數據包絡演算法
㈠ MATLAB建模方法有哪些
首先,Matlab是一個工具,它不是一個方法。
其次,我給你推薦一本書
《MATLAB 在數學建模中的應用(第2版)》
然後它的目錄可以回答你的問題:
第1章 數學建模常規方法及其MATLAB實現
1.1 MATLAB與數據文件的交互
1.1.1 MATLAB與Excel的交互
1.1.2 MATLAB與TXT交互
1.1.3 MATLAB界面導入數據的方法
1.2 數據擬合方法
1.2.1 多項式擬合
1.2.2 指定函數擬合
1.2.3 曲線擬合工具箱
1.3 數據擬合應用實例
1.3.1 人口預測模型
1.3.2 薄膜滲透率的測定
1.4 數據的可視化
1.4.1 地形地貌圖形的繪制
1.4.2 車燈光源投影區域的繪制(CUMCM2002A)
1.5 層次分析法(AHP)
1.5.1 層次分析法的應用場景
1.5.2 AHPMATLAB程序設計
第2章 規劃問題的MATLAB求解
2.1 線性規劃
2.1.1 線性規劃的實例與定義
2.1.2 線性規劃的MATLAB標准形式
2.1.3 線性規劃問題解的概念
2.1.4 求解線性規劃的MATLAB解法
2.2 非線性規劃
2.2.1 非線性規劃的實例與定義
2.2.2 非線性規劃的MATLAB解法
2.2.3 二次規劃
2.3 整數規劃
2.3.1 整數規劃的定義
2.3.2 01整數規劃
2.3.3 隨機取樣計演算法
第3章 數據建模及MATLAB實現
3.1 雲模型
3.1.1 雲模型基礎知識
3.1.2 雲模型的MATLAB程序設計
3.2 Logistic回歸
3.2.1 Logistic模型
3.2.2 Logistic回歸MATLAB程序設計
3.3 主成分分析
3.3.1 PCA基本思想
3.3.2 PCA步驟
3.3.3 主成分分析MATLAB程序設計
3.4 支持向量機(SVM)
3.4.1 SVM基本思想
3.4.2 理論基礎
3.4.3 支持向量機MATLAB程序設計
3.5 K均值(KMeans)
3.5.1 KMeans原理、步驟和特點
3.5.2 KMeans聚類MATLAB程序設計
3.6 樸素貝葉斯判別法
3.6.1 樸素貝葉斯判別模型
3.6.2 樸素貝葉斯判別法MATLAB設計
3.7 數據建模綜合應用
參考文獻
第4章 灰色預測及其MATLAB實現
4.1 灰色系統基本理論
4.1.1 灰色關聯度矩陣
4.1.2 經典灰色模型GM(1,1)
4.1.3 灰色Verhulst模型
4.2 灰色系統的程序設計
4.2.1 灰色關聯度矩陣的程序設計
4.2.2 GM(1,1)的程序設計
4.2.3 灰色Verhulst模型的程序設計
4.3 灰色預測的MATLAB程序
4.3.1 典型程序結構
4.3.2 灰色預測程序說明
4.4 灰色預測應用實例
4.4.1 實例一長江水質的預測(CUMCM2005A)
4.4.2 實例二預測與會代表人數(CUMCM2009D)
4.5 小結
參考文獻
第5章 遺傳演算法及其MATLAB實現
5.1 遺傳演算法基本原理
5.1.1 人工智慧演算法概述
5.1.2 遺傳演算法生物學基礎
5.1.3 遺傳演算法的實現步驟
5.1.4 遺傳演算法的拓展
5.2 遺傳演算法的MATLAB程序設計
5.2.1 程序設計流程及參數選取
5.2.2 MATLAB遺傳演算法工具箱
5.3 遺傳演算法應用案例
5.3.1 案例一:無約束目標函數最大值遺傳演算法求解策略
5.3.2 案例二:CUMCM中多約束非線性規劃問題的求解
5.3.3 案例三:BEATbx遺傳演算法工具箱的應用——電子商務中轉化率影響因素研究
參考文獻
第6章 模擬退火演算法及其MATLAB實現
6.1 演算法的基本理論
6.1.1 演算法概述
6.1.2 基本思想
6.1.3 其他一些參數的說明
6.1.4 演算法基本步驟
6.1.5 幾點說明
6.2 演算法的MATLAB實現
6.2.1 演算法設計步驟
6.2.2 典型程序結構
6.3 應用實例:背包問題的求解
6.3.1 問題的描述
6.3.2 問題的求解
6.4 模擬退火程序包ASA簡介
6.4.1 ASA的優化實例
6.4.2 ASA的編譯
6.4.3 MATLAB版ASA的安裝與使用
6.5 小結
6.6 延伸閱讀
參考文獻
第7章 人工神經網路及其MATLAB實現
7.1 人工神經網路基本理論
7.1.1 人工神經網路模型拓撲結構
7.1.2 常用激勵函數
7.1.3 常見神經網路理論
7.2 BP神經網路的結構設計
7.2.1 鯊魚嗅聞血腥味與BP神經網路訓練
7.2.2 透視神經網路的學習步驟
7.2.3 BP神經網路的動態擬合過程
7.3 RBF神經網路的結構設計
7.3.1 梯度訓練法RBF神經網路的結構設計
7.3.2 RBF神經網路的性能
7.4 應用實例
7.4.1 基於MATLAB源程序公路運量預測
7.4.2 基於MATLAB工具箱公路運量預測
7.4.3 艾滋病治療最佳停葯時間的確定(CUMCM2006B)
7.4.4 RBF神經網路預測新客戶流失概率
7.5 延伸閱讀
7.5.1 從金融分析中的小數定理談神經網路的訓練樣本遴選規則
7.5.2 小議BP神經網路的衍生機理
參考文獻
第8章粒子群演算法及其MATLAB實現
8.1 PSO演算法相關知識
8.1.1 初識PSO演算法
8.1.2 PSO演算法的基本理論
8.1.3 PSO演算法的約束優化
8.1.4 PSO演算法的優缺點
8.2 PSO演算法程序設計
8.2.1 程序設計流程
