當前位置:首頁 » 操作系統 » 人工智慧a演算法

人工智慧a演算法

發布時間: 2023-06-17 11:49:55

Ⅰ 人工智慧演算法有哪些

人工智慧演算法有:決策樹、隨機森林演算法、邏輯回歸、SVM、樸素貝葉斯、K最近鄰演算法、K均值演算法、Adaboost演算法、神經網路、馬爾可夫。

Ⅱ 人工智慧要考試了 還有好多不會 請教有哪五種常用的啟發式演算法A演算法和A*演算法是嗎

都算的。

其它的常見演算法還有:

模擬退火演算法(Simulated Annealing Algorithm);
蟻群演算法(Ant Algorithm);
禁忌搜索演算法(Tabu Search Algorithm);
神經網路演算法(Neural Network Algorithm);
遺傳演算法(Genetic Algorithm)

希望對你有幫助^^

Ⅲ 什麼是AI演算法

ai
人工智慧
用程序實現搜尋答案的計算方法
比如說一棵二叉樹上的某一點的數據是你要的
你就要寫一個程序讓它找到這個數據
而這個程序怎麼找
就要看演算法了~
常見的演算法大概有什麼a*演算法之類的

Ⅳ 人工智慧 A*演算法原理

A 演算法是啟發式演算法重要的一種,主要是用於在兩點之間選擇一個最優路徑,而A 的實現也是通過一個估值函數

上圖中這個熊到樹葉的 曼哈頓距離 就是藍色線所表示的距離,這其中不考慮障礙物,假如上圖每一個方格長度為1,那麼此時的熊的曼哈頓距離就為9.
起點(X1,Y1),終點(X2,Y2),H=|X2-X1|+|Y2-Y1|
我們也可以通過幾何坐標點來算出曼哈頓距離,還是以上圖為例,左下角為(0,0)點,熊的位置為(1,4),樹葉的位置為(7,1),那麼H=|7-1|+|1-4|=9。

還是以上圖為例,比如剛開始熊位置我們會加入到CLOSE列表中,而熊四周它可以移動到的點位我們會加入到OPEN列表中,並對熊四周的8個節點進行F=G+H這樣的估值運算,然後在這8個節點中選中一個F值為最小的節點,然後把再把這個節點從OPEN列表中刪除,加入到Close列表中,從接著在對這個節點的四周8個節點進行一個估值運算,再接著依次運算,這樣說大家可能不是太理解,我會在下邊做詳細解釋。

從起點到終點,我們通過A星演算法來找出最優路徑

我們把每一個方格的長度定義為1,那從起始點到5位置的代價就是1,到3的代價為1.41,定義好了我們接著看上圖,接著運算

第一步我們會把起始點四周的點加入OPEN列表中然後進行一個估值運算,運算結果如上圖,這其中大家看到一個小箭頭都指向了起點,這個箭頭就是指向父節點,而open列表的G值都是根據這個進行計算的,意思就是我從上一個父節點運行到此處時所需要的總代價,如果指向不一樣可能G值就不一樣,上圖中我們經過計算發現1點F值是7.41是最小的,那我們就選中這個點,並把1點從OPEN列表中刪除,加入到CLOSE列表中,但是我們在往下運算的時候發現1點的四周,2點,3點和起始點這三個要怎麼處理,首先起始點已經加入到了CLOSE,他就不需要再進行這種運算,這就是CLOSE列表的作用,而2點和3點我們也可以對他進行運算,2點的運算,我們從1移動到2點的時候,他需要的代價也就是G值會變成2.41,而H值是不會變的F=2.41+7=9.41,這個值我們發現大於原來的的F值,那我們就不能對他進行改變(把父節點指向1,把F值改為9.41,因為我們一直追求的是F值最小化),3點也同理。

在對1點四周進行運算後整個OPEN列表中有兩個點2點和3點的F值都是7.41,此時我們系統就可能隨機選擇一個點然後進行下一步運算,現在我們選中的是3點,然後對3點的四周進行運算,結果是四周的OPEN點位如果把父節點指向3點值時F值都比原來的大,所以不發生改變。我們在看整個OPEN列表中,也就2點的7.41值是最小的,那我們就選中2點接著運算。

