當前位置:首頁 » 操作系統 » BP演算法

BP演算法

發布時間: 2022-02-05 23:58:26

『壹』 BP演算法的介紹

BP演算法,誤差反向傳播(Error Back Propagation, BP)演算法。BP演算法的基本思想是,學習過程由信號的正向傳播與誤差的反向傳播兩個過程組成。由於多層前饋網路的訓練經常採用誤差反向傳播演算法,人們也常把將多層前饋網路直接稱為BP網路。

『貳』 什麼是反向傳播演算法

反向傳播演算法適合於多層神經元網路的一種學習演算法,它建立在梯度下降法的基礎上。反向傳播演算法網路的輸入輸出關系實質上是一種映射關系:一個n輸入m輸出的BP神經網路所完成的功能是從n維歐氏空間向m維歐氏空間中一有限域的連續映射,這一映射具有高度非線性。

反向傳播演算法主要由兩個環節(激勵傳播、權重更新)反復循環迭代,直到網路的對輸入的響應達到預定的目標范圍為止。

反向傳播演算法的信息處理能力來源於簡單非線性函數的多次復合,因此具有很強的函數復現能力。這是BP演算法得以應用的基礎。反向傳播演算法被設計為減少公共子表達式的數量而不考慮存儲的開銷。反向傳播避免了重復子表達式的指數爆炸。

(2)BP演算法擴展閱讀:

BP演算法(即反向傳播演算法)適合於多層神經元網路的一種學習演算法,它建立在梯度下降法的基礎上。BP網路的輸入輸出關系實質上是一種映射關系:一個n輸入m輸出的BP神經網路所完成的功能是從n維歐氏空間向m維歐氏空間中一有限域的連續映射,這一映射具有高度非線性。它的信息處理能力來源於簡單非線性函數的多次復合,因此具有很強的函數復現能力。這是BP演算法得以應用的基礎。

『叄』 BP演算法、BP神經網路、遺傳演算法、神經網路這四者之間的關系

這四個都屬於人工智慧演算法的范疇。其中BP演算法、BP神經網路和神經網路
屬於神經網路這個大類。遺傳演算法為進化演算法這個大類。
神經網路模擬人類大腦神經計算過程,可以實現高度非線性的預測和計算,主要用於非線性擬合,識別,特點是需要「訓練」,給一些輸入,告訴他正確的輸出。若干次後,再給新的輸入,神經網路就能正確的預測對於的輸出。神經網路廣泛的運用在模式識別,故障診斷中。BP演算法和BP神經網路是神經網路的改進版,修正了一些神經網路的缺點。
遺傳演算法屬於進化演算法,模擬大自然生物進化的過程:優勝略汰。個體不斷進化,只有高質量的個體(目標函數最小(大))才能進入下一代的繁殖。如此往復,最終找到全局最優值。遺傳演算法能夠很好的解決常規優化演算法無法解決的高度非線性優化問題,廣泛應用在各行各業中。差分進化,蟻群演算法,粒子群演算法等都屬於進化演算法,只是模擬的生物群體對象不一樣而已。

『肆』 IS-LM-BP模型中,LM比BP陡峭的經濟含義是什麼

BP曲線比LM曲線更陡峭,就說明資本流動對國內利率變化不敏感,資本流動程度較低。產品市場上所決定的國民收入又會影響貨幣需求,從而影響利率,這又是產品市場對貨幣市場的影響,可見,產品市場和貨幣市場是相互聯系的,相互作用的,而收入和利率也只有在這種相互系,相互作用中才能決定。描述和分析這兩個市場相互聯系的理論結構,就稱為IS—LM。該模型要求同時達到下面的兩個條件:(1) I(i)=S(Y) IS,InvestmentSaving(2)M/P=L1(i)+L2(Y) 即LM,Liquidity preference - Money Supply其中,I為投資,S為儲蓄,M為名義貨幣量,P為物價水平,M/P為實際貨幣量,Y為總產出,i為利率。兩條曲線交點處表示產品市場和貨幣市場同時達到均衡。IS-LM模型是宏觀經濟分析的一個重要工具,是描述產品市場和貨幣市場之間相互聯系的理論結構。反向傳播演算法(BP演算法)是一種監督學習演算法,常被用來訓練多層感知機。BP演算法由兩個環節(激勵傳播、權重更新)反復循環迭代,直到網路對輸入的響應大到預定的目標范圍為止。
激勵傳播包含:(向前傳播階段)將訓練輸入送入網路以獲得激勵響應啊;(反向傳播階段)將激勵響應同訓練輸入對應的目標輸入求差(t-a),從而獲得隱層和輸出層的響應誤差。
權重更新包括:首先將輸入激勵和響應誤差相乘(sm*(a(m-1))),從而獲得權重的梯度;然後,將這個梯度乘上一個比例(_*sm*(a(m-1)))並去反後加到權重上。
核心思想:用雅可比矩陣(易計算)代替Hessian矩陣的計算,使得優化效率得到提升。
LMBP是加速收斂BP演算法的其中一種標準的數值優化方法。
優點:由於需要求解矩陣的逆,所以在每次迭代中需要更多的計算。但是既便如此,在網路參數個數適中的情況下,LMBP演算法依然是最快的神經網路訓練演算法。
缺點:存儲需求大。所需存儲近似Hessian矩陣JTJ(n*n的矩陣,其中n是神經網路中參數(權值與偏置值)的個數)。因此當參數的數量非常大時,LMBP演算法是不實用的。