8.2.2 PSO演算法的參數選取
8.2.3 PSO演算法MATLAB源程序範例
8.3 應用案例:基於PSO演算法和BP演算法訓練神經網路
8.3.1 如何評價網路的性能
8.3.2 BP演算法能夠搜索到極值的原理
8.3.3 PSOBP神經網路的設計指導原則
8.3.4 PSO演算法優化神經網路結構
8.3.5 PSOBP神經網路的實現
參考文獻
第9章 蟻群演算法及其MATLAB實現
9.1 蟻群演算法原理
9.1.1 蟻群演算法基本思想
9.1.2 蟻群演算法數學模型
9.1.3 蟻群演算法流程
9.2 蟻群演算法的MATLAB實現
9.2.1 實例背景
9.2.2 演算法設計步驟
9.2.3 MATLAB程序實現
9.2.4 程序執行結果與分析
9.3 演算法關鍵參數的設定
9.3.1 參數設定的准則
9.3.2 螞蟻數量
9.3.3 信息素因子
9.3.4 啟發函數因子
9.3.5 信息素揮發因子
9.3.6 信息素常數
9.3.7 最大迭代次數
9.3.8 組合參數設計策略
9.4 應用實例:最佳旅遊方案(蘇北賽2011B)
9.4.1 問題描述
9.4.2 問題的求解和結果
9.5 本章小結
參考文獻
第10章 小波分析及其MATLAB實現
10.1 小波分析基本理論
10.1.1 傅里葉變換的局限性
10.1.2 伸縮平移和小波變換
10.1.3 小波變換入門和多尺度分析
10.1.4 小波窗函數自適應分析
10.2 小波分析MATLAB程序設計
10.2.1 小波分析工具箱函數指令
10.2.2 小波分析程序設計綜合案例
10.3 小波分析應用案例
10.3.1 案例一:融合拓撲結構的小波神經網路
10.3.2 案例二:血管重建引出的圖像數字水印
參考文獻
第11章 計算機虛擬及其MATLAB實現
11.1 計算機虛擬基本知識
11.1.1 從3G移動互聯網協議WCDMA談MATLAB虛擬
11.1.2 計算機虛擬與數學建模
11.1.3 數值模擬與經濟效益博弈
11.2 數值模擬MATLAB程序設計
11.2.1 微分方程組模擬
11.2.2 服從概率分布的隨機模擬
11.2.3 蒙特卡羅模擬
11.3 動態模擬MATLAB程序設計
11.3.1 MATLAB音頻處理
11.3.2 MATLAB常規動畫實現
11.4 應用案例:四維水質模型
11.4.1 問題的提出
11.4.2 問題的分析
11.4.3 四維水質模型准備
11.4.4 條件假設與符號約定
11.4.5 四維水質模型的組建
11.4.6 模型求解
11.4.7 計算機模擬情境
參考文獻
下篇 真題演習
第12章 彩票中的數學(CUMCM2002B)
12.1 問題的提出
12.2 模型的建立
12.2.1 模型假設與符號說明
12.2.2 模型的准備
12.2.3 模型的建立
12.3 模型的求解
12.3.1 求解的思路
12.3.2 MATLAB程序
12.3.3 程序結果
12.4 技巧點評
參考文獻
第13章 露天礦卡車調度問題(CUMCM2003B)
13.1 問題的提出
13.2 基本假設與符號說明
13.2.1 基本假設
13.2.2 符號說明
13.3 問題分析及模型准備
13.4 原則①:數學模型(模型1)的建立與求解
13.4.1 模型的建立
13.4.2 模型求解
13.5 原則②:數學模型(模型2)的建立與求解
13.6 技巧點評
參考文獻
第14章 奧運會商圈規劃問題(CUMCM2004A)
14.1 問題的描述
14.2 基本假設、名詞約定及符號說明
14.2.1 基本假設
14.2.2 符號說明
14.2.3 名詞約定
14.3 問題分析與模型准備
14.3.1 基本思路
14.3.2 基本數學表達式的構建
14.4 設置MS網點數學模型的建立與求解
14.4.1 模型建立
14.4.2 模型求解
14.5 設置MS網點理論體系的建立
14.6 商區布局規劃的數學模型
14.6.1 模型建立
14.6.2 模型求解
14.7 模型的評價及使用說明
14.7.1 模型的優點
14.7.2 模型的缺點
14.8 技巧點評
參考文獻
第15章 交巡警服務平台的設置與調度(CUMCM2011B)
15.1 問題的提出
15.2 問題的分析
15.3 基本假設
15.4 問題1模型的建立與求解
15.4.1 交巡警服務平台管轄范圍分配
15.4.2 交巡警的調度
15.4.3 最佳新增服務平台設置
15.5 問題2模型的建立和求解
15.5.1 全市服務平台的合理性分析問題的模型與求解
15.5.2 搜捕嫌疑犯實例的模型與求解
15.6 模型的評價與改進
15.6.1 模型優點
15.6.2 模型缺點
15.7 技巧點評
參考文獻
第16章 葡萄酒的評價(CUMCM2012A)
16.1 問題的提出
16.2 基本假設
16.3 問題①模型的建立和求解
16.3.1 問題①的分析
16.3.2 模型的建立和求解
16.4 問題②模型的建立和求解
16.4.1 問題②的基本假設和分析
16.4.2 模型的建立和求解
16.5 問題③模型的建立和求解
16.5.1 問題③的分析
16.5.2 模型的建立和求解
16.6 問題④模型的建立和求解
16.6.1 問題④的分析
16.6.2 模型的建立和求解
16.7 論文點評
參考文獻
附件數學建模參賽經驗
一、如何准備數學建模競賽
二、數學建模隊員應該如何學習MATLAB
三、如何在數學建模競賽中取得好成績
四、數學建模競賽中的項目管理和時間管理
五、一種非常實用的數學建模方法——目標建模法
㈡ 請教選址研究問題!
