a尋路演算法代碼
『壹』 A*path與Dijkstra尋路、迷宮生成
假設有人想從 A 點移動到一牆之隔的 B 點,如下圖,綠色的是起點 A,紅色是終點 B,藍色方塊是中間的牆。
在 A*尋路演算法中,我們通過從綠色起點 A 開始,檢查相鄰方格的方式,向外擴展直到找到目標。
我們做如下操作開始搜索:
通常對於方格節點,我們認為水平/垂直移動一格耗費為 10,對角線移動耗費為 14。
G = 從 起點 沿著生成的路徑,移動到當前節點的總移動耗費。
H = 從當前節點移動到 終點 的移動耗費估算。這經常被稱為啟發式的,因為它只是個猜測,我們沒辦法事先知道路徑的實際長度。
對於方格節點通常使用 曼哈頓方法 ,它計算從當前格到 終點 之間水平和垂直的方格的數量總和,忽略對角線方向和障礙物。然後把結果乘以水平/垂直的移動耗費。
對於允許走對角線的節點使用 對角線方法 ,允許任意走的節點使用 歐幾里得方法
當H值總為0時,退化為Dijkstra尋路演算法
先構建一個如下的模型圖,其中黑色為牆壁,紅色為路徑節點。牆可以為一個方形格子也可以僅僅是一條線(為方格時對角線上的牆壁始終無法被打通)。
先構建一個除了外圈為黑色牆壁,內部全是灰色通路的迷宮模型
『貳』 夢幻西遊自動尋路的尋路演算法怎麼算
A*尋路演算法 A*(A-Star)演算法是一種靜態路網中求解最短路最有效的方法。
公式表示為: f(n)=g(n)+h(n),
其中f(n) 是節點n從初始點到目標點的估價函數,
g(n) 是在狀態空間中從初始節點到n節點的實際代價,
h(n)是從n到目標節點最佳路徑的估計代價。
保證找到最短路徑(最優解的)條件,關鍵在於估價函數h(n)的選取:
估價值h(n)<= n到目標節點的距離實際值,這種情況下,搜索的點數多,搜索范圍大,效率低。但能得到最優解。
如果 估價值>實際值, 搜索的點數少,搜索范圍小,效率高,但不能保證得到最優解。
估價值與實際值越接近,估價函數取得就越好。
例如對於幾何路網來說,可以取兩節點間歐幾理德距離(直線距離)做為估價值,即f=g(n)+sqrt((dx-nx)*(dx-nx)+(dy-ny)*(dy-ny));這樣估價函數f在g值一定的情況下,會或多或少的受估價值h的制約,節點距目標點近,h值小,f值相對就小,能保證最短路的搜索向終點的方向進行。明顯優於Dijstra演算法的毫無無方向的向四周搜索。
conditions of heuristic
Optimistic (must be less than or equal to the real cost)
As close to the real cost as possible
主要搜索過程:
創建兩個表,OPEN表保存所有已生成而未考察的節點,CLOSED表中記錄已訪問過的節點。
遍歷當前節點的各個節點,將n節點放入CLOSE中,取n節點的子節點X,->算X的估價值->
While(OPEN!=NULL)
{
從OPEN表中取估價值f最小的節點n;
if(n節點==目標節點) break;
else
{
if(X in OPEN) 比較兩個X的估價值f //注意是同一個節點的兩個不同路徑的估價值
if( X的估價值小於OPEN表的估價值 )
更新OPEN表中的估價值; //取最小路徑的估價值
if(X in CLOSE) 比較兩個X的估價值 //注意是同一個節點的兩個不同路徑的估價值
if( X的估價值小於CLOSE表的估價值 )
更新CLOSE表中的估價值; 把X節點放入OPEN //取最小路徑的估價值
if(X not in both)
求X的估價值;
並將X插入OPEN表中; //還沒有排序
}
將n節點插入CLOSE表中;
按照估價值將OPEN表中的節點排序; //實際上是比較OPEN表內節點f的大小,從最小路徑的節點向下進行。
啟發式搜索其實有很多的演算法,比如:局部擇優搜索法、最好優先搜索法等等。當然A*也是。這些演算法都使用了啟發函數,但在具體的選取最佳搜索節點時的策略不同。象局部擇優搜索法,就是在搜索的過程中選取「最佳節點」後舍棄其他的兄弟節點,父親節點,而一直得搜索下去。這種搜索的結果很明顯,由於舍棄了其他的節點,可能也把最好的
節點都舍棄了,因為求解的最佳節點只是在該階段的最佳並不一定是全局的最佳。最好優先就聰明多了,他在搜索時,便沒有舍棄節點(除非該節點是死節點),在每一步的估價
中都把當前的節點和以前的節點的估價值比較得到一個「最佳的節點」。這樣可以有效的防止「最佳節點」的丟失。那麼A*演算法又是一種什麼樣的演算法呢?其實A*演算法也是一種最
好優先的演算法。只不過要加上一些約束條件罷了。由於在一些問題求解時,我們希望能夠求解出狀態空間搜索的最短路徑,也就是用最快的方法求解問題,A*就是干這種事情的!
