當前位置:首頁 » 操作系統 » ansys演算法

ansys演算法

發布時間: 2023-07-03 20:00:52

⑴ 如何使用ANSYS並行計算

使用amg演算法,可以使多個核同時工作。使用方法1或2.
方法1:
(1).
在ansys
proct
lancher
裡面lauch標簽頁選中parallel
performance
for
ansys.
(2).
然後在求解前執行如下命令:
finish
/config,nproc,n!設置處理器數n=你設置的cpu數。
/solu
eqslv,amg
!選擇amg演算法
solve
!求解
方法2:
(1).
在ansys
proct
lancher
裡面lauch標簽頁選中parallel
performance
for
ansys.
(2).
在d:\professional\ansys
inc\v90\ansys\apdl\start90.ans中添加一行:/config,nproc,2.別忘了把目錄換成你自己的安裝目錄.

⑵ HFSS演算法及應用場景介紹

安氏

前言

相信每一位使用過HFSS的工程師都有一個疑問或者曾經有一個疑問:我怎麼才能使用HFSS計算的又快又准?對使用者而言,每個工程師遇到的工程問題不一樣,工程經驗不能夠直接復制;對軟體而言,隨著HFSS版本的更新,HFSS演算法越來越多,針對不同的應用場景對應不同的演算法。因此,只有實際工程問題切合合適的演算法,才能做到速度和精度的平衡。工程師在了解軟體演算法的基礎上,便能夠針對自己的需求進行很好的演算法選擇。

由於當今世界計算機的飛速發展,讓計算電磁學這門學科也有了很大的發展,如圖1所示,從大的方面來看,我們將計算電磁學分為精確的全波演算法和高頻近似演算法,在每一類下面又分了很多種演算法,結合到HFSS軟體,通過ANSYS公司40餘年來堅持不懈的研發和戰略性的收購,到目前為止,HFSS有FEM、IE(MoM)、DGTD、PO、SBR+等演算法,本文會針對每種演算法和應用場景逐一介紹,相信你看完這篇文章應該對HFSS演算法和應用場景會有更深的認識。

演算法介紹

全波演算法-有限元演算法( FEM)

有限元演算法是ANSYS HFSS的核心演算法,已有二十多年的商用歷史,也是目前業界最成熟穩定的三維電磁場求解器,有限元演算法的優點是具有極好的結構適應性和材料適應性,充分考慮材料特性:趨膚效應、介質損耗、頻變材料;是精確求解復雜材料復雜結構問題的最佳利器,有限元演算法採用四面體網格,對模擬物體能夠很好的進行還原。

FEM演算法的支配方程見下圖:

HFSS有限元演算法在網格劃分方面能夠支持自適應網格剖分、網格加密、曲線型網格,在求解時支持切向矢量基函數、混合階基函數和直接法、迭代法、區域分解法的強大的矩陣求解技術。

在應用領域,HFSS主要針對復雜結構進行求解,尤其是對於一些內部問題的求解,比高速信號完整性分析,陣列天線設計,腔體問題及電磁兼容等應用場景,非常適合有限元演算法求解。

有限元演算法結合ANSYS公司的HPC模塊,ANSYS HFSS有限元演算法可以進行電大尺寸物體的計算,大幅度提升模擬工程師的工作效率。針對寬頻問題,FEM推出了寬頻自適應網格剖分,大大提升了模擬精度。

全波演算法-積分方程演算法( IE)

積分方程演算法基於麥克斯維方程的積分形式,同時也基於格林函數,所以可自動滿足輻射邊界條件,對於簡單模型及材料的輻射問題,具有很大的優勢,但原始的積分方程法計算量太大,很難用於實際的數值計算中,針對此問題, HFSS 中的 IE演算法提供了兩種加速演算法,一種是 ACA 加速,一種是 MLFMM,分布針對不同的應用類型。 ACA 方法基於數值層面的加速技術,具有更好的普適性,但效率相比 MLFMM 稍差, MLFMM 演算法基於網格層面的加速,對金屬材料,鬆散結構,具有更高的效率。