物流配送中心選址方法研究綜述
內容摘要:物流配送中心的選址決策在物流運作中有著重要的地位。本文對近年來國內外有關配送中心選址方法的文獻進行梳理和研究。研究結果發現:各種選址方法有著各自的優缺點和一定的適用范圍,各種方法的組合是未來該領域研究的趨勢。
關鍵詞:物流配送中心 選址 文獻綜述
在物流系統的運作中,配送中心的選址決策發揮著重要的影響。配送中心是連接工廠與客戶的中間橋梁,其選址方式往往決定著物流的配送距離和配送模式,進而影響著物流系統的運作效率。因此,研究物流配送中心的選址具有重要的理論和現實應用意義。
本文對近年來國內外有關物流配送中心選址方法的文獻進行了梳理和研究,並對各種方法進行了比較。選址方法主要有定性和定量的兩種方法。定性方法有專家打分法、Delphi法等,定量方法有重心法、P中值法、數學規劃方法、多准則決策方法、解決NP hard問題(多項式復雜程度的非確定性問題)的各種啟發式演算法、模擬法以及這幾種方法相結合的方法等。由於定性研究方法及重心法、P中值法相對比較成熟,因此,本文將主要分析定量方法中的數學規劃、多准則決策、解決NP hard問題的各種啟發式演算法、模擬在配送中心選址中應用的研究狀況。
數學規劃方法
數學規劃演算法包括線性規劃、非線性規劃、整數規劃、混合整數規劃和動態規劃、網路規劃演算法等。在近年來的研究中,規劃論中常常引入了不確定性的概念,由此進一步產生了模糊規劃、隨機規劃、模糊隨機規劃、隨機模糊規劃等等。不確定性規劃主要是在規劃中的C(價值向量)、A(資源消耗向量)、b(資源約束向量)和決策變數中引入不確定性,從而使得不確定規劃更加貼近於實際情況,得到廣泛地實際應用。
國內外學者對於數學規劃方法應用於配送中心的選址問題進行了比較深入的研究。姜大元(2005)應用Baumol-wolf模型,對多物流節點的選址問題進行研究,並通過舉例對模型的應用進行了說明,該模型屬於整數規劃和非參數規劃結合的模型。各種規劃的方法在具體的現實使用中,常常出現NP hard問題。因此,目前的進一步研究趨勢是各種規劃方法和啟發式演算法的結合,對配送中心的選址進行一個綜合的規劃與計算。
多准則決策方法
在物流系統的研究中,人們常常會遇到大量多准則決策問題,如配送中心的選址、運輸方式及路線選擇、供應商選擇等等。這些問題的典型特徵是涉及到多個選擇方案(對象),每個方案都有若干個不同的准則,要通過多個准則對於方案(對象)做出綜合性的選擇。對於物流配送中心的選址問題,人們常常以運輸成本及配送中心建設、運作成本的總成本最小化,滿足顧客需求,以及滿足社會、環境要求等為准則進行決策。多准則決策的方法包括多指標決策方法與多屬性決策方法兩種,比較常用的有層次分析法(AHP)、模糊綜合評判、數據包絡分析(DEA),TOPSIS、優序法等等。
多准則決策提供了一套良好的決策方法體系,對於配送中心的選址不管在實務界還是理論方面的研究均有廣泛的應用與研究。關志民等(2005)提出了基於模糊多指標評價方法的配送中心選址優化決策。從供應鏈管理的實際需要分析了影響配送中心選址的主要因素,並建立相應的評價指標體系,由此給出了一種使定性和定量的方法有機結合的模糊多指標評價方法。Chen-Tung Chen(2001)運用了基於三角模糊數的模糊多准則決策對物流配送中心的選址問題進行了研究。文章以投資成本、擴展的可能性、獲取原材料的便利性、人力資源、顧客市場的接近性為決策准則,並對各個准則採用語義模糊判定的方式進行了權重上的集結。
有關多准則決策方法,特別是層次分析法和模糊綜合評判的方法,在配送中心的選址研究中有著廣泛的應用。但是,這兩種方法都是基於線性的決策思想,在當今復雜多變的環境下,線性的決策思想逐漸地暴露出其固有的局限性,非線性的決策方法是今後進一步的研究的重點和趨勢。
啟發式演算法
啟發式演算法是尋求解決問題的一種方法和策略,是建立在經驗和判斷的基礎上,體現人的主觀能動作用和創造力。啟發式演算法常常能夠比較有效地處理NP hard問題,因此,啟發式演算法經常與其它優化演算法結合在一起使用,使兩者的優點進一步得到發揮。目前,比較常用的啟發式演算法包括:遺傳演算法;神經網路演算法;模擬退火演算法。
(一)遺傳演算法
遺傳演算法(genetic algorithm, GA)是在 20 世紀 60 年代提出來的,是受遺傳學中自然選擇和遺傳機制啟發而發展起來的一種搜索演算法。它的基本思想是使用模擬生物和人類進化的方法求解復雜的優化問題,因而也稱為模擬進化優化演算法。遺傳演算法主要有三個運算元:選擇;交叉;變異。通過這三個運算元,問題得到了逐步的優化,最終達到滿意的優化解。
對於物流配送中心的選址研究,國內外有不少學者將遺傳演算法同一般的規劃方法結合起來對其進行了研究。蔣忠中等(2005)在考慮各種成本(包括運輸成本等)的基礎上,結合具體的應用背景,建立的數學規劃模型(混合整數規劃或是一般的線性規劃)。由於該模型是一個組合優化問題,具有NP hard問題,因此,結合了遺傳演算法對模型進行求解。通過選擇恰當的編碼方法和遺傳運算元,求得了模型的最優解。
遺傳演算法作為一種隨機搜索的、啟發式的演算法,具有較強的全局搜索能力,但是,往往比較容易陷入局部最優情況。因此,在研究和應用中,為避免這一缺點,遺傳演算法常常和其它演算法結合應用,使得這一演算法更具有應用價值。
(二)人工神經網路