我們在上一部運算中選中的是1點,上圖沒有把2點加入OPEN列表,因為有障礙物的阻擋從1點他移動不到2點,所以沒有把2點加入到OPEN列表中,整個OPEN列表中3的F=8是最小的,我們就選中3,我們對3點四周進行運算是我們發現4點經過計算G=1+1=2,F=2+6=8所以此時4點要進行改變,F變為8並把箭頭指向3點(就是把4點的父節點變為3),如下圖

我們就按照這種方法一直進行運算,最後 的運算結果如下圖

而我們通過目標點位根據箭頭(父節點),一步一步向前尋找最後我們發現了一條指向起點的路徑,這個就是我們所需要的最優路徑。 如下圖的白色選中區域

但是我們還要注意幾點

最優路徑有2個

這是我對A*演算法的一些理解,有些地方可能有BUG,歡迎大家指出,共同學習。

Ⅳ al演算法是什麼意思

是指人工智慧演算法。

Al是Artificial Intelligence,中文是人工智慧。

人工智慧是一門極富挑戰性的科學,從事這項工作的人必須懂得計算機知識,心理學和哲學。人工智慧是包括十分廣泛的科學,它由不同的領域組成,如機器學習,計算機視覺等等,總的說來,人工智慧研究的一個主要目標是使機器能夠勝任一些通常需要人類智能才能完成的復雜工作。但不同的時代、不同的人對這種「復雜工作」的理解是不同的。

人工智慧的發展:

當計算機出現後,人類開始真正有了一個可以模擬人類思維的工具,在以後的歲月中,無數科學家為這個目標努力著。

如今人工智慧已經不再是幾個科學家的專利了,全世界幾乎所有大學的計算機系都有人在研究這門學科,學習計算機的大學生也必須學習這樣一門課程,在大家不懈的努力下,如今計算機似乎已經變得十分聰明了。

人們或許不會注意到,在一些地方計算機幫助人進行其它原來只屬於人類的工作,計算機以它的高速和准確為人類發揮著它的作用。人工智慧始終是計算機科學的前沿學科,計算機編程語言和其它計算機軟體都因為有了人工智慧的進展而得以存在。

Ⅵ 人工智慧演算法簡介

人工智慧的三大基石—演算法、數據和計算能力,演算法作為其中之一,是非常重要的,那麼人工智慧都會涉及哪些演算法呢?不同演算法適用於哪些場景呢?

一、按照模型訓練方式不同可以分為監督學習(Supervised Learning),無監督學習(Unsupervised Learning)、半監督學習(Semi-supervised Learning)和強化學習(Reinforcement Learning)四大類。

常見的監督學習演算法包含以下幾類:
(1)人工神經網路(Artificial Neural Network)類:反向傳播(Backpropagation)、波爾茲曼機(Boltzmann Machine)、卷積神經網路(Convolutional Neural Network)、Hopfield網路(hopfield Network)、多層感知器(Multilyer Perceptron)、徑向基函數網路(Radial Basis Function Network,RBFN)、受限波爾茲曼機(Restricted Boltzmann Machine)、回歸神經網路(Recurrent Neural Network,RNN)、自組織映射(Self-organizing Map,SOM)、尖峰神經網路(Spiking Neural Network)等。
(2)貝葉斯類(Bayesin):樸素貝葉斯(Naive Bayes)、高斯貝葉斯(Gaussian Naive Bayes)、多項樸素貝葉斯(Multinomial Naive Bayes)、平均-依賴性評估(Averaged One-Dependence Estimators,AODE)
貝葉斯信念網路(Bayesian Belief Network,BBN)、貝葉斯網路(Bayesian Network,BN)等。
(3)決策樹(Decision Tree)類:分類和回歸樹(Classification and Regression Tree,CART)、迭代Dichotomiser3(Iterative Dichotomiser 3, ID3),C4.5演算法(C4.5 Algorithm)、C5.0演算法(C5.0 Algorithm)、卡方自動交互檢測(Chi-squared Automatic Interaction Detection,CHAID)、決策殘端(Decision Stump)、ID3演算法(ID3 Algorithm)、隨機森林(Random Forest)、SLIQ(Supervised Learning in Quest)等。
(4)線性分類器(Linear Classifier)類:Fisher的線性判別(Fisher』s Linear Discriminant)
線性回歸(Linear Regression)、邏輯回歸(Logistic Regression)、多項邏輯回歸(Multionmial Logistic Regression)、樸素貝葉斯分類器(Naive Bayes Classifier)、感知(Perception)、支持向量機(Support Vector Machine)等。

