFS對應的是pick_next_task_fair,而rt_rq對應的則是pick_next_task_rt,等等。

由此,我們來總結一下:

有了上述的基本策略和基本調度結構體,我們可以形成大致的骨架,下面就是需要核心的調度流程將其拼湊成一個整體,實現調度系統。調度分為兩種,主動調度和搶占式調度。

說到調用,逃不過核心函數schele()。其中sched_submit_work()函數完成當前任務的收尾工作,以避免出現如死鎖或者IO中斷等情況。之後首先禁止搶占式調度的發生,然後調用__schele()函數完成調度,之後重新打開搶占式調度,如果需要重新調度則會一直重復該過程,否則結束函數。

而__schele()函數則是實際的核心調度函數,該函數主要操作包括選取下一進程和進行上下文切換,而上下文切換又包括用戶態空間切換和內核態的切換。具體的解釋可以參照英文源碼注釋以及中文對各個步驟的注釋。

其中核心函數是獲取下一個任務的pick_next_task()以及上下文切換的context_switch(),下面詳細展開剖析。首先看看pick_next_task(),該函數會根據調度策略分類,調用該類對應的調度函數選擇下一個任務實體。根據前文分析我們知道,最終是在不同的紅黑樹上選擇最左節點作為下一個任務實體並返回。

下面來看看上下文切換。上下文切換主要干兩件事情,一是切換任務空間,也即虛擬內存;二是切換寄存器和 CPU 上下文。關於任務空間的切換放在內存部分的文章中詳細介紹,這里先按下不表,通過任務空間切換實際完成了用戶態的上下文切換工作。下面我們重點看一下內核態切換,即寄存器和CPU上下文的切換。

switch_to()就是寄存器和棧的切換,它調用到了 __switch_to_asm。這是一段匯編代碼,主要用於棧的切換, 其中32位使用esp作為棧頂指針,64位使用rsp,其他部分代碼一致。通過該段匯編代碼我們完成了棧頂指針的切換,並調用__switch_to完成最終TSS的切換。注意switch_to中其實是有三個變數,分別是prev, next, last,而實際在使用時,我們會對last也賦值為prev。這里的設計意圖需要結合一個例子來說明。假設有ABC三個任務,從A調度到B,B到C,最後C回到A,我們假設僅保存prev和next,則流程如下

最終調用__switch_to()函數。該函數中涉及到一個結構體TSS(Task State Segment),該結構體存放了所有的寄存器。另外還有一個特殊的寄存器TR(Task Register)會指向TSS,我們通過更改TR的值,會觸發硬體保存CPU所有寄存器在當前TSS,並從新的TSS讀取寄存器的值載入入CPU,從而完成一次硬中斷帶來的上下文切換工作。系統初始化的時候,會調用 cpu_init()給每一個 CPU 關聯一個 TSS,然後將 TR 指向這個 TSS,然後在操作系統的運行過程中,TR 就不切換了,永遠指向這個 TSS。當修改TR的值得時候,則為任務調度。

更多Linux內核視頻教程文本資料免費領取後台私信【 內核大禮包 】自行獲取。

在完成了switch_to()的內核態切換後,還有一個重要的函數finish_task_switch()負責善後清理工作。在前面介紹switch_to三個參數的時候我們已經說明了使用last的重要性。而這里為何讓prev和last均賦值為prev,是因為prev在後面沒有需要用到,所以節省了一個指針空間來存儲last。

至此,我們完成了內核態的切換工作,也完成了整個主動調度的過程。

搶占式調度通常發生在兩種情況下。一種是某任務執行時間過長,另一種是當某任務被喚醒的時候。首先看看任務執行時間過長的情況。

該情況需要衡量一個任務的執行時間長短,執行時間過長則發起搶占。在計算機裡面有一個時鍾,會過一段時間觸發一次時鍾中斷,通知操作系統時間又過去一個時鍾周期,通過這種方式可以查看是否是需要搶占的時間點。

時鍾中斷處理函數會調用scheler_tick()。該函數首先取出當前CPU,並由此獲取對應的運行隊列rq和當前任務curr。接著調用該任務的調度類sched_class對應的task_tick()函數進行時間事件處理。

以普通任務隊列為例,對應的調度類為fair_sched_class,對應的時鍾處理函數為task_tick_fair(),該函數會獲取當前的調度實體和運行隊列,並調用entity_tick()函數更新時間。

在entity_tick()中,首先會調用update_curr()更新當前任務的vruntime,然後調用check_preempt_tick()檢測現在是否可以發起搶占。

check_preempt_tick() 先是調用 sched_slice() 函數計算出一個調度周期中該任務運行的實際時間 ideal_runtime。sum_exec_runtime 指任務總共執行的實際時間,prev_sum_exec_runtime 指上次該進程被調度時已經佔用的實際時間,所以 sum_exec_runtime - prev_sum_exec_runtime 就是這次調度佔用實際時間。如果這個時間大於 ideal_runtime,則應該被搶佔了。除了這個條件之外,還會通過 __pick_first_entity 取出紅黑樹中最小的進程。如果當前進程的 vruntime 大於紅黑樹中最小的進程的 vruntime,且差值大於 ideal_runtime,也應該被搶佔了。