『伍』 什麼是BP演算法

誤差反向傳播(Error Back Propagation, BP)演算法
1、BP演算法的基本思想是,學習過程由信號的正向傳播與誤差的反向傳播兩個過程組成。
1)正向傳播:輸入樣本->輸入層->各隱層(處理)->輸出層
注1:若輸出層實際輸出與期望輸出(教師信號)不符,則轉入2)(誤差反向傳播過程)
2)誤差反向傳播:輸出誤差(某種形式)->隱層(逐層)->輸入層
其主要目的是通過將輸出誤差反傳,將誤差分攤給各層所有單元,從而獲得各層單元的誤差信號,進而修正各單元的權值(其過程,是一個權值調整的過程)。

BP演算法基本介紹
含有隱層的多層前饋網路能大大提高神經網路的分類能力,但長期以來沒有提出解決權值調整問題的游戲演算法。1986年,Rumelhart和McCelland領導的科學家小組在《Parallel Distributed Processing》一書中,對具有非線性連續轉移函數的多層前饋網路的誤差反向傳播(Error Back Proragation,簡稱BP)演算法進行了詳盡的分析,實現了Minsky關於多層網路的設想。由於多層前饋網路的訓練經常採用誤差反向傳播演算法,人們也常把將多層前饋網路直接稱為BP網路。
BP演算法的基本思想是,學習過程由信號的正向傳播與誤差的反向傳播兩個過程組成。正向傳播時,輸入樣本從輸入層傳人,經各隱層逐層處理後,傳向輸出層。若輸出層的實際輸出與期望的輸出(教師信號)不符,則轉入誤差的反向傳播階段。誤差反傳是將輸出誤差以某種形式通過隱層向輸入層逐層反傳,並將誤差分攤給各層的所有單元,從而獲得各層單元的誤差信號,此誤差信號即作為修正各單元權值的依據。這種信號正向傳播與誤差反向傳播的各層權值調整過程,是周而復始地進行的。權值不斷調整的過程,也就是網路的學習訓練過程。此過程一直進行到網路輸出的誤差減少到可接受的程度,或進行到預先設定的學習次數為止。

『陸』 BP演算法及其改進

傳統的BP演算法及其改進演算法的一個很大缺點是:由於其誤差目標函數對於待學習的連接權值來說非凸的,存在局部最小點,對網路進行訓練時,這些演算法的權值一旦落入權值空間的局部最小點就很難跳出,因而無法達到全局最小點(即最優點)而使得網路訓練失敗。針對這些缺陷,根據凸函數及其共軛的性質,利用Fenchel不等式,使用約束優化理論中的罰函數方法構造出了帶有懲罰項的新誤差目標函數。

用新的目標函數對前饋神經網路進行優化訓練時,隱層輸出也作為被優化變數。這個目標函數的主要特點有:
1.固定隱層輸出,該目標函數對連接權值來說是凸的;固定連接權值,對隱層輸出來說是凸的。這樣在對連接權值和隱層輸出進行交替優化時,它們所面對的目標函數都是凸函數,不存在局部最小的問題,演算法對於初始權值的敏感性降低;
2.由於懲罰因子是逐漸增大的,使得權值的搜索空間變得比較大,從而對於大規模的網路也能夠訓練,在一定程度上降低了訓練過程陷入局部最小的可能性。