常見的無監督學習類演算法包括:
(1) 人工神經網路(Artificial Neural Network)類:生成對抗網路(Generative Adversarial Networks,GAN),前饋神經網路(Feedforward Neural Network)、邏輯學習機(Logic Learning Machine)、自組織映射(Self-organizing Map)等。
(2) 關聯規則學習(Association Rule Learning)類:先驗演算法(Apriori Algorithm)、Eclat演算法(Eclat Algorithm)、FP-Growth演算法等。
(3)分層聚類演算法(Hierarchical Clustering):單連鎖聚類(Single-linkage Clustering),概念聚類(Conceptual Clustering)等。
(4)聚類分析(Cluster analysis):BIRCH演算法、DBSCAN演算法,期望最大化(Expectation-maximization,EM)、模糊聚類(Fuzzy Clustering)、K-means演算法、K均值聚類(K-means Clustering)、K-medians聚類、均值漂移演算法(Mean-shift)、OPTICS演算法等。
(5)異常檢測(Anomaly detection)類:K最鄰近(K-nearest Neighbor,KNN)演算法,局部異常因子演算法(Local Outlier Factor,LOF)等。

常見的半監督學習類演算法包含:生成模型(Generative Models)、低密度分離(Low-density Separation)、基於圖形的方法(Graph-based Methods)、聯合訓練(Co-training)等。

常見的強化學習類演算法包含:Q學習(Q-learning)、狀態-行動-獎勵-狀態-行動(State-Action-Reward-State-Action,SARSA)、DQN(Deep Q Network)、策略梯度演算法(Policy Gradients)、基於模型強化學習(Model Based RL)、時序差分學習(Temporal Different Learning)等。

常見的深度學習類演算法包含:深度信念網路(Deep Belief Machines)、深度卷積神經網路(Deep Convolutional Neural Networks)、深度遞歸神經網路(Deep Recurrent Neural Network)、分層時間記憶(Hierarchical Temporal Memory,HTM)、深度波爾茲曼機(Deep Boltzmann Machine,DBM)、棧式自動編碼器(Stacked Autoencoder)、生成對抗網路(Generative Adversarial Networks)等。

二、按照解決任務的不同來分類,粗略可以分為二分類演算法(Two-class Classification)、多分類演算法(Multi-class Classification)、回歸演算法(Regression)、聚類演算法(Clustering)和異常檢測(Anomaly Detection)五種。
1.二分類(Two-class Classification)
(1)二分類支持向量機(Two-class SVM):適用於數據特徵較多、線性模型的場景。
(2)二分類平均感知器(Two-class Average Perceptron):適用於訓練時間短、線性模型的場景。
(3)二分類邏輯回歸(Two-class Logistic Regression):適用於訓練時間短、線性模型的場景。
(4)二分類貝葉斯點機(Two-class Bayes Point Machine):適用於訓練時間短、線性模型的場景。(5)二分類決策森林(Two-class Decision Forest):適用於訓練時間短、精準的場景。
(6)二分類提升決策樹(Two-class Boosted Decision Tree):適用於訓練時間短、精準度高、內存佔用量大的場景
(7)二分類決策叢林(Two-class Decision Jungle):適用於訓練時間短、精確度高、內存佔用量小的場景。
(8)二分類局部深度支持向量機(Two-class Locally Deep SVM):適用於數據特徵較多的場景。
(9)二分類神經網路(Two-class Neural Network):適用於精準度高、訓練時間較長的場景。

解決多分類問題通常適用三種解決方案:第一種,從數據集和適用方法入手,利用二分類器解決多分類問題;第二種,直接使用具備多分類能力的多分類器;第三種,將二分類器改進成為多分類器今兒解決多分類問題。
常用的演算法:
(1)多分類邏輯回歸(Multiclass Logistic Regression):適用訓練時間短、線性模型的場景。
(2)多分類神經網路(Multiclass Neural Network):適用於精準度高、訓練時間較長的場景。
(3)多分類決策森林(Multiclass Decision Forest):適用於精準度高,訓練時間短的場景。
(4)多分類決策叢林(Multiclass Decision Jungle):適用於精準度高,內存佔用較小的場景。
(5)「一對多」多分類(One-vs-all Multiclass):取決於二分類器效果。