我們先下個定義,如果一個估價函數可以找出最短的路徑,我們稱之為可採納性。A*演算法是一個可採納的最好優先演算法。A*演算法的估價函數可表示為:
f'(n) = g'(n) + h'(n)
這里,f'(n)是估價函數,g'(n)是起點到終點的最短路徑值,h'(n)是n到目標的最斷路經的啟發值。由於這個f'(n)其實是無法預先知道的,所以我們用前面的估價函數f(n)做
近似。g(n)代替g'(n),但 g(n)>=g'(n)才可(大多數情況下都是滿足的,可以不用考慮),h(n)代替h'(n),但h(n)<=h'(n)才可(這一點特別的重要)。可以證明應用這樣的估價
函數是可以找到最短路徑的,也就是可採納的。我們說應用這種估價函數的最好優先演算法就是A*演算法。哈。你懂了嗎?肯定沒懂。接著看。
舉一個例子,其實廣度優先演算法就是A*演算法的特例。其中g(n)是節點所在的層數,h(n)=0,這種h(n)肯定小於h'(n),所以由前述可知廣度優先演算法是一種可採納的。實際也是
。當然它是一種最臭的A*演算法。
再說一個問題,就是有關h(n)啟發函數的信息性。h(n)的信息性通俗點說其實就是在估計一個節點的值時的約束條件,如果信息越多或約束條件越多則排除的節點就越多,估價函
數越好或說這個演算法越好。這就是為什麼廣度優先演算法的那麼臭的原因了,誰叫它的h(n)=0,一點啟發信息都沒有。但在游戲開發中由於實時性的問題,h(n)的信息越多,它的計
算量就越大,耗費的時間就越多。就應該適當的減小h(n)的信息,即減小約束條件。但演算法的准確性就差了,這里就有一個平衡的問題。
}
『叄』 關於VB中A*尋路演算法的提問
定理:穿越於一組互不相交的多邊形障礙物S之間、從Pstart通往Pgoal的任何一條最短路徑,都是一條多邊形路徑,其中所有的內部頂點都是S的頂點。
推廣:所有最短路徑問題。
結論:只有普遍適用的演算法,沒有普遍適用的代碼。
補充:只有問題實例化才能寫出適用代碼。
你所遇到的可不只是尋路問題,二維尋路相對簡單點,我猜測你的問題產生在「碰撞」上,建議你多學習一下「計算幾何學」、「計算機圖形學」、「機器人運動學」等,當然,編程的基本功也很重要。其實,帶有運動的游戲編程是很復雜的。你也可以將你的程序包發給我等我有時間幫你看看。
『肆』 如何基於Cocos2d-x v3.x實現A星尋路演算法
實現A星演算法
根據演算法,第一步是添加當前坐標到open列表。還需要三個輔助方法:
- 一個方法用來插入一個ShortestPathStep對象到適當的位置(有序的F值)
- 一個方法用來計算從一個方塊到相鄰方塊的移動數值
- 一個方法是根據"曼哈頓距離"演算法,計算方塊的H值
打開CatSprite.cpp文件,添加如下方法:
void CatSprite::insertInOpenSteps(CatSprite::ShortestPathStep *step)
{
int stepFScore = step->getFScore();
ssize_t count = _spOpenSteps.size();
ssize_t i = 0;
for (; i < count; ++i)
{
if (stepFScore <= _spOpenSteps.at(i)->getFScore())
{
break;
}
}
_spOpenSteps.insert(i, step);
}
int CatSprite::computeHScoreFromCoordToCoord(const Point &fromCoord, const Point &toCoord)
{
// 這里使用曼哈頓方法,計算從當前步驟到達目標步驟,在水平和垂直方向總的步數
// 忽略了可能在路上的各種障礙
return abs(toCoord.x - fromCoord.x) + abs(toCoord.y - fromCoord.y);
}
int CatSprite::(const ShortestPathStep *fromStep, const ShortestPathStep *toStep)
{
// 因為不能斜著走,而且由於地形就是可行走和不可行走的成本都是一樣的
// 如果能夠對角移動,或者有沼澤、山丘等等,那麼它必須是不同的
return 1;
}
接下來,需要一個方法去獲取給定方塊的所有相鄰可行走方塊。因為在這個游戲中,HelloWorld管理著地圖,所以在那裡添加方法。打開HelloWorldScene.cpp文件,添加如下方法:
PointArray *HelloWorld::(const Point &tileCoord) const
{
PointArray *tmp = PointArray::create(4);
// 上
Point p(tileCoord.x, tileCoord.y - 1);
if (this->isValidTileCoord(p) && !this->isWallAtTileCoord(p))
{
tmp->addControlPoint(p);