如果確認需要被搶占,則會調用resched_curr()函數,該函數會調用set_tsk_need_resched()標記該任務為_TIF_NEED_RESCHED,即該任務應該被搶占。

某些任務會因為中斷而喚醒,如當 I/O 到來的時候,I/O進程往往會被喚醒。在這種時候,如果被喚醒的任務優先順序高於 CPU 上的當前任務,就會觸發搶占。try_to_wake_up() 調用 ttwu_queue() 將這個喚醒的任務添加到隊列當中。ttwu_queue() 再調用 ttwu_do_activate() 激活這個任務。ttwu_do_activate() 調用 ttwu_do_wakeup()。這裡面調用了 check_preempt_curr() 檢查是否應該發生搶占。如果應該發生搶占,也不是直接踢走當前進程,而是將當前進程標記為應該被搶占。

由前面的分析,我們知道了不論是是當前任務執行時間過長還是新任務喚醒,我們均會對現在的任務標記位_TIF_NEED_RESCUED,下面分析實際搶占的發生。真正的搶占還需要一個特定的時機讓正在運行中的進程有機會調用一下 __schele()函數,發起真正的調度。

實際上會調用__schele()函數共有以下幾個時機

從系統調用返回用戶態:以64位為例,系統調用的鏈路為do_syscall_64->syscall_return_slowpath->prepare_exit_to_usermode->exit_to_usermode_loop。在exit_to_usermode_loop中,會檢測是否為_TIF_NEED_RESCHED,如果是則調用__schele()

內核態啟動:內核態的執行中,被搶占的時機一般發生在 preempt_enable() 中。在內核態的執行中,有的操作是不能被中斷的,所以在進行這些操作之前,總是先調用 preempt_disable() 關閉搶占,當再次打開的時候,就是一次內核態代碼被搶占的機會。preempt_enable() 會調用 preempt_count_dec_and_test(),判斷 preempt_count 和 TIF_NEED_RESCHED 是否可以被搶占。如果可以,就調用 preempt_schele->preempt_schele_common->__schele 進行調度。

   本文分析了任務調度的策略、結構體以及整個調度流程,其中關於內存上下文切換的部分尚未詳細敘述,留待內存部分展開剖析。

1、調度相關結構體及函數實現

2、schele核心函數

⑹ linux下編寫定時任務crontab

linux下的crontab服務:
1、crontab 是用來讓使用者在固定時間或固定間隔執行程序之用
在linux平台上如果需要實現任務調度功能可以編寫cron腳本來實現。
以某一頻率執行任務
linux預設會啟動crond進程,crond進程不需要用戶啟動、關閉。
crond進程負責讀取調度任務並執行,用戶只需要將相應的調度腳本寫入cron的調度配置文件中。
cron的調度文件有以下幾個:
1. crontab
2. cron.d
3. cron.daily
4. cron.hourly
5. cron.monthly
6. cron.weekly

如果用的任務不是以hourly monthly weekly方式執行,則可以將相應的crontab寫入到crontab 或cron.d目錄中。
示例:
每隔一分鍾執行一次腳本 /opt/bin/test-cron.sh
可以在cron.d新建腳本 echo-date.sh
內容為
*/1 * * * * root /opt/bin/test-cron.sh

2、cron是一個linux下的定時執行工具,可以在無需人工干預的情況下運行作業。由於Cron 是Linux的內置服務,如果它不自動起來,可以用以下的方法啟動、關閉這個服務:
/sbin/service crond start //啟動服務
/sbin/service crond stop //關閉服務
/sbin/service crond restart //重啟服務
/sbin/service crond reload //重新載入配置

你也可以將這個服務在系統啟動的時候自動啟動:
在/etc/rc.d/rc.local這個腳本的末尾加上:
/sbin/service crond start
現在Cron這個服務已經在進程裡面了,我們就可以用這個服務了

查看服務是否已經運行用 ps -ax | grep cron

3、crontab命令
查看該用戶下的crontab服務是否創建成功, 用 crontab -l 命令
命令 which php 查看linux下安裝的php的路徑
cron服務提供crontab命令來設定cron服務的,以下是這個命令的一些參數與說明:

crontab -u //設定某個用戶的cron服務,一般root用戶在執行這個命令的時候需要此參數
crontab -l //列出某個用戶cron服務的詳細內容
crontab -r //刪除沒個用戶的cron服務
crontab -e //編輯某個用戶的cron服務
比如說root查看自己的cron設置:crontab -u root -l
再例如,root想刪除fred的cron設置:crontab -u fred -r
在編輯cron服務時,編輯的內容有一些格式和約定,輸入:crontab -u root -e
進入vi編輯模式,編輯的內容一定要符合下面的格式:*/1 * * * * ls >> /tmp/ls.txt
任務調度的crond常駐命令crond 是linux用來定期執行程序的命令。當安裝完成操作系統之後,默認便會啟動此 任務調度命令。crond命令每分鍾會定期檢查是否有要執行的工作,如果有要執行的工作便會自動執行該工作。

crontab命令選項:
-u指定一個用戶
-l列出某個用戶的任務計劃
-r刪除某個用戶的任務
-e編輯某個用戶的任務

4、cron文件語法:
分 小時 日 月 星期 命令
0-59 0-23 1-31 1-12 0-6 command (取值范圍,0表示周日一般一行對應一個任務)