這些特性能夠在很大程度上有效地克服以往前饋網路的訓練演算法易於陷入局部最小而使網路訓練失敗的重大缺陷,也為利用凸優化理論研究前饋神經網路的學習演算法開創了一個新思路。在網路訓練時,可以對連接權值和隱層輸出進行交替優化。把這種新演算法應用到前饋神經網路訓練學習中,在學習速度、泛化能力、網路訓練成功率等多方面均優於傳統訓練演算法,如經典的BP演算法。數值試驗也表明了這一新演算法的有效性。

本文通過典型的BP演算法與新演算法的比較,得到了二者之間相互關系的初步結論。從理論上證明了當懲罰因子趨於正無窮大時新演算法就是BP演算法,並且用數值試驗說明了懲罰因子在網路訓練演算法中的作用和意義。對於三層前饋神經網路來說,懲罰因子較小時,隱層神經元局部梯度的可變范圍大,有利於連接權值的更新;懲罰因子較大時,隱層神經元局部梯度的可變范圍小,不利於連接權值的更新,但能提高網路訓練精度。這說明了在網路訓練過程中懲罰因子為何從小到大變化的原因,也說明了新演算法的可行性而BP演算法則時有無法更新連接權值的重大缺陷。

礦體預測在礦床地質中佔有重要地位,由於輸入樣本量大,用以往前饋網路演算法進行礦體預測效果不佳。本文把前饋網路新演算法應用到礦體預測中,取得了良好的預期效果。

本文最後指出了新演算法的優點,並指出了有待改進的地方。

關鍵詞:前饋神經網路,凸優化理論,訓練演算法,礦體預測,應用

Feed forward Neural Networks Training Algorithm Based on Convex Optimization and Its Application in Deposit Forcasting
JIA Wen-chen (Computer Application)
Directed by YE Shi-wei

Abstract

The paper studies primarily the application of convex optimization theory and algorithm for feed forward neural networks』 training and convergence performance.

It reviews the history of feed forward neural networks, points out that the training of feed forward neural networks is essentially a non-linear problem and introces BP algorithm, its advantages as well as disadvantages and previous improvements for it. One of the big disadvantages of BP algorithm and its improvement algorithms is: because its error target function is non-convex in the weight values between neurons in different layers and exists local minimum point, thus, if the weight values enter local minimum point in weight values space when network is trained, it is difficult to skip local minimum point and reach the global minimum point (i.e. the most optimal point).If this happening, the training of networks will be unsuccessful. To overcome these essential disadvantages, the paper constructs a new error target function including restriction item according to convex function, Fenchel inequality in the conjugate of convex function and punishment function method in restriction optimization theory.
When feed forward neural networks based on the new target function is being trained, hidden layers』 outputs are seen as optimization variables. The main characteristics of the new target function are as follows:

1.With fixed hidden layers』 outputs, the new target function is convex in connecting weight variables; with fixed connecting weight values, the new target function is convex in hidden layers』 outputs. Thus, when connecting weight values and hidden layers』 outputs are optimized alternately, the new target function is convex in them, doesn』t exist local minimum point, and the algorithm』s sensitiveness is reced for original weight values .
2.Because the punishment factor is increased graally, weight values 』 searching space gets much bigger, so big networks can be trained and the possibility of entering local minimum point can be reced to a certain extent in network training process.

Using these characteristics can overcome efficiently in the former feed forward neural networks』 training algorithms the big disadvantage that networks training enters local minimum point easily. This creats a new idea for feed forward neural networks』 learning algorithms by using convex optimization theory .In networks training, connecting weight variables and hidden layer outputs can be optimized alternately. The new algorithm is much better than traditional algorithms for feed forward neural networks. The numerical experiments show that the new algorithm is successful.

By comparing the new algorithm with the traditional ones, a primary conclusion of their relationship is reached. It is proved theoretically that when the punishment factor nears infinity, the new algorithm is BP algorithm yet. The meaning and function of the punishment factor are also explained by numerical experiments. For three-layer feed forward neural networks, when the punishment factor is smaller, hidden layer outputs』 variable range is bigger and this is in favor to updating of the connecting weights values, when the punishment factor is bigger, hidden layer outputs』 variable range is smaller and this is not in favor to updating of the connecting weights values but it can improve precision of networks. This explains the reason that the punishment factor should be increased graally in networks training process. It also explains feasibility of the new algorithm and BP algorithm』s disadvantage that connecting weigh values can not be updated sometimes.

Deposit forecasting is very important in deposit geology. The previous algorithms』 effect is not good in deposit forecasting because of much more input samples. The paper applies the new algorithm to deposit forecasting and expectant result is reached.
The paper points out the new algorithm』s strongpoint as well as to-be-improved places in the end.