}
// 左
p.setPoint(tileCoord.x - 1, tileCoord.y);
if (this->isValidTileCoord(p) && !this->isWallAtTileCoord(p))
{
tmp->addControlPoint(p);
}
// 下
p.setPoint(tileCoord.x, tileCoord.y + 1);
if (this->isValidTileCoord(p) && !this->isWallAtTileCoord(p))
{
tmp->addControlPoint(p);
}
// 右
p.setPoint(tileCoord.x + 1, tileCoord.y);
if (this->isValidTileCoord(p) && !this->isWallAtTileCoord(p))
{
tmp->addControlPoint(p);
}
return tmp;
}
可以繼續CatSprite.cpp中的moveToward方法了,在moveToward方法的後面,添加如下代碼:
bool pathFound = false;
_spOpenSteps.clear();
_spClosedSteps.clear();
// 首先,添加貓的方塊坐標到open列表
this->insertInOpenSteps(ShortestPathStep::createWithPosition(fromTileCoord));
do
{
// 得到最小的F值步驟
// 因為是有序列表,第一個步驟總是最小的F值
ShortestPathStep *currentStep = _spOpenSteps.at(0);
// 添加當前步驟到closed列表
_spClosedSteps.pushBack(currentStep);
// 將它從open列表裡面移除
// 需要注意的是,如果想要先從open列表裡面移除,應小心對象的內存
_spOpenSteps.erase(0);
// 如果當前步驟是目標方塊坐標,那麼就完成了
if (currentStep->getPosition() == toTileCoord)
{
pathFound = true;
ShortestPathStep *tmpStep = currentStep;
CCLOG("PATH FOUND :");
do
{
CCLOG("%s", tmpStep->getDescription().c_str());
tmpStep = tmpStep->getParent(); // 倒退
} while (tmpStep); // 直到沒有上一步
_spOpenSteps.clear();
_spClosedSteps.clear();
break;
}
// 得到當前步驟的相鄰方塊坐標
PointArray *adjSteps = _layer->(currentStep->getPosition());
for (ssize_t i = 0; i < adjSteps->count(); ++i)
{
ShortestPathStep *step = ShortestPathStep::createWithPosition(adjSteps->getControlPointAtIndex(i));
// 檢查步驟是不是已經在closed列表
if (this->getStepIndex(_spClosedSteps, step) != -1)
{
continue;
}
// 計算從當前步驟到此步驟的成本
int moveCost = this->(currentStep, step);
// 檢查此步驟是否已經在open列表
ssize_t index = this->getStepIndex(_spOpenSteps, step);
// 不在open列表,添加它
if (index == -1)
{
// 設置當前步驟作為上一步操作
step->setParent(currentStep);
// G值等同於上一步的G值 + 從上一步到這里的成本
step->setGScore(currentStep->getGScore() + moveCost);
// H值即是從此步驟到目標方塊坐標的移動量估算值
step->setHScore(this->computeHScoreFromCoordToCoord(step->getPosition(), toTileCoord));
// 按序添加到open列表
this->insertInOpenSteps(step);
}
else
{
// 獲取舊的步驟,其值已經計算過
step = _spOpenSteps.at(index);
// 檢查G值是否低於當前步驟到此步驟的值
if ((currentStep->getGScore() + moveCost) < step->getGScore())
{
// G值等同於上一步的G值 + 從上一步到這里的成本