5、 新增調度任務
新增調度任務可用兩種方法:
1)、在命令行輸入: crontab -e 然後添加相應的任務,wq存檔退出。
2)、直接編輯/etc/crontab 文件,即vi /etc/crontab,添加相應的任務。

6、 查看調度任務
crontab -l //列出當前的所有調度任務
crontab -l -u jp //列出用戶jp的所有調度任務

7、 刪除任務調度工作
crontab -r //刪除所有任務調度工作

8、 任務調度執行結果的轉向
例1:每天5:30執行ls命令,並把結果輸出到/jp/test文件中
30 5 * * * ls >/jp/test 2>&1
註:2>&1 表示執行結果及錯誤信息。

SHELL=/bin/bash
PATH=/sbin:/bin:/usr/sbin:/usr/bin
MAILTO=root //如果出現錯誤,或者有數據輸出,數據作為郵件發給這個帳號
HOME=/ //使用者運行的路徑,這里是根目錄
# run-parts
01 * * * * root run-parts /etc/cron.hourly //每小時執行/etc/cron.hourly內的腳本
02 4 * * * root run-parts /etc/cron.daily //每天執行/etc/cron.daily內的腳本
22 4 * * 0 root run-parts /etc/cron.weekly //每星期執行 /etc/cron.weekly內的腳本
42 4 1 * * root run-parts /etc/cron.monthly //每月去執行/etc/cron.monthly內的腳本
大家注意」run-parts」這個參數了,如果去掉這個參數的話,後面就可以寫::要運行的某個腳本名,而不是文件夾名了。

總結:
編寫定時任務的兩種方式:1.sudo vim /etc/crontab 2. sudo crontab -e
查看定時任務的兩種方式:1.sudo cat /etc/crontab 2.sudo crontab -l

*/1 * * * * appuser cd /app/webserver/website/api-cb.chuchujie.com/master/current/script/ && ./back_coupon.sh 2 10 >> /dev/null 2>&1

查看定時任務是否運行:
sudo tail -f /var/log/cron //定時任務日誌(查看剛才設置的任務是否執行)

註:腳本有可執行許可權

sh a.sh(不需要執行許可權)
./sh (需要執行許可權)

1.當shell腳本具有可執行許可權時,用sh filename與./filename執行腳本是沒有區別的。./filename是因為當前目錄沒有在PATH中,所有"."是用來表示當前目錄的。

⑺ 關於linux的調度演算法

Linux2.6
版本的
Linux
內核使用了新的調度器演算法,它是由
Ingo
Molnar開發的
O(1)調度器演算法。它在高負載的情況下極其出色,並且對處理器調度有很好的擴展。
Linux2.4
版本的標准調度器中,使用時間片重算的演算法。這種演算法要求在所有的進程都用盡時間片以後,重新計算下一次運行的時間片。這樣每次任務調度的花銷不確定,可能因為計算比較復雜,產生較大調度延遲。特別是多處理器系統,可能由於調度的延遲,導致大部分處理器處於空閑
狀態,影響系統性能。
新的調度器採用
O(1)的調度演算法,通過優先順序數組的數據結構來實現。優先順序數組可以使每個優先順序都有相應的任務隊列,還有一個優先順序點陣圖,每個優先順序對應點陣圖中一位,通過點陣圖可快速執行最高優先順序任務。因優先順序個數是固定的,所以查找的時間也固定,不受運行任務數的影響。
新的調度器為每個處理器維護
2
個優先順序數組:有效數組和過期數組。有效數組內任務隊列的進程都還有可以運行的時間片;過期數組內任務隊列的進程都沒有時間片可以執行。當一個進程的時間片用光時,就把它從有效數組移到過期數組,並且時間片也已經重新計算好了。當需要重新調度這些任務的時候,只要在有效數組和過期數組之間切換就好了。這種交換是O(1)演算法的核心。
關於該演算法的更多內容,google
一下!

熱點內容
s3哪個配置性價比高 發布:2025-03-17 13:06:09 瀏覽:317
氣體壓縮能量 發布:2025-03-17 13:00:16 瀏覽:75
壓縮油19 發布:2025-03-17 12:25:29 瀏覽:855
linux上網代理 發布:2025-03-17 12:23:56 瀏覽:359
c是高級語言嗎 發布:2025-03-17 12:16:31 瀏覽:523
python泛型 發布:2025-03-17 12:15:01 瀏覽:482
編程貓被盜 發布:2025-03-17 12:02:18 瀏覽:131
海關鎖密碼箱如何設置新密碼 發布:2025-03-17 11:53:50 瀏覽:560
農業卡號的密碼在哪裡改 發布:2025-03-17 11:48:57 瀏覽:966
楊瀾超級訪問 發布:2025-03-17 11:47:17 瀏覽:237