linux高端內存
『壹』 linux怎麼管理空閑內存
內存組織層次:頁式管理—>(numa)—>node的zonelist—>32位DMA/NORMAL/HIGHMEM三個區,64位沒有高端內存—>夥伴分配系統—>slab/slub/slob
2.創建進程時內存分配:實際上只分配task_struct和thread_info的內存,而且很可能是從slab緩存中分配的,當進程運行時由於缺頁中斷,才由內核層具體分配物理內存並與vm掛接
3.malloc是c runtime中的實現,是上層庫的內存分配層,至於內核層的,可以看看__alloc_pages/alloc_pages/kmalloc(小內存直接slab,大內存還是alloc_pages)/vmalloc(alloc_page分配不連續的物理頁,映射到連續的vm_struct中的pages指針數組)/vmap/map_vm_area等幾個函數
『貳』 Linux的內核空間和用戶空間是如何劃分的(以32位系統為例)
通常32位Linux內核地址空間劃分0~3G為用戶空間,3~4G為內核空間。地址分配如下圖所示
直接映射區:線性空間中從3G開始最大896M的區間,為直接內存映射區,該區域的線性地址和物理地址存在線性轉換關系:線性地址=3G+物理地址。
動態內存映射區:該區域由內核函數vmalloc來分配,特點是:線性空間連續,但是對應的物理空間不一定連續。vmalloc分配的線性地址所對應的物理頁可能處於低端內存,也可能處於高端內存。
永久內存映射區:該區域可訪問高端內存。訪問方法是使用alloc_page(_GFP_HIGHMEM)分配高端內存頁或者使用kmap函數將分配到的高端內存映射到該區域。
固定映射區:該區域和4G的頂端只有4k的隔離帶,其每個地址項都服務於特定的用途,如ACPI_BASE等。
『叄』 Linux進程內存如何管理
Linux系統提供了復雜的存儲管理系統,使得進程所能訪問的內存達到4GB。在Linux系統中,進程的4GB內存空間被分為兩個部分——用戶空間與內核空間。用戶空間的地址一般分布為0~3GB(即PAGE_OFFSET,在Ox86中它等於OxC0000000),這樣,剩下的3~4GB為內核空間,用戶進程通常只能訪問用戶空間的虛擬地址,不能訪問內核空間的虛擬地址。用戶進程只有通過系統調用(代表用戶進程在內核態執行)等方式才可以訪問到內核空間。每個進程的用戶空間都是完全獨立、互不相乾的,用戶進程各自有不同的頁表。而內核空間是由內核負責映射,它並不會跟著進程改變,是固定的。內核空間的虛擬地址到物理地址映射是被所有進程共享的,內核的虛擬空間獨立於其他程序。Linux中1GB的內核地址空間又被劃分為物理內存映射區、虛擬內存分配區、高端頁面映射區、專用頁面映射區和系統保留映射區這幾個區域。對於x86系統而言,一般情況下,物理內存映射區最大長度為896MB,系統的物理內存被順序映射在內核空間的這個區域中。當系統物理內存大於896MB時,超過物理內存映射區的那部分內存稱為高端內存(而未超過物理內存映射區的內存通常被稱為常規內存),內核在存取高端內存時必須將它們映射到高端頁面映射區。Linux保留內核空間最頂部FIXADDR_TOP~4GB的區域作為保留區。當系統物理內存超過4GB時,必須使用CPU的擴展分頁(PAE)模式所提供的64位頁目錄項才能存取到4GB以上的物理內存,這需要CPU的支持。加入了PAE功能的Intel Pentium Pro及以後的CPU允許內存最大可配置到64GB,它們具備36位物理地址空間定址能力。由此可見,對於32位的x86而言,在3~4GB之間的內核空間中,從低地址到高地址依次為:物理內存映射區隔離帶vmalloc虛擬內存分配器區隔離帶高端內存映射區專用頁面映射區保留區。
『肆』 典型嵌入式linux軟體部分由哪些模塊組成他們的功能及相互聯系 Bootloader分為哪兩階段分
典型的嵌入式系統,軟體部分從下到上,分別是boot,kernel,rootfs,fsimg和上層應用。
起到的作用分別是,引導內核,啟動內核,掛載根文件系統,掛載實際文件系統,開啟上層應用主循環。
你問的這些問題,每一點都可以單獨拿出來,長篇大論的講很久了。建議去網上先看相關的資料。貪多求快是不好的,一個知識點一個知識點的掌握。
『伍』 linux內存池能分配連續物理內存嗎
處理器通過地址訪問內存單元,程序中用到的基址加偏移地址是線性地址,需要通過MMU將虛擬地址映射成物理地址。這給分配和釋放內存帶來方便:1)物理地址不連續的空間可以映射為邏輯上連續的虛擬地址。2)進程可以獲得比實際內存大的"空間",虛擬內存使得進程在這種情況下仍可正常運行。