人工神經網路(artificial neural- network, ANN)是由大量處理單元(神經元)廣泛互連而成的網路,是對人腦的抽象、簡化和模擬,反應人腦的基本特徵。可以通過對樣本訓練數據的學習,形成一定的網路參數結構,從而可以對復雜的系統進行有效的模型識別。經過大量樣本學習和訓練的神經網路在分類和評價中,往往要比一般的分類評價方法有效。
對於神經網路如何應用於物流配送中心的選址,國內外不少學者進行了各種有益的嘗試。韓慶蘭等(2004)用BP網路對物流配送中心的選址問題進行了嘗試性地研究,顯示出神經網路對於解決配送中心選址問題具有一定的可行性和可操作性。
這一研究的不足是神經網路的訓練需要大量的數據,在對數據的獲取有一定的困難的情況下,用神經網路來研究是不恰當的。在應用ANN時,我們應當注意網路的學習速度、是否陷入局部最優解、數據的前期准備、網路的結構解釋等問題,這樣才能有效及可靠地應用ANN解決實際存在的問題。
(三)模擬退火演算法
模擬退火演算法(Simulated Annealing, SA)又稱模擬冷卻法、概率爬山法等,於1982年由Kirpatrick提出的另一種啟發式的、隨機優化演算法。模擬退火演算法的基本思想由一個初始的解出發,不斷重復產生迭代解,逐步判定、舍棄,最終取得滿意解的過程。模擬退火演算法不但可以往好的方向發展,也可以往差的方向發展,從而使演算法跳出局部最優解,達到全局最優解。
對於模擬退火演算法應用於物流配送中心選址的研究,大量的文獻結合其它方法(如多准則決策、數學規劃等)進行了研究。任春玉(2006)提出了定量化的模擬退火遺傳演算法與層次分析法相結合來確定配送中心地址的方法。該方法確保總體中個體多樣性以及防止遺傳演算法的提前收斂,運用層次分析法確定 物流配送中心選址評價指標權重,並與專家評分相結合進行了綜合評價。該演算法對於解決物流配送中心的選址具有較好的有效性和可靠性。
除以上三種比較常用的方法之外,啟發式演算法還包括蟻群演算法、禁忌搜索演算法、進化演算法等。各種演算法在全局搜索能力、優缺點、參數、解情況存在著一定的差異。各種啟發式演算法基本上帶有隨機搜索的特點,已廣泛地應用於解決NP hard問題,同時也為物流配送中心選址的智能化處理提供了可能。用解析的方法(包括線性規劃等)建立數學模型,然後運用啟發式演算法進行求解是目前以及未來研究物流配送中心選址的一種較為可行和可操作的研究方法。
模擬方法
模擬是利用計算機來運行模擬模型,模擬時間系統的運行狀態及其隨時間變化的過程,並通過對模擬運行過程的觀察和統計,得到被模擬系統的模擬輸出參數和基本特徵,以此來估計和推斷實際系統的真實參數和真實性能。國內外已經不少文獻將模擬的方法運用於物流配送中心選址或是一般的設施選址的研究,研究結果相對解析方法更接近於實際的情況。
張雲鳳等(2005)對汽車集團企業的配送中心選址運用了模擬的方法進行了研究。先確定了配送中心選址的幾種方案,應用了Flexim軟體對各方案建立了模擬模型,根據模擬結果進行了分析和方案的選擇。該方法為集團企業配送中心選址問題提供了一種較為理想的解決方法。薛永吉等(2005)通過建立數學模型對物流中心的最優站台數問題進行研究,在一定假設和一系列限制條件下,求解最優站台數量,並針對數學模型的復雜性和求解的種種不足,以ARENA模擬軟體為平台,建立模擬模型確定了最優化方案。Kazuyoshi Hidaka等(97)運用模擬對大規模的倉庫選址進行了研究。該研究對倉庫的固定成本、運輸成本,和同時滿足6800名顧客進行了模擬,以求得臨近的最優解(near-optimal solution)。在求解的過程中,結合了貪婪-互換啟發式演算法(Greedy-Interchange heuristics)和氣球搜索演算法(Balloon Search)兩種啟發式演算法進行求解。該演算法能比較有效地避免陷入局部最優解和得到比較滿意的選址方案。但是,研究的結果容易受到運輸車輛的平均速度變化的影響。
模擬方法相對解析的方法在實際應用中具有一定的優點,但是,也存在一定的局限性。如模擬需要進行相對比較嚴格的模型的可信性和有效性的檢驗。有些模擬系統對初始偏差比較敏感,往往使得模擬結果與實際結果有較大的偏差。同時,模擬對人和機器要求往往比較高,要求設計人員必須具備豐富的經驗和較高的分析能力,而相對復雜的模擬系統,對計算機硬體的相應要求是比較高的。關於未來的研究,各種解析方法、啟發式演算法、多准則決策方法與模擬方法的結合,是一種必然的趨勢。各種方法的結合可以彌補各自的不足,而充分發揮各自的優點,從而提高選址的准確性和可靠性。
物流配送中心的選址決策對於整個物流系統運作和客戶滿意情況有著重要的影響。本文在對國內外有關物流配送中心選址方法文獻研究的基礎上,對比分析了數學規劃方法、多准則決策、啟發式演算法、模擬方法在配送中心選址中的應用。研究發現數學規劃方法、多屬性決策方法、啟發式演算法、模擬方法各自有自己的優缺點和一定的適用范圍,各種方法的組合研究是未來研究的一種趨勢。同時,由於選址問題本身具有的動態性、復雜性、不確定性等特性,因此,開發和研究新的模型與方法也是進一步解決配送中心選址問題的必需途徑。
參考文獻:
1.蔣忠中,汪定偉.B2C電子商務中配送中心選址優化的模型與演算法(J).控制與決策,2005
2.韓慶蘭,梅運先.基於BP人工神經網路的物流配送中心選址決策(J).中國軟科學,2004
㈢ 數學建模-方法合集