IE演算法的支配方程見下圖:

IE演算法是三維矩量法積分方程技術,支持三角形網格剖分。IE演算法不需要像FEM演算法一樣定義輻射邊界條件,在HFSS中主要用於高效求解電大尺寸、開放結構問題。與HFSS FEM演算法一樣,支持自適應網格技術,也可以高精度、高效率解決客戶問題,同時支持將FEM的場源鏈接到IE中進行求解。HFSS-IE演算法對金屬結構具有很高的適應性,其主要應用領域天線設計、天線布局、 RCS、 EMI/EMC模擬等方向。

高頻近似演算法-PO演算法

FEM演算法和IE演算法是精確的全波演算法,在超大電尺寸問題上,使用精確全波演算法會造成效率的降低。針對超大電尺寸問題,ANSYS推出PO(物理光學法)演算法,PO 演算法屬於高頻演算法,非常適合求解此類問題,在適合其求解的問題中,具有非常好的效率優勢。

PO演算法主要原理為射線照射區域產生感應電流,而且在陰影區域設置為零電流,不考慮射線追跡或多次反射,以入射波作為激勵源,將平面波或鏈接FEM(IE)的場數據作為饋源。但由於不考慮射線的多次反射和繞射等現象,一般針對物理尺寸超大,結構均勻的物體電磁場計算,在滿足精度的要求,相比全波演算法效率明顯提高。比如大平台上的天線布局,大型反射面天線等等。

高頻近似演算法-SBR+演算法

PO演算法可以解決超大電尺寸問題的計算,但由於未考慮到多次反射等物理物體,主要用於結構均勻物理的電磁場計算。針對復雜結構且超大電尺寸問題,ANSYS通過收購Delcross公司(Savant軟體)引入了SBR+演算法, SBR+是在SBR演算法(天線發射出射線,在表面「繪制」 PO電流)的基礎上考慮了爬行波射線(沿著表面追跡射線)、物理繞射理論PTD(修正邊緣處的PO電流)、一致性繞射理論UTD(沿著邊緣發射衍射射線,繪制陰影區域的電流),因此SBR+演算法是高頻射線方法,具有非常高效的速度,同時具有非常好的精度,在大型平台的天線布局中效果非常好。

SBR+支持從FEM、IE中導入遠場輻射方向圖或者電流源,也支持導入相應的測試數據,SBR+演算法主要用於天線安裝分析,支持多核、GPU等並行求解方式並且大多數任務可在低於8 GB內存下完成。

混合演算法( FEBI, IE-Region,PO-Region,SBR+ Region)

前面對頻率內的各種演算法做了介紹並說明了各種演算法應用的場景,很多時候碰到的工程問題既包括復雜結構物理也包括超大尺寸物理,如新能源汽車上的天線布局問題,對模擬而言,最好的精度是用全波演算法求解,最快的速度是採用近似算求解,針對該問題,ANSYS公司將FEM演算法、 IE 演算法、PO 演算法、SBR+演算法等融合起來,推出混合演算法。在一個應用案例中,採用不同演算法的優點而迴避不同演算法的缺點,可極大限度的提高演算法的效率,以及成為頻域內解決大型復雜問題的必備演算法。

HFSS中FEM與IE可以通過IE Region與FEBI邊界進行混合求解,FEM與PO、SBR+演算法可以通過添加PO Region及SBR+ Region進行混合,混合演算法的使用擴大了HFSS的使用范圍。

時域演算法-transient演算法

HFSS時域求解是基於間斷伽略金法(discontinuous Galerkin method, DGTD)的三維全波電磁場模擬求解器,採用基於四面體有限元技術,能得到和HFSS頻域求解器一樣的自適應網格剖分精度,該技術使得HFSS的求精精度成為電磁場行業標准。這項技術完善了HFSS的頻域求解器技術,幫助工程師對更加深入詳細了解其所設計器件的電磁性能。