Keywords: feed forward neural networks, convex optimization theory, training algorithm, deposit forecasting, application

傳統的BP演算法及其改進演算法的一個很大缺點是:由於其誤差目標函數對於待學習的連接權值來說非凸的,存在局部最小點,對網路進行訓練時,這些演算法的權值一旦落入權值空間的局部最小點就很難跳出,因而無法達到全局最小點(即最優點)而使得網路訓練失敗。針對這些缺陷,根據凸函數及其共軛的性質,利用Fenchel不等式,使用約束優化理論中的罰函數方法構造出了帶有懲罰項的新誤差目標函數。

用新的目標函數對前饋神經網路進行優化訓練時,隱層輸出也作為被優化變數。這個目標函數的主要特點有:
1.固定隱層輸出,該目標函數對連接權值來說是凸的;固定連接權值,對隱層輸出來說是凸的。這樣在對連接權值和隱層輸出進行交替優化時,它們所面對的目標函數都是凸函數,不存在局部最小的問題,演算法對於初始權值的敏感性降低;
2.由於懲罰因子是逐漸增大的,使得權值的搜索空間變得比較大,從而對於大規模的網路也能夠訓練,在一定程度上降低了訓練過程陷入局部最小的可能性。

這些特性能夠在很大程度上有效地克服以往前饋網路的訓練演算法易於陷入局部最小而使網路訓練失敗的重大缺陷,也為利用凸優化理論研究前饋神經網路的學習演算法開創了一個新思路。在網路訓練時,可以對連接權值和隱層輸出進行交替優化。把這種新演算法應用到前饋神經網路訓練學習中,在學習速度、泛化能力、網路訓練成功率等多方面均優於傳統訓練演算法,如經典的BP演算法。數值試驗也表明了這一新演算法的有效性。

本文通過典型的BP演算法與新演算法的比較,得到了二者之間相互關系的初步結論。從理論上證明了當懲罰因子趨於正無窮大時新演算法就是BP演算法,並且用數值試驗說明了懲罰因子在網路訓練演算法中的作用和意義。對於三層前饋神經網路來說,懲罰因子較小時,隱層神經元局部梯度的可變范圍大,有利於連接權值的更新;懲罰因子較大時,隱層神經元局部梯度的可變范圍小,不利於連接權值的更新,但能提高網路訓練精度。這說明了在網路訓練過程中懲罰因子為何從小到大變化的原因,也說明了新演算法的可行性而BP演算法則時有無法更新連接權值的重大缺陷。

礦體預測在礦床地質中佔有重要地位,由於輸入樣本量大,用以往前饋網路演算法進行礦體預測效果不佳。本文把前饋網路新演算法應用到礦體預測中,取得了良好的預期效果。

本文最後指出了新演算法的優點,並指出了有待改進的地方。

關鍵詞:前饋神經網路,凸優化理論,訓練演算法,礦體預測,應用

Feed forward Neural Networks Training Algorithm Based on Convex Optimization and Its Application in Deposit Forcasting
JIA Wen-chen (Computer Application)
Directed by YE Shi-wei

Abstract

The paper studies primarily the application of convex optimization theory and algorithm for feed forward neural networks』 training and convergence performance.

It reviews the history of feed forward neural networks, points out that the training of feed forward neural networks is essentially a non-linear problem and introces BP algorithm, its advantages as well as disadvantages and previous improvements for it. One of the big disadvantages of BP algorithm and its improvement algorithms is: because its error target function is non-convex in the weight values between neurons in different layers and exists local minimum point, thus, if the weight values enter local minimum point in weight values space when network is trained, it is difficult to skip local minimum point and reach the global minimum point (i.e. the most optimal point).If this happening, the training of networks will be unsuccessful. To overcome these essential disadvantages, the paper constructs a new error target function including restriction item according to convex function, Fenchel inequality in the conjugate of convex function and punishment function method in restriction optimization theory.
When feed forward neural networks based on the new target function is being trained, hidden layers』 outputs are seen as optimization variables. The main characteristics of the new target function are as follows:

1.With fixed hidden layers』 outputs, the new target function is convex in connecting weight variables; with fixed connecting weight values, the new target function is convex in hidden layers』 outputs. Thus, when connecting weight values and hidden layers』 outputs are optimized alternately, the new target function is convex in them, doesn』t exist local minimum point, and the algorithm』s sensitiveness is reced for original weight values .
2.Because the punishment factor is increased graally, weight values 』 searching space gets much bigger, so big networks can be trained and the possibility of entering local minimum point can be reced to a certain extent in network training process.