線性規劃(Linear programming,簡稱LP)是運籌學中研究較早、發展較快、應用廣泛、方法較成熟的一個重要分支,它是輔助人們進行科學管理的一種數學方法。研究線性約束條件下線性目標函數的極值問題的數學理論和方法。英文縮寫LP。它是運籌學的一個重要分支,廣泛應用於軍事作戰、經濟分析、經營管理和工程技術等方面。為合理地利用有限的人力、物力、財力等資源作出的最優決策,提供科學的依據。
0-1規劃是決策變數僅取值0或1的一類特殊的整數規劃。在處理經濟管理中某些規劃問題時,若決策變數採用 0-1變數即邏輯變數,可把本來需要分別各種情況加以討論的問題統一在一個問題中討論。
蒙特卡羅法(Monte Carlo method)是以概率與統計的理論、方法為基礎的一種計算方法,蒙特卡羅法將所需求解的問題同某個概率模型聯系在一起,在電子計算機上進行隨機模擬,以獲得問題的近似解。因此,蒙特卡羅法又稱隨機模擬法或統計試驗法。
在生活中經常遇到這樣的問題,某單位需完成n項任務,恰好有n個人可承擔這些任務。由於每人的專長不同,各人完成任務不同(或所費時間),效率也不同。於是產生應指派哪個人去完成哪項任務,使完成n項任務的總效率最高(或所需總時間最小)。這類問題稱為指派問題或分派問題。
無約束最優化方法是求解無約束最優化問題的方法,有解析法和直接法兩類。
解析法
解析法就是利用無約束最優化問題中目標函數 f(x) 的解析表達式和它的解析性質(如函數的一階導數和二階導數),給出一種求它的最優解 x 的方法,或一種求 x 的近似解的迭代方法。
直接法
直接法就是在求最優解 x*的過程中,只用到函數的函數值,而不必利用函數的解析性質,直接法也是一種迭代法,迭代步驟簡單,當目標函數 f(x) 的表達式十分復雜,或寫不出具體表達式時,它就成了重要的方法。
可用來解決管路鋪設、線路安裝、廠區布局和設備更新等實際問題。基本內容是:若網路中的每條邊都有一個數值(長度、成本、時間等),則找出兩節點(通常是源節點和阱節點)之間總權和最小的路徑就是最短路問題。 [1]
例如:要在n個城市之間鋪設光纜,主要目標是要使這 n 個城市的任意兩個之間都可以通信,但鋪設光纜的費用很高,且各個城市之間鋪設光纜的費用不同,因此另一個目標是要使鋪設光纜的總費用最低。這就需要找到帶權的最小生成樹
管道網路中每條邊的最大通過能力(容量)是有限的,實際流量不超過容量。
最大流問題(maximum flow problem),一種組合最優化問題,就是要討論如何充分利用裝置的能力,使得運輸的流量最大,以取得最好的效果。求最大流的標號演算法最早由福特和福克遜與與1956年提出,20世紀50年代福特(Ford)、(Fulkerson)建立的「網路流理論」,是網路應用的重要組成成分。
最小費用最大流問題是經濟學和管理學中的一類典型問題。在一個網路中每段路徑都有「容量」和「費用」兩個限制的條件下,此類問題的研究試圖尋找出:流量從A到B,如何選擇路徑、分配經過路徑的流量,可以在流量最大的前提下,達到所用的費用最小的要求。如n輛卡車要運送物品,從A地到B地。由於每條路段都有不同的路費要繳納,每條路能容納的車的數量有限制,最小費用最大流問題指如何分配卡車的出發路徑可以達到費用最低,物品又能全部送到。
旅行推銷員問題(英語:Travelling salesman problem, TSP)是這樣一個問題:給定一系列城市和每對城市之間的距離,求解訪問每一座城市一次並回到起始城市的最短迴路。它是組合優化中的一個NP困難問題,在運籌學和理論計算機科學中非常重要。
最早的旅行商問題的數學規劃是由Dantzig(1959)等人提出,並且是在最優化領域中進行了深入研究。許多優化方法都用它作為一個測試基準。盡管問題在計算上很困難,但已經有了大量的啟發式演算法和精確方法來求解數量上萬的實例,並且能將誤差控制在1%內
計劃評審法(Program Evaluation and Review Technique,簡稱PERT),是指利用網路分析制訂計劃以及對計劃予以評價的技術。它能協調整個計劃的各道工序,合理安排人力、物力、時間、資金,加速計劃的完成。在現代計劃的編制和分析手段上,PERT被廣泛使用,是現代化管理的重要手段和方法。
關鍵路線法(Critical Path Method,CPM),又稱關鍵線路法。一種計劃管理方法。它是通過分析項目過程中哪個活動序列進度安排的總時差最少來預測項目工期的網路分析。
人口系統數學模型,用來描述人口系統中人的出生、死亡和遷移隨時間變化的情況,以及它們之間定量關系的數學方程式或方程組,又稱人口模型。
初值問題是指在自變數的某值給出適當個數的附加條件,用來確定微分方程的特解的這類問題。
如果在自變數的某值給出適當個數的附加條件,用來確定微分方程的特解,則這類問題稱為初值問題。
邊值問題是定解問題之一,只有邊界條件的定解問題稱為邊值問題。二階偏微分方程(組)一般有三種邊值問題:第一邊值問題又稱狄利克雷問題,它的邊界條件是給出未知函數本身在邊界上的值;第二邊值問題又稱諾伊曼邊值問題或斜微商問題,它的邊界條件是給出未知函數關於區域邊界的法向導數或非切向導數;第三邊值問題又稱魯賓問題,它的邊界條件是給出未知函數及其非切向導數的組合
目標規劃是一種用來進行含有單目標和多目標的決策分析的數學規劃方法。線性規劃的一種特殊類型。它是在線性規劃基礎上發展起來的,多用來解決線性規劃所解決不了的經濟、軍事等實際問題。它的基本原理、數學模型結構與線性規劃相同,也使用線性規劃的單純形法作為計算的基礎。所不同之處在於,它從試圖使目標離規定值的偏差為最小入手解題,並將這種目標和為了代表與目標的偏差而引進的變數規定在表達式的約束條件之中。