回歸
回歸問題通常被用來預測具體的數值而非分類。除了返回的結果不同,其他方法與分類問題類似。我們將定量輸出,或者連續變數預測稱為回歸;將定性輸出,或者離散變數預測稱為分類。長巾的演算法有:
(1)排序回歸(Ordinal Regression):適用於對數據進行分類排序的場景。
(2)泊松回歸(Poission Regression):適用於預測事件次數的場景。
(3)快速森林分位數回歸(Fast Forest Quantile Regression):適用於預測分布的場景。
(4)線性回歸(Linear Regression):適用於訓練時間短、線性模型的場景。
(5)貝葉斯線性回歸(Bayesian Linear Regression):適用於線性模型,訓練數據量較少的場景。
(6)神經網路回歸(Neural Network Regression):適用於精準度高、訓練時間較長的場景。
(7)決策森林回歸(Decision Forest Regression):適用於精準度高、訓練時間短的場景。
(8)提升決策樹回歸(Boosted Decision Tree Regression):適用於精確度高、訓練時間短、內存佔用較大的場景。

聚類
聚類的目標是發現數據的潛在規律和結構。聚類通常被用做描述和衡量不同數據源間的相似性,並把數據源分類到不同的簇中。
(1)層次聚類(Hierarchical Clustering):適用於訓練時間短、大數據量的場景。
(2)K-means演算法:適用於精準度高、訓練時間短的場景。
(3)模糊聚類FCM演算法(Fuzzy C-means,FCM):適用於精確度高、訓練時間短的場景。
(4)SOM神經網路(Self-organizing Feature Map,SOM):適用於運行時間較長的場景。
異常檢測
異常檢測是指對數據中存在的不正常或非典型的分體進行檢測和標志,有時也稱為偏差檢測。
異常檢測看起來和監督學習問題非常相似,都是分類問題。都是對樣本的標簽進行預測和判斷,但是實際上兩者的區別非常大,因為異常檢測中的正樣本(異常點)非常小。常用的演算法有:
(1)一分類支持向量機(One-class SVM):適用於數據特徵較多的場景。
(2)基於PCA的異常檢測(PCA-based Anomaly Detection):適用於訓練時間短的場景。

常見的遷移學習類演算法包含:歸納式遷移學習(Inctive Transfer Learning) 、直推式遷移學習(Transctive Transfer Learning)、無監督式遷移學習(Unsupervised Transfer Learning)、傳遞式遷移學習(Transitive Transfer Learning)等。

演算法的適用場景:
需要考慮的因素有:
(1)數據量的大小、數據質量和數據本身的特點
(2)機器學習要解決的具體業務場景中問題的本質是什麼?
(3)可以接受的計算時間是什麼?
(4)演算法精度要求有多高?
————————————————

原文鏈接: https://blog.csdn.net/nfzhlk/article/details/82725769

Ⅶ 人工智慧中的演算法有什麼

模糊數學、神經網路、小波變換、遺傳演算法、人工免疫系統、參數優化、粒子群演算法,等等,簡單應用,有高等數學知識即可。

Ⅷ 人工智慧技術A*演算法解決八數碼問題的實驗

八數碼 估價函數可以選h(s)=ΣΣ[|i-⌊s[i,j]-1)/3⌋| + |j-(s[i,j]-1)mod3|]

熱點內容
怎麼連台式電腦的wifi密碼 發布:2025-03-22 07:03:14 瀏覽:541
海豚模擬器怎麼配置不卡 發布:2025-03-22 06:57:31 瀏覽:772
名字學演算法 發布:2025-03-22 06:57:27 瀏覽:753
加密的話 發布:2025-03-22 06:55:54 瀏覽:989
最吃配置的手機游戲有哪些 發布:2025-03-22 06:42:35 瀏覽:225
新聞開發android 發布:2025-03-22 06:40:27 瀏覽:94
應用程序緩存在哪裡 發布:2025-03-22 06:31:10 瀏覽:232
電量演算法 發布:2025-03-22 06:27:08 瀏覽:364
ip地址選擇伺服器 發布:2025-03-22 06:25:46 瀏覽:229
本店的密碼是多少 發布:2025-03-22 06:20:07 瀏覽:733