step->setGScore(currentStep->getGScore() + moveCost);
// 因為G值改變了,F值也會跟著改變
// 所以為了保持open列表有序,需要將此步驟移除,再重新按序插入
// 在移除之前,需要先保持引用
step->retain();
// 現在可以放心移除,不用擔心被釋放
_spOpenSteps.erase(index);
// 重新按序插入
this->insertInOpenSteps(step);
// 現在可以釋放它了,因為open列表應該持有它
step->release();
}
}
}
} while (_spOpenSteps.size() > 0);
if (!pathFound)
{
SimpleAudioEngine::getInstance()->playEffect("hitWall.wav");
}
添加以下方法:
ssize_t CatSprite::getStepIndex(const cocos2d::Vector<CatSprite::ShortestPathStep *> &steps, const CatSprite::ShortestPathStep *step)
{
for (ssize_t i = 0; i < steps.size(); ++i)
{
if (steps.at(i)->isEqual(step))
{
return i;
}
}
return -1;
}
『伍』 求一個A*演算法的C語言或C++代碼,小弟不勝感激,謝謝
1#include <iostream>
2#include <queue>
3usingnamespace std;
4
5struct knight{
6int x,y,step;
7int g,h,f;
8booloperator< (const knight & k) const{ //重載比較運算符
9return f > k.f;
10 }
11}k;
12bool visited[8][8]; //已訪問標記(關閉列表)
13int x1,y1,x2,y2,ans; //起點(x1,y1),終點(x2,y2),最少移動次數ans
14int dirs[8][2]={{-2,-1},{-2,1},{2,-1},{2,1},{-1,-2},{-1,2},{1,-2},{1,2}};//8個移動方向
15priority_queue<knight> que; //最小優先順序隊列(開啟列表)
16
17boolin(const knight & a){ //判斷knight是否在棋盤內
18if(a.x<0|| a.y<0|| a.x>=8|| a.y>=8)
19returnfalse;
20returntrue;
21}
22int Heuristic(const knight &a){ //manhattan估價函數
23return (abs(a.x-x2)+abs(a.y-y2))*10;
24}
25void Astar(){ //A*演算法
26 knight t,s;
27while(!que.empty()){
28 t=que.top(),que.pop(),visited[t.x][t.y]=true;
29if(t.x==x2 && t.y==y2){
30 ans=t.step;
31break;
32 }
33for(int i=0;i<8;i++){
34 s.x=t.x+dirs[i][0],s.y=t.y+dirs[i][1];
35if(in(s) &&!visited[s.x][s.y]){
36 s.g = t.g +23; //23表示根號5乘以10再取其ceil
37 s.h = Heuristic(s);
38 s.f = s.g + s.h;
39 s.step = t.step +1;
40 que.push(s);
41 }
42 }
43 }
44}
45int main(){
46char line[5];
47while(gets(line)){
48 x1=line[0]-'a',y1=line[1]-'1',x2=line[3]-'a',y2=line[4]-'1';
49 memset(visited,false,sizeof(visited));
50 k.x=x1,k.y=y1,k.g=k.step=0,k.h=Heuristic(k),k.f=k.g+k.h;
51while(!que.empty()) que.pop();
52 que.push(k);
53 Astar();
54 printf("To get from %c%c to %c%c takes %d knight moves.\n",line[0],line[1],line[3],line[4],ans);
55 }
56return0;
57}
58
『陸』 三維點最短路徑尋路演算法求助
題目描述得不夠清楚啊,若干個點就是能作為中途點的那些點么?