時間序列(或稱動態數列)是指將同一統計指標的數值按其發生的時間先後順序排列而成的數列。時間序列分析的主要目的是根據已有的歷史數據對未來進行預測。
支持向量機(Support Vector Machine,SVM)是Corinna Cortes和Vapnik等於1995年首先提出的,它在解決小樣本、非線性及高維模式識別中表現出許多特有的優勢,並能夠推廣應用到函數擬合等其他機器學習問題中。
在機器學習中,支持向量機(SVM,還支持矢量網路)是與相關的學習演算法有關的監督學習模型,可以分析數據,識別模式,用於分類和回歸分析。
聚類分析法是理想的多變數統計技術,主要有分層聚類法和迭代聚類法。 聚類分析也稱群分析、點群分析,是研究分類的一種多元統計方法。
例如,我們可以根據各個銀行網點的儲蓄量、人力資源狀況、營業面積、特色功能、網點級別、所處功能區域等因素情況,將網點分為幾個等級,再比較各銀行之間不同等級網點數量對比狀況。
成分分析(Principal Component Analysis,PCA), 是一種統計方法。通過正交變換將一組可能存在相關性的變數轉換為一組線性不相關的變數,轉換後的這組變數叫主成分。
在實際課題中,為了全面分析問題,往往提出很多與此有關的變數(或因素),因為每個變數都在不同程度上反映這個課題的某些信息。
主成分分析首先是由K.皮爾森(Karl Pearson)對非隨機變數引入的,爾後H.霍特林將此方法推廣到隨機向量的情形。信息的大小通常用離差平方和或方差來衡量。
因子分析是指研究從變數群中提取共性因子的統計技術。最早由英國心理學家C.E.斯皮爾曼提出。他發現學生的各科成績之間存在著一定的相關性,一科成績好的學生,往往其他各科成績也比較好,從而推想是否存在某些潛在的共性因子,或稱某些一般智力條件影響著學生的學習成績。因子分析可在許多變數中找出隱藏的具有代表性的因子。將相同本質的變數歸入一個因子,可減少變數的數目,還可檢驗變數間關系的假設。
判別分析又稱「分辨法」,是在分類確定的條件下,根據某一研究對象的各種特徵值判別其類型歸屬問題的一種多變數統計分析方法。
其基本原理是按照一定的判別准則,建立一個或多個判別函數,用研究對象的大量資料確定判別函數中的待定系數,並計算判別指標。據此即可確定某一樣本屬於何類。
當得到一個新的樣品數據,要確定該樣品屬於已知類型中哪一類,這類問題屬於判別分析問題。
對互協方差矩陣的一種理解,是利用綜合變數對之間的相關關系來反映兩組指標之間的整體相關性的多元統計分析方法。它的基本原理是:為了從總體上把握兩組指標之間的相關關系,分別在兩組變數中提取有代表性的兩個綜合變數U1和V1(分別為兩個變數組中各變數的線性組合),利用這兩個綜合變數之間的相關關系來反映兩組指標之間的整體相關性。
對應分析也稱關聯分析、R-Q型因子分析,是近年新發展起來的一種多元相依變數統計分析技術,通過分析由定性變數構成的交互匯總表來揭示變數間的聯系。可以揭示同一變數的各個類別之間的差異,以及不同變數各個類別之間的對應關系。
對應分析主要應用在市場細分、產品定位、地質研究以及計算機工程等領域中。原因在於,它是一種視覺化的數據分析方法,它能夠將幾組看不出任何聯系的數據,通過視覺上可以接受的定點陣圖展現出來。
多維標度法是一種將多維空間的研究對象(樣本或變數)簡化到低維空間進行定位、分析和歸類,同時又保留對象間原始關系的數據分析方法。
在市場營銷調研中,多維標度法的用途十分廣泛。被用於確定空間的級數(變數、指標),以反映消費者對不同品牌的認知,並且在由這些維構築的空間中,標明某關注品牌和消費者心目中理想品牌的位置。
偏最小二乘法是一種數學優化技術,它通過最小化誤差的平方和找到一組數據的最佳函數匹配。 用最簡的方法求得一些絕對不可知的真值,而令誤差平方之和為最小。 很多其他的優化問題也可通過最小化能量或最大化熵用最小二乘形式表達。
系統介紹了禁忌搜索演算法、模擬退火演算法、遺傳演算法、蟻群優化演算法、人工神經網路演算法和拉格朗日鬆弛演算法等現代優化計算方法的模型與理論、應用技術和應用案例。
禁忌(Tabu Search)演算法是一種元啟發式(meta-heuristic)隨機搜索演算法,它從一個初始可行解出發,選擇一系列的特定搜索方向(移動)作為試探,選擇實現讓特定的目標函數值變化最多的移動。為了避免陷入局部最優解,TS搜索中採用了一種靈活的「記憶」技術,對已經進行的優化過程進行記錄和選擇,指導下一步的搜索方向,這就是Tabu表的建立。
模擬退火演算法來源於固體退火原理,是一種基於概率的演算法,將固體加溫至充分高,再讓其徐徐冷卻,加溫時,固體內部粒子隨溫升變為無序狀,內能增大,而徐徐冷卻時粒子漸趨有序,在每個溫度都達到平衡態,最後在常溫時達到基態,內能減為最小。