Using these characteristics can overcome efficiently in the former feed forward neural networks』 training algorithms the big disadvantage that networks training enters local minimum point easily. This creats a new idea for feed forward neural networks』 learning algorithms by using convex optimization theory .In networks training, connecting weight variables and hidden layer outputs can be optimized alternately. The new algorithm is much better than traditional algorithms for feed forward neural networks. The numerical experiments show that the new algorithm is successful.

By comparing the new algorithm with the traditional ones, a primary conclusion of their relationship is reached. It is proved theoretically that when the punishment factor nears infinity, the new algorithm is BP algorithm yet. The meaning and function of the punishment factor are also explained by numerical experiments. For three-layer feed forward neural networks, when the punishment factor is smaller, hidden layer outputs』 variable range is bigger and this is in favor to updating of the connecting weights values, when the punishment factor is bigger, hidden layer outputs』 variable range is smaller and this is not in favor to updating of the connecting weights values but it can improve precision of networks. This explains the reason that the punishment factor should be increased graally in networks training process. It also explains feasibility of the new algorithm and BP algorithm』s disadvantage that connecting weigh values can not be updated sometimes.

Deposit forecasting is very important in deposit geology. The previous algorithms』 effect is not good in deposit forecasting because of much more input samples. The paper applies the new algorithm to deposit forecasting and expectant result is reached.
The paper points out the new algorithm』s strongpoint as well as to-be-improved places in the end.

Keywords: feed forward neural networks, convex optimization theory, training algorithm, deposit forecasting, application

BP演算法及其改進

2.1 BP演算法步驟

1°隨機抽取初始權值ω0;

2°輸入學習樣本對(Xp,Yp),學習速率η,誤差水平ε;

3°依次計算各層結點輸出opi,opj,opk;

4°修正權值ωk+1=ωk+ηpk,其中pk=,ωk為第k次迭代權變數;

5°若誤差E<ε停止,否則轉3°。

2.2 最優步長ηk的確定

在上面的演算法中,學習速率η實質上是一個沿負梯度方向的步長因子,在每一次迭代中如何確定一個最優步長ηk,使其誤差值下降最快,則是典型的一維搜索問題,即E(ωk+ηkpk)=(ωk+ηpk)。令Φ(η)=E(ωk+ηpk),則Φ′(η)=dE(ωk+ηpk)/dη=E(ωk+ηpk)Tpk。若ηk為(η)的極小值點,則Φ′(ηk)=0,即E(ωk+ηpk)Tpk=-pTk+1pk=0。確定ηk的演算法步驟如下

1°給定η0=0,h=0.01,ε0=0.00001;

2°計算Φ′(η0),若Φ′(η0)=0,則令ηk=η0,停止計算;

3°令h=2h, η1=η0+h;

4°計算Φ′(η1),若Φ′(η1)=0,則令ηk=η1,停止計算;

若Φ′(η1)>0,則令a=η0,b=η1;若Φ′(η1)<0,則令η0=η1,轉3°;

5°計算Φ′(a),若Φ′(a)=0,則ηk=a,停止計算;

6°計算Φ′(b),若Φ′(b)=0,則ηk=b,停止計算;

7°計算Φ′(a+b/2),若Φ′(a+b/2)=0,則ηk=a+b/2,停止計算;

若Φ′(a+b/2)<0,則令a=a+b/2;若Φ′(a+b/2)>0,則令b=a+b/2

8°若|a-b|<ε0,則令,ηk=a+b/2,停止計算,否則轉7°。

2.3 改進BP演算法的特點分析

在上述改進的BP演算法中,對學習速率η的選取不再由用戶自己確定,而是在每次迭代過程中讓計算機自動尋找最優步長ηk。而確定ηk的演算法中,首先給定η0=0,由定義Φ(η)=E(ωk+ηpk)知,Φ′(η)=dE(ωk+ηpk)/dη=E(ωk+ηpk)Tpk,即Φ′(η0)=-pTkpk≤0。若Φ′(η0)=0,則表明此時下降方向pk為零向量,也即已達到局部極值點,否則必有Φ′(η0)<0,而對於一維函數Φ(η)的性質可知,Φ′(η0)<0則在η0=0的局部范圍內函數為減函數。故在每一次迭代過程中給η0賦初值0是合理的。