Transient演算法支配方程見下圖:

採用HFSS-Transient演算法,工程師可利用短脈沖激勵對靜電放電、電磁干擾、雷擊和等應用問題開展研究,還包括時域反射阻抗以及短時激勵下的瞬態場顯示也可以藉助它來完成。

諧振分析-Eigenmode演算法

諧振特性是每個結構都存在固有的電磁諧振,諧振的模式、頻率和品質因子,與其結構尺寸相關,這些諧振既可能是干擾源的放大器,也可能是敏感電路的雜訊接收器。諧振會導致信號完整性、電源完整性和電磁兼容問題,因而了解諧振對加強設計可靠性很有幫助。

Eigenmode演算法支配方程見下圖:

在HFSS中,使用eigenmode演算法可計算三維結構諧振模式,並可呈現圖形化空間的諧振電壓波動,分析結構的固有諧振特性。依據諧振分析的結果,指導機箱內設備布局和PCB層疊布局,改善電磁兼容特性。

總結

HFSS裡面有各種不同的演算法,有全波演算法、近似演算法以及時域演算法,工程師可以格局需要選擇不同演算法(最高的精度和最高的效率)。首先針對頻域演算法,使用范圍見圖14,通常FEM演算法和IE演算法非常適合於中小尺寸問題,對大型問題,FEM/IE運行時間/內存需求非常巨大; PO方法適合解決超大電尺寸問題,但對問題復雜度有限制,通常通常不能提供客戶所期望的精度,但對於均勻物體是一個很好的選擇;SBR+演算法適合解決超大電尺寸問題,對復雜結構也能夠提供很好的精度和速度;針對既有電小尺寸復雜結構計算問題,又有電大尺寸布局計算問題,混合演算法是一個很好的選擇。Transient演算法適合解決與時間相關的電磁場問題,如ESD、TDR等;Eigenmode演算法專門針對諧振模擬。

想要更多,點擊此處,關注技術鄰官網

⑶ ANSYS劃分網格用哪種演算法

1 自由網格

就是使用ANSYS的網格工具,軟體內部智能劃分,對結構根據實際的建模來建立網格,一般都是滿足計算的,特別是對於一些不太規則的模型,就可以使用這種方式,但是這種劃分方式如果做不好,很容易出現較大的誤差;

2 映射網格

這個裡面的技術就多了,一般在網格的過程中首要選擇它,但是這一般也是難度比較大的;這種技術可以首先對模型中的一些關鍵線來劃分,然後映射到整個面,或者是體,從而形成網格,可是使用掃掠技術,就像樓上說的,但是這個掌握是比較困難的,也可以使用像VMESH等命令,也可以通過指定一些網格模式的方式,比如建立一個截面的網格,然後旋轉,或者是拉伸,直接生成網格,等等,映射網格的技術是非常多的。
映射網格的好處就是建立的網格都是比較規則的,這樣計算出來結果非常接近實際問題,而且可以根據做者的人的意願建立生成一定的,確定的單元個數,從而可以加快後期計算速度等;另外,映射網格技術可以避免產生一些特別畸形的單元等,也是映射的好處。

3. 拖拉、掃略網格劃分

對於由面經過拖拉、旋轉、偏移(VDRAG、VROTAT、VOFFST、VEXT等系列命令)等方式生成的復雜三維實體而言,可先在原始面上生成殼(或 MESH200)單元形式的面網格,然後在生成體的同時自動形成三維實體網格;對於已經形成好了的三維復雜實體,如果其在某個方向上的拓撲形式始終保持一致,則可用(人工或全自動)掃略網格劃分(VSWEEP命令)功能來劃分網格;這兩種方式形成的單元幾乎都是六面體單元。通常,採用掃略方式形成網格是一種非常好的方式,對於復雜幾何實體,經過一些簡單的切分處理,就可以自動形成規整的六面體網格,它比映射網格劃分方式具有更大的優勢和靈活性。