傳演算法(Genetic Algorithm)是模擬達爾文生物進化論的自然選擇和遺傳學機理的生物進化過程的計算模型,是一種通過模擬自然進化過程搜索最優解的方法。遺傳演算法是從代表問題可能潛在的解集的一個種群(population)開始的,而一個種群則由經過基因(gene)編碼的一定數目的個體(indivial)組成。每個個體實際上是染色體(chromosome)帶有特徵的實體。染色體作為遺傳物質的主要載體,即多個基因的集合,其內部表現(即基因型)是某種基因組合,它決定了個體的形狀的外部表現,如黑頭發的特徵是由染色體中控制這一特徵的某種基因組合決定的。因此,在一開始需要實現從表現型到基因型的映射即編碼工作。由於仿照基因編碼的工作很復雜,我們往往進行簡化,如二進制編碼,初代種群產生之後,按照適者生存和優勝劣汰的原理,逐代(generation)演化產生出越來越好的近似解,在每一代,根據問題域中個體的適應度(fitness)大小選擇(selection)個體,並藉助於自然遺傳學的遺傳運算元(genetic operators)進行組合交叉(crossover)和變異(mutation),產生出代表新的解集的種群。這個過程將導致種群像自然進化一樣的後生代種群比前代更加適應於環境,末代種群中的最優個體經過解碼(decoding),可以作為問題近似最優解。
The Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) is a multi-criteria decision analysis method, which was originally developed by Hwang and Yoon in 1981[1] with further developments by Yoon in 1987,[2] and Hwang, Lai and Liu in 1993.[3] TOPSIS is based on the concept that the chosen alternative should have the shortest geometric distance from the positive ideal solution (PIS)[4] and the longest geometric distance from the negative ideal solution (NIS).[4]
TOPSIS是一種多准則決策分析方法,最初由Hwang和Yoon於1981年開發[1],1987年由Yoon進一步開發,[2]和Hwang, 1993年賴和劉。[3] TOPSIS是基於這樣一個概念,即所選擇的方案應該具有離正理想解(PIS)最短的幾何距離[4]和距負理想解(NIS)最遠的幾何距離[4]。
模糊綜合評價法是一種基於模糊數學的綜合評價方法。該綜合評價法根據模糊數學的隸屬度理論把定性評價轉化為定量評價,即用模糊數學對受到多種因素制約的事物或對象做出一個總體的評價。它具有結果清晰,系統性強的特點,能較好地解決模糊的、難以量化的問題,適合各種非確定性問題的解決。
數據包絡分析方法(Data Envelopment Analysis,DEA)是運籌學、管理科學與數理經濟學交叉研究的一個新領域。它是根據多項投入指標和多項產出指標,利用線性規劃的方法,對具有可比性的同類型單位進行相對有效性評價的一種數量分析方法。DEA方法及其模型自1978年由美國著名運籌學家A.Charnes和W.W.Cooper提出以來,已廣泛應用於不同行業及部門,並且在處理多指標投入和多指標產出方面,體現了其得天獨厚的優勢。
對於兩個系統之間的因素,其隨時間或不同對象而變化的關聯性大小的量度,稱為關聯度。在系統發展過程中,若兩個因素變化的趨勢具有一致性,即同步變化程度較高,即可謂二者關聯程度較高;反之,則較低。因此,灰色關聯分析方法,是根據因素之間發展趨勢的相似或相異程度,亦即「灰色關聯度」,作為衡量因素間關聯程度的一種方法。
主成分分析也稱主分量分析,旨在利用降維的思想,把多指標轉化為少數幾個綜合指標(即主成分),其中每個主成分都能夠反映原始變數的大部分信息,且所含信息互不重復。這種方法在引進多方面變數的同時將復雜因素歸結為幾個主成分,使問題簡單化,同時得到的結果更加科學有效的數據信息。在實際問題研究中,為了全面、系統地分析問題,我們必須考慮眾多影響因素。這些涉及的因素一般稱為指標,在多元統計分析中也稱為變數。因為每個變數都在不同程度上反映了所研究問題的某些信息,並且指標之間彼此有一定的相關性,因而所得的統計數據反映的信息在一定程度上有重疊。主要方法有特徵值分解,SVD,NMF等。
秩和比法(Rank-sum ratio,簡稱RSR法),是我國學者、原中國預防醫學科學院田鳳調教授於1988年提出的,集古典參數統計與近代非參數統計各自優點於一體的統計分析方法,它不僅適用於四格表資料的綜合評價,也適用於行×列表資料的綜合評價,同時也適用於計量資料和分類資料的綜合評價。
灰色預測是就灰色系統所做的預測
灰色預測是一種對含有不確定因素的系統進行預測的方法。灰色預測通過鑒別系統因素之間發展趨勢的相異程度,即進行關聯分析,並對原始數據進行生成處理來尋找系統變動的規律,生成有較強規律性的數據序列,然後建立相應的微分方程模型,從而預測事物未來發展趨勢的狀況。其用等時距觀測到的反應預測對象特徵的一系列數量值構造灰色預測模型,預測未來某一時刻的特徵量,或達到某一特徵量的時間。
回歸分析預測法,是在分析市場現象自變數和因變數之間相關關系的基礎上,建立變數之間的回歸方程,並將回歸方程作為預測模型,根據自變數在預測期的數量變化來預測因變數關系大多表現為相關關系,因此,回歸分析預測法是一種重要的市場預測方法,當我們在對市場現象未來發展狀況和水平進行預測時,如果能將影響市場預測對象的主要因素找到,並且能夠取得其數量資料,就可以採用回歸分析預測法進行預測。它是一種具體的、行之有效的、實用價值很高的常用市場預測方法,常用於中短期預測。