如果所有的點都能作為中途點,當然走直徑,直接走A到B的直線。
否則,如果只有幾個,只能用啟發式或者廣度搜索吧,因為還有可能根本就沒有解。
如果中途點不多的話,可以直接從A出發,計算不超過L距離的那些中途點,然後以那些中途點為出發點,繼續計算不超過L距離的點(走過的點就不計入),直到遇到B為止。這種方法就是廣度搜索,在同一層距離最短的則為最短路徑。
如果中途點過多,無法這樣計算的話,限定范圍。
『柒』 從原點出發,遍歷50個點,再回到原點的最短路徑,求matlab程序
據 Drew 所知最短路經演算法現在重要的應用有計算機網路路由演算法,機器人探路,交通路線導航,人工智慧,游戲設計等等。美國火星探測器核心的尋路演算法就是採用的D*(D Star)演算法。
最短路經計算分靜態最短路計算和動態最短路計算。
靜態路徑最短路徑演算法是外界環境不變,計算最短路徑。主要有Dijkstra演算法,A*(A Star)演算法。
動態路徑最短路是外界環境不斷發生變化,即不能計算預測的情況下計算最短路。如在游戲中敵人或障礙物不斷移動的情況下。典型的有D*演算法。這是Drew程序實現的10000個節點的隨機路網三條互不相交最短路真實路網計算K條路徑示例:節點5696到節點3006,三條最快速路,可以看出路徑基本上走環線或主幹路。黑線為第一條,蘭線為第二條,紅線為第三條。約束條件系數為1.2。共享部分路段。 顯示計算部分完全由Drew自己開發的程序完成。 參見 K條路演算法測試程序
Dijkstra演算法求最短路徑:
Dijkstra演算法是典型最短路演算法,用於計算一個節點到其他所有節點的最短路徑。主要特點是以起始點為中心向外層層擴展,直到擴展到終點為止。Dijkstra演算法能得出最短路徑的最優解,但由於它遍歷計算的節點很多,所以效率低。
Dijkstra演算法是很有代表性的最短路演算法,在很多專業課程中都作為基本內容有詳細的介紹,如數據結構,圖論,運籌學等等。
Dijkstra一般的表述通常有兩種方式,一種用永久和臨時標號方式,一種是用OPEN, CLOSE表方式,Drew為了和下面要介紹的 A* 演算法和 D* 演算法表述一致,這里均採用OPEN,CLOSE表的方式。
大概過程:
創建兩個表,OPEN, CLOSE。
OPEN表保存所有已生成而未考察的節點,CLOSED表中記錄已訪問過的節點。
1. 訪問路網中里起始點最近且沒有被檢查過的點,把這個點放入OPEN組中等待檢查。
2. 從OPEN表中找出距起始點最近的點,找出這個點的所有子節點,把這個點放到CLOSE表中。
3. 遍歷考察這個點的子節點。求出這些子節點距起始點的距離值,放子節點到OPEN表中。
4. 重復2,3,步。直到OPEN表為空,或找到目標點。
這是在drew 程序中4000個節點的隨機路網上Dijkstra演算法搜索最短路的演示,黑色圓圈表示經過遍歷計算過的點由圖中可以看到Dijkstra演算法從起始點開始向周圍層層計算擴展,在計算大量節點後,到達目標點。所以速度慢效率低。
提高Dijkstra搜索速度的方法很多,據Drew所知,常用的有數據結構採用Binary heap的方法,和用Dijkstra從起始點和終點同時搜索的方法。
推薦網頁:http://www.cs.ecnu.e.cn/assist/js04/ZJS045/ZJS04505/zjs045050a.htm
簡明扼要介紹Dijkstra演算法,有圖解顯示和源碼下載。
A*(A Star)演算法:啟發式(heuristic)演算法
A*(A-Star)演算法是一種靜態路網中求解最短路最有效的方法。
公式表示為: f(n)=g(n)+h(n),
其中f(n) 是節點n從初始點到目標點的估價函數,
g(n) 是在狀態空間中從初始節點到n節點的實際代價,
h(n)是從n到目標節點最佳路徑的估計代價。
保證找到最短路徑(最優解的)條件,關鍵在於估價函數h(n)的選取:
估價值h(n)<= n到目標節點的距離實際值,這種情況下,搜索的點數多,搜索范圍大,效率低。但能得到最優解。
如果 估價值>實際值, 搜索的點數少,搜索范圍小,效率高,但不能保證得到最優解。
估價值與實際值越接近,估價函數取得就越好。
例如對於幾何路網來說,可以取兩節點間歐幾理德距離(直線距離)做為估價值,即f=g(n)+sqrt((dx-nx)*(dx-nx)+(dy-ny)*(dy-ny));這樣估價函數f在g值一定的情況下,會或多或少的受估價值h的制約,節點距目標點近,h值小,f值相對就小,能保證最短路的搜索向終點的方向進行。明顯優於Dijstra演算法的毫無無方向的向四周搜索。
conditions of heuristic
Optimistic (must be less than or equal to the real cost)
As close to the real cost as possible
主要搜索過程:
創建兩個表,OPEN表保存所有已生成而未考察的節點,CLOSED表中記錄已訪問過的節點。
遍歷當前節點的各個節點,將n節點放入CLOSE中,取n節點的子節點X,->算X的估價值->
While(OPEN!=NULL)
{
從OPEN表中取估價值f最小的節點n;
if(n節點==目標節點) break;
else
{
if(X in OPEN) 比較兩個X的估價值f //注意是同一個節點的兩個不同路徑的估價值
if( X的估價值小於OPEN表的估價值 )
更新OPEN表中的估價值; //取最小路徑的估價值
if(X in CLOSE) 比較兩個X的估價值 //注意是同一個節點的兩個不同路徑的估價值
if( X的估價值小於CLOSE表的估價值 )