linux內核為驅動程序提供了一致的內存管理介面,因此不用考慮不同體系結構如何管理內存的。
在linux內核中分配內存用kmalloc和kfree。
kmalloc分配時可以被阻塞,且不對所獲得的區域清零。它分配的區域在物理內存中也是連續的。
原型:
#include<linux/slab.h>
void *kmalloc(size_t size,int flags); //參數為分配大小及分配標志
flags參數:
GFP_KERNEL:內核內存通用分配方法,表示內存分配是由運行在內核空間的進程執行的。可休眠,所以使用GFP_KERNEL分配內存的函數必須是可重入的。
GFP_ATOMIC:用於在中斷處理常式或者運行在進程上下文之外的代碼中分配內存,不可休眠。內核通常會為原子性的分配預留一些空閑頁面。
所有標志定義在 <linux/gfp.h>中。
size參數:
內核是基於頁技術分配內存,以最佳的利用系統的RAM。
linux處理內存分配的方法是:創建一系列的內存對象池,每個池的內存大小事固定的,處理分配請求時,就直接在包含足夠大的內存塊中傳遞一個整款給請求者。內核只能分配一些預定義的固定大小的位元組數組。kmalloc能處理的的最小內存塊是32或者64,不大於128KB。
內存區段:
linux內核把內存分為3個區段:可用於DMA的內存,常規內存以及高端內存。kmalloc不能分配高端內存。內存區段在mm/page_alloc.c中實現。區段的初始化在對應的arch樹下的mm/init.c中。
後備高速緩存 (lookaside cache)
內核中普通對象進行初始化所需的時間超過了對其進行分配和釋放所需的時間,因此不應該將內存釋放回一個全局的內存池,而是將內存保持為針對特定目而初始化的狀態。例如,如果內存被分配給了一個互斥鎖,那麼只需在為互斥鎖首次分配內存時執行一次互斥鎖初始化函數(mutex_init)即可。後續的內存分配不需要執行這個初始化函數,因為從上次釋放和調用析構之後,它已經處於所需的狀態中了。
linux2.6中USB和SCSI驅動程序使用了這種高速緩存,是為一些反復使用的塊增加某些特殊的內存池。後背高速緩存管理也叫slab分配器,相關函數和類型在<linux/slab.h>中申明。
slab分配器實現高速緩存具有kmem_cache_t類型。
kmem_cache_t * kmem_cache_create( const char *name, size_t size, size_t align,
unsigned long flags;
void (*constructor)(void*,kmem_cache_t *, unsigned long),
void (*destructor)(void*, kmem_cache_t *, unsigned long));
用於創建一個新的高速緩存對象。
constructor用於初始化新分配的對象,destructor用於清除對象。
一旦某個對象的高速緩存被創建以後,就可以調用kmem_cache_alloc從中分配內存對象。
void * kmem_cache_alloc(kmem_cache_t *cache,int flags);
釋放內存對象使用kmem_cache_free
void kmem_cache_free(kmem_cache_t *cache,const void *obj);
在內存空間都被釋放後,模塊被卸載前,驅動程序應當釋放他的高速緩存。
int kmem_cache_destory(kmem_cache_t *cache);
要檢查其返回狀態,如果失敗,表明莫塊中發生了內存泄露。
基於slab的高速緩存scullc
kmem_cache_t *scullc_cache;
scullc_cache=kmem_cache_creat("scullc",scullc_quantum,0,SLAB_HWCACHE_ALIGN,NULL,NULL);
if(!scullc_cache)
{
scullc_cleanup();
return -ENOMEM;
}
if(!dpte->data[s_pos])
{
dptr->data[s_pos]=kmem_cache_alloc(scullc_cache,GFP_KERNEL);
if(!dptr->data[s_pos])
goto nomem;
memset(dptr->data[s_pos],0,scullc_quantum);