包含未知函數的差分及自變數的方程。在求微分方程 的數值解時,常把其中的微分用相應的差分來近似,所導出的方程就是差分方程。通過解差分方程來求微分方程的近似解,是連續問題離散化 的一個例子。
馬爾可夫預測法主要用於市場佔有率的預測和銷售期望利潤的預測。就是一種預測事件發生的概率的方法。馬爾科夫預測講述了有關隨機變數 、 隨機函數與隨機過程。
邏輯性的思維是指根據邏輯規則進行推理的過程;它先將信息化成概念,並用符號表示,然後,根據符號運算按串列模式進行邏輯推理;這一過程可以寫成串列的指令,讓計算機執行。然而,直觀性的思維是將分布式存儲的信息綜合起來,結果是忽然間產生想法或解決問題的辦法。這種思維方式的根本之點在於以下兩點:1.信息是通過神經元上的興奮模式分布儲在網路上;2.信息處理是通過神經元之間同時相互作用的動態過程來完成的。
中文名 神經網路演算法 外文名 Neural network algorithm
㈣ 數學建模演算法總結
無總結反省則無進步
寫這篇文章,一是為了總結之前為了准備美賽而學的演算法,而是將演算法羅列並有幾句話解釋方便以後自己需要時來查找。
數學建模問題總共分為四類:
1. 分類問題 2. 優化問題 3. 評價問題 4. 預測問題
我所寫的都是基於數學建模演算法與應用這本書
一 優化問題
線性規劃與非線性規劃方法是最基本經典的:目標函數與約束函數的思想
現代優化演算法:禁忌搜索;模擬退火;遺傳演算法;人工神經網路
模擬退火演算法:
簡介:材料統計力學的研究成果。統計力學表明材料中不同結構對應於粒子的不同能量水平。在高溫條件下,粒子的能量較高,可以自由運動和重新排列。在低溫條件下,粒子能量較低。如果從高溫開始,非常緩慢地降溫(此過程稱為退火),粒子就可以在每個溫度下達到熱平衡。當系統完全被冷卻時,最終形成處於低能狀態的晶體。
思想可用於數學問題的解決 在尋找解的過程中,每一次以一種方法變換新解,再用退火過程的思想,以概率接受該狀態(新解) 退火過程:概率轉化,概率為自然底數的能量/KT次方
遺傳演算法: 遺傳演算法是一種基於自然選擇原理和自然遺傳機制的搜索演算法。模擬自然界中的生命進化機制,在人工系統中實現特定目標的優化。
遺傳演算法的實質是通過群體搜索技術(?),根據適者生存的原則逐代進化,最終得到最優解或准最優解。
具體實現過程(P329~331)
* 編碼
* 確定適應度函數(即目標函數)
* 確定進化參數:群體規模M,交叉概率Pc,變異概率Pm,進化終止條件
* 編碼
* 確定初始種群,使用經典的改良圈演算法
* 目標函數
* 交叉操作
* 變異操作
* 選擇
改良的遺傳演算法
兩點改進 :交叉操作變為了以「門當戶對」原則配對,以混亂序列確定較差點位置 變異操作從交叉操作中分離出來
二 分類問題(以及一些多元分析方法)
* 支持向量機SVM
* 聚類分析
* 主成分分析
* 判別分析
* 典型相關分析
支持向量機SVM: 主要思想:找到一個超平面,使得它能夠盡可能多地將兩類數據點正確分開,同時使分開的兩類數據點距離分類面最遠
聚類分析(極其經典的一種演算法): 對樣本進行分類稱為Q型聚類分析 對指標進行分類稱為R型聚類分析
基礎:樣品相似度的度量——數量化,距離——如閔氏距離
主成分分析法: 其主要目的是希望用較少的變數去解釋原來資料中的大部分變異,將掌握的許多相關性很高的變數轉化成彼此相互獨立或不相關的變數。通常是選出比原始變數個數少,能解釋大部分資料中的變異的幾個新變數,及主成分。實質是一種降維方法
判別分析: 是根據所研究的個體的觀測指標來推斷個體所屬類型的一種統計方法。判別准則在某種意義下是最優的,如錯判概率最小或錯判損失最小。這一方法像是分類方法統稱。 如距離判別,貝葉斯判別和FISHER判別
典型相關分析: 研究兩組變數的相關關系 相對於計算全部相關系數,採用類似主成分的思想,分別找出兩組變數的各自的某個線性組合,討論線性組合之間的相關關系
三 評價與決策問題
評價方法分為兩大類,區別在於確定權重上:一類是主觀賦權:綜合資訊評價定權;另一類為客觀賦權:根據各指標相關關系或各指標值變異程度來確定權數
* 理想解法
* 模糊綜合評判法
* 數據包絡分析法
* 灰色關聯分析法
* 主成分分析法(略)
* 秩和比綜合評價法 理想解法
思想:與最優解(理想解)的距離作為評價樣本的標准
模糊綜合評判法 用於人事考核這類模糊性問題上。有多層次模糊綜合評判法。
數據包絡分析法 是評價具有多指標輸入和多指標輸出系統的較為有效的方法。是以相對效率為概念基礎的。
灰色關聯分析法 思想:計算所有待評價對象與理想對象的灰色加權關聯度,與TOPSIS方法類似
主成分分析法(略)
秩和比綜合評價法 樣本秩的概念: 效益型指標從小到大排序的排名 成本型指標從大到小排序的排名 再計算秩和比,最後統計回歸
四 預測問題
* 微分方程模型
* 灰色預測模型
* 馬爾科夫預測
* 時間序列(略)
* 插值與擬合(略)
* 神經網路
微分方程模型 Lanchester戰爭預測模型。。
灰色預測模型 主要特點:使用的不是原始數據序列,而是生成的數據序列 優點:不需要很多數據·,能利用微分方程來充分挖掘系統的本質,精度高。能將無規律的原始數據進行生成得到規律性較強的生成序列。 缺點:只適用於中短期預測,只適合指數增長的預測
馬爾科夫預測 某一系統未來時刻情況只與現在狀態有關,與過去無關。
馬爾科夫鏈
時齊性的馬爾科夫鏈
時間序列(略)
插值與擬合(略)
神經網路(略)