更新CLOSE表中的估價值; 把X節點放入OPEN //取最小路徑的估價值
if(X not in both)
求X的估價值;
並將X插入OPEN表中;//還沒有排序
}
將n節點插入CLOSE表中;
按照估價值將OPEN表中的節點排序; //實際上是比較OPEN表內節點f的大小,從最小路徑的節點向下進行。
}
『捌』 lua語言a星尋路演算法路徑怎麼平滑
在項目中遇到了自動尋路的需求,於是決定開始學習一下A星,對於A星我也沒有深究,只能說是勉強搞定了需求,在這和大家分享一下,相互進步,
A星有個公式 f(x) = g(x) + h(x)
,搞清楚這個公式就好辦了,f(x)就是當前位置到下一個位置的總價值,g(x)表示實際價,這是說這一部分代價是確定的,h(x)表示估價值,就是說我
從下一個位置到到終點的代價是未知的,所以叫估價值,如圖中所示,黑色格子表示當前位置,綠色格子表示下一步可能到達的位置,即上、下、左、右這幾個方
向,紅色格子表示終點,褐色表示障礙物,現在要從黑色格子到達紅色格子,那麼黑色格子的下一步肯定是綠色格子當中的一個,黑色格子到綠色格子之間是相挨著
的,所以我們可以很明確的知道它的實際代價為1(移動一步的代價)即g(x),綠色格子到紅色格子之間隔著很長的距離,中間還有障礙物,所以這個代價是未
知的,即h(x),所以總的代價就為f(x) = g(x) +
h(x),我們看到周圍有4個綠色的格子,到底走那一步比較好呢,所以我們要把這4個格子的f(x)值都求出來,然後進行排序,選擇f(x)值最小的,即
總代價最少的那個格子,以此方法繼續下去,直到到達終點 或者 地圖上沒有綠色格子了
下面來看一下這個工具類,g(x)和h(x)要選的比較合適,一般就是採用的曼哈頓演算法,即兩點在x方向和y方向的距離之和,
-- Filename: PathUtil.lua
-- Author: bzx
-- Date: 2014-07-01
-- Purpose: 尋路
mole("PathUtil", package.seeall)
local _map_data -- 地圖數據
local _open_list -- 開放節點
local _open_map -- 開放節點,為了提高性能而加
local _close_map -- 關閉節點
local _deleget -- 代理
local _dest_point -- 目標點
local _start_point -- 起點
local _path -- 路徑
-- 尋找路徑
--[[
deleget = {
g = function(point1, point2)
-- add your code
-- 返回點point1到點point2的實際代價
end
h = function(point1, point2)
-- add your code
-- 返回點point1到點point2的估算代價
end
getValue = function(j, i)
-- 返回地圖中第i行,第j列的數據 1為障礙物,0為非障礙物
end
width -- 地圖寬度
height -- 地圖高度
}
--]]
function findPath(deleget, start_point, dest_point)
_deleget = deleget
_dest_point = dest_point
_start_point = start_point
init()
while not table.isEmpty(_open_list) do
local cur_point = _open_list[1]
table.remove(_open_list, 1)
_open_map[cur_point.key] = nil
if isEqual(cur_point, dest_point) then
return makePath(cur_point)
else
_close_map[cur_point.key] = cur_point
local next_points = getNextPoints(cur_point)
for i = 1, #next_points do
local next_point = next_points[i]
if _open_map[next_point.key] == nil and _close_map[next_point.key] == nil and isObstacle(next_point) == false then
_open_map[next_point.key] = next_point
table.insert(_open_list, next_point)
end
end
table.sort(_open_list, compareF)
end
end
return nil
end
function init()
_open_list = {}
_open_map = {}
_close_map = {}
_path = {}
_map_data = {}
for i = 1, _deleget.height do
_map_data[i] = {}
for j = 1, _deleget.width do
local value = _deleget.getValue(j, i)
_map_data[i][j] = value
end
end
_open_map[getKey(_start_point)] = _start_point
table.insert(_open_list, _start_point)