改進後的BP演算法與原BP演算法相比有兩處變化,即步驟2°中不需給定學習速率η的值;另外在每一次修正權值之前,即步驟4°前已計算出最優步長ηk。

『柒』 BP演算法首先要解決哪兩個問題

BP演算法就是反向傳播的神經網路演算法,這個演算法很多問題

隨便舉兩個來:
如果網路夠深,會出現梯度消失的問題
在最優化的時候,容易掉入局部極小值,而不是最小值

『捌』 監督學習是不是bp演算法

監督學習是你給定的數據它們都有標簽,然後訓練完了之後你再用別的不帶標簽的數據輸進去,系統給你算出一個標簽出來,這里的標簽可以是離散的,也可以是連續的
BP演算法是優化神經網路的一種演算法,它是利用鏈式法則和反向求導來實現的

兩個性質不一樣

『玖』 BP演算法的簡介

1)正向傳播:輸入樣本->輸入層->各隱層(處理)->輸出層
注1:若輸出層實際輸出與期望輸出(教師信號)不符,則轉入2)(誤差反向傳播過程)
2)誤差反向傳播:輸出誤差(某種形式)->隱層(逐層)->輸入層
其主要目的是通過將輸出誤差反傳,將誤差分攤給各層所有單元,從而獲得各層單元的誤差信號,進而修正各單元的權值(其過程,是一個權值調整的過程)。
注2:權值調整的過程,也就是網路的學習訓練過程(學習也就是這么的由來,權值調整)。

『拾』 BP學習演算法是什麼類型的學習演算法它主要有哪些不足

BP演算法是由學習過程由信號的正向傳播與誤差的反向傳播兩個過程組成。由於多層前饋網路的訓練經常採用誤差反向傳播演算法,人們也常把將多層前饋網路直接稱為BP網路。

雖然BP演算法得到廣泛的應用,但它也存在不足,其主要表現在訓練過程不確定上,具體如下。

1,訓練時間較長。對於某些特殊的問題,運行時間可能需要幾個小時甚至更長,這主要是因為學習率太小所致,可以採用自適應的學習率加以改進。

2,完全不能訓練。訓練時由於權值調整過大使激活函數達到飽和,從而使網路權值的調節幾乎停滯。為避免這種情況,一是選取較小的初始權值,二是採用較小的學習率。

3,易陷入局部極小值。BP演算法可以使網路權值收斂到一個最終解,但它並不能保證所求為誤差超平面的全局最優解,也可能是一個局部極小值。

這主要是因為BP演算法所採用的是梯度下降法,訓練是從某一起始點開始沿誤差函數的斜面逐漸達到誤差的最小值,故不同的起始點可能導致不同的極小值產生,即得到不同的最優解。如果訓練結果未達到預定精度,常常採用多層網路和較多的神經元,以使訓練結果的精度進一步提高,但與此同時也增加了網路的復雜性與訓練時間。

4,「喜新厭舊」。訓練過程中,學習新樣本時有遺忘舊樣本的趨勢。

(10)BP演算法擴展閱讀:

BP演算法最早由Werbos於1974年提出,1985年Rumelhart等人發展了該理論。BP網路採用有指導的學習方式,其學習包括以下4個過程。

1,組成輸入模式由輸入層經過隱含層向輸出層的「模式順傳播」過程。

2,網路的期望輸出與實際輸出之差的誤差信號由輸出層經過隱含層逐層休整連接權的「誤差逆傳播」過程。

3,由「模式順傳播」與「誤差逆傳播」的反復進行的網路「記憶訓練」過程。

4,網路趨向收斂即網路的總體誤差趨向極小值的「學習收斂」過程。

熱點內容
電腦怎樣編程 發布:2024-10-18 12:06:55 瀏覽:528
圖的鄰接表存儲及遍歷 發布:2024-10-18 12:02:31 瀏覽:495
如何查詢電腦型號的配置 發布:2024-10-18 11:57:42 瀏覽:273
如何開張一個租賃伺服器 發布:2024-10-18 11:46:13 瀏覽:826
python解析json文件 發布:2024-10-18 11:29:34 瀏覽:311
編譯程序的生成程序 發布:2024-10-18 11:29:27 瀏覽:404
軌跡處理演算法 發布:2024-10-18 11:22:25 瀏覽:783
支付密碼怎麼破解 發布:2024-10-18 11:09:19 瀏覽:145
線性鏈表c語言 發布:2024-10-18 11:09:17 瀏覽:785
淘寶賣的腳本可靠嗎 發布:2024-10-18 10:54:04 瀏覽:120