4. 混合網格劃分

混合網格劃分即在幾何模型上,根據各部位的特點,分別採用自由、映射、掃略等多種網格劃分方式,以形成綜合效果盡量好的有限元模型。混合網格劃分方式要在計算精度、計算時間、建模工作量等方面進行綜合考慮。通常,為了提高計算精度和減少計算時間,應首先考慮對適合於掃略和映射網格劃分的區域先劃分六面體網格,這種網格既可以是線性的(無中節點)、也可以是二次的(有中節點),如果無合適的區域,應盡量通過切分等多種布爾運算手段來創建合適的區域(尤其是對所關心的區域或部位);其次,對實在無法再切分而必須用四面體自由網格劃分的區域,採用帶中節點的六面體單元進行自由分網(自動退化成適合於自由劃分形式的單元),此時,在該區域與已進行掃略或映射網格劃分的區域的交界面上,會自動形成金字塔過渡單元(無中節點的六面體單元沒有金字塔退化形式)。 ANSYS中的這種金字塔過渡單元具有很大的靈活性:如果其鄰接的六面體單元無中節點,則在金字塔單元四邊形面的四條單元邊上,自動取消中間節點,以保證網格的協調性。同時,應採用前面描述的TCHG命令來將退化形式的四面體單元自動轉換成非退化的四面體單元,提高求解效率。如果對整個分析模型的計算精度要求不高、或對進行自由網格劃分區域的計算精度要求不高,則可在自由網格劃分區採用無中節點的六面體單元來分網(自動退化成無中節點的四面體單元),此時,雖然在六面體單元劃分區和四面體單元劃分區之間無金字塔過渡單元,但如果六面體單元區的單元也無中節點,則由於都是線性單元,亦可保證單元的協調性。

5.利用自由度耦合和約束方程

對於某些形式的復雜幾何模型,可以利用ANSYS的約束方程和自由度耦合功能來促成劃分出優良的網格並降低計算規模。比如,利用CEINTF命令可以將相鄰的體在進行獨立的網格劃分(通常是採用映射或掃略方式)後再"粘結"起來,由於各個體之間在幾何上沒有聯系,因此不用費勁地考慮相互之間網格的影響,所以可以自由地採用多種手段劃分出良好的網格,而體之間的網格"粘結"是通過形函數差值來進行自由度耦合的,因此連接位置處的位移連續性可以得到絕對保證,如果非常關注連接處的應力,可以如下面所述再在該局部位置建立子區模型予以分析。再如,對於循環對稱模型(如旋轉機械等),可僅建立一個扇區作為分析模型,利用CPCYC命令可自動對扇區的兩個切面上的所有對應節點建立自由度耦合條件(用MSHCOPY命令可非常方便地在兩個切面上生成對應網格)。

熱點內容
x3000r存儲卡 發布:2025-03-19 00:12:22 瀏覽:220
ie不顯示腳本錯誤 發布:2025-03-19 00:09:53 瀏覽:957
免費網頁源碼 發布:2025-03-19 00:09:00 瀏覽:261
工業企業資料庫 發布:2025-03-18 23:51:44 瀏覽:94
寶馬車的配置主要看哪些 發布:2025-03-18 23:50:09 瀏覽:484
esxi虛擬存儲 發布:2025-03-18 23:49:59 瀏覽:771
mc自己開伺服器地址 發布:2025-03-18 23:47:10 瀏覽:701
藍凌關聯配置什麼意思 發布:2025-03-18 23:46:16 瀏覽:347
雲存儲vmware 發布:2025-03-18 23:41:51 瀏覽:890
怎麼從配置模式轉到用戶模式 發布:2025-03-18 23:36:07 瀏覽:334