end
function createPoint(x, y)
local point = {
["x"] = x,
["y"] = y,
["last"] = nil,
["g_value"] = 0,
["h_value"] = 0,
["f_value"] = 0
}
point["key"] = getKey(point)
return point
end
-- 得到下一個可以移動的點
-- @param point 當前所在點
function getNextPoints(point)
local next_points = {}
for i = 1, #_deleget.directions do
local offset = _deleget.directions[i]
local next_point = createPoint(point.x + offset[1], point.y + offset[2])
next_point["last"] = point
if next_point.x >= 1 and next_point.x <= _deleget.width and next_point.y >= 1 and next_point.y <= _deleget.height then
next_point["g_value"] = _deleget.g(point, next_point)
next_point["h_value"] = _deleget.h(point, _dest_point)--math.abs(next_points.x - _dest_point.x) + math.abs(next_points.y - _dest_point.y)
next_point["f_value"] = next_point.g_value + next_point.h_value
table.insert(next_points, next_point)
end
end
return next_points
end
-- 得到路徑
-- @param end_point 目標點
function makePath(end_point)
_path = {}
local point = end_point
while point.last ~= nil do
table.insert(_path, createPoint(point.x, point.y))
point = point.last
end
local start_point = point
table.insert(_path, start_point)
return _path
end
-- 兩個點的代價比較器
function compareF(point1, point2)
return point1.f_value < point2.f_value
end
-- 是否是障礙物
function isObstacle(point)
local value = _map_data[point.y][point.x]
if value == 1 then
return true
end
return false
end
-- 兩個點是否是同一個點
function isEqual(point1, point2)
return point1.key == point2.key
end
-- 根據點得到點的key
function getKey(point)
local key = string.format("%d,%d", point.x, point.y)
return key
end
下面是工具類PathUtil的用法
local deleget = {}
deleget.g = function(point1, point2)
return math.abs(point1.x - point2.x) + math.abs(point1.y - point2.y)
end
deleget.h = deleget.g
deleget.getValue = function(j, i)
local index = FindTreasureUtil.getIndex(j, i)
local map_info = _map_info.map[index]
if map_info.display == 0 and map_info.eid ~= 1 then
return 0
end
return 1
end
deleget.directions = {{-1, 0}, {0, -1}, {0, 1}, {1, 0}} -- 左,上,下,右
deleget.width = _cols
deleget.height = _rows
local dest_row, dest_col = FindTreasureUtil.getMapPosition(tag)
local dest_point = PathUtil.createPoint(dest_col, dest_row)
local start_row, start_col = FindTreasureUtil.getMapPosition(_player_index)
local start_point = PathUtil.createPoint(start_col, start_row)
_path = PathUtil.findPath(deleget, start_point, dest_point)
_path就是我們找到的路徑,起點為最後一個元素,終點為第一個元素