}
for(i=0;i<qset;i++)
{
if(dptr->data[i])
kmem_cache_free(scullc_cache,dptr->data[i]);
}
if(scullc_cache)
kmem_cache_destory(scullc_cache);
內存池:
內核中有些地方的內存分配是不允許失敗的,為確保能分配成功,內核建立一種稱為內存池的抽象,他試圖始終保持空閑狀態,以便緊急情況使用。
mempool_t * mempool_creat(int min_nr,
mempool_alloc_t *alloc_fn, //對象分分配 mempool_alloc_slab
mempool_free_t *free_fn, //釋放 mempool_free_slab
void *pool_data);
可以用如下代碼來構造內存池
cache=kmem_cache_creat(...); //創建一個高速緩存
pool=mempool_creat(MY_POOL_MINIMUM,mempool_alloc_slab,mempool_free_slab,cache);//建立內存池對象
void *mempool_alloc(mempool_t *poll,int gfp_mask);//分配對象
void *mempool_free(void *element,mempool_t *poll);//釋放對象
void mempool_destroy(mempool_t *poll);//銷毀內存池
注意:mempool會分配一些內存塊,空閑且不會被用到,造成內存的大量浪費。所以一般情況不要用內存池。
『陸』 Linux內核空間內存動態申請
在Linux內核空間中申請內存涉及的函數主要包括kmalloc () 、_get_free _pages ()和vmalloc(等。kmalloc()和_get_free pages ()(及其類似函數)申請的內存位於DMA和常規區域的映射區,而且在物理上也是連續的,它們與真實的物理地址只有一個固定的偏移,因此存在較簡單的轉換關系。而vmalloc()在虛擬內存空間給出一塊連續的內存區,實質上,這片連續的虛擬內存在物理內存中並不一定連續,而vmalloc ()申請的虛擬內存和物理內存之間也沒有簡單的換算關系。
1.kmalloc ( )
給kmalloc() 的第一個參數是要分配的塊的大小;第二個參數為分配標志,用於控制kmalloc ()的行為。最常用的分配標志是GFP_KERNEL,其含義是在內核空間的進程中申請內存。kmalloc ()的底層依賴於_get_free pages ()來實現,分配標志的前綴GFP正好是這個底層函數的縮寫。使用GFP_KERNEL標志申請內存時,若暫時不能滿足,則進程會睡眠等待頁,即會引起阻塞,因此不能在中斷上下文或持有自旋鎖的時候使用GFP_KERNE申請內存。由於在中斷處理函數、tasklet和內核定時器等非進程上下文中不能阻塞,所以此時驅動應當使用GFP_ATOMIC標志來申請內存。當使用GFP_ATOMIC標志申請內存時,若不存在空閑頁,則不等待,直接返回。
其他的申請標志還包括GFP_USER(用來為用戶空間頁分配內存,可能阻塞)、GFP_HIGHUSER(類似GFP_USER,但是它從高端內存分配)、GFP_DMA(從DMA區域分配內存)、GFP_NOIO(不允許任何IO初始化)、GFP_NOFS(不允許進行任何文件系統調用)、__GFP_ HIGHMEM(指示分配的內存可以位於高端內存)、__(GFP COLD(請求一個較長時間不訪問的頁)、_GFP_NOWARN(當一個分配無法滿足時,阻止內核發出警告)、_GFP_HIGH(高優先順序請求,允許獲得被內核保留給緊急狀況使用的最後的內存頁)、GFP_REPEAT(分配失敗,則盡力重復嘗試)、_GFP_NOFAIL(標志只許申請成功,不推薦)和__GFPNORETRY(若申請不到,則立即放棄)等。
使用kmalloc()申請的內存應使用kfree()釋放,這個函數的用法和用戶空間的free()類似。
2._get_free_pages ()
_get_free pages ()系列函數/宏本質上是Linux內核最底層用於獲取空閑內存的方法,因為底層的buddy演算法以2n頁為單位管理空閑內存,所以最底層的內存申請總是以2n頁為單位的。
get_free _pages ()系列函數/宏包括get_zeroed _page () 、_get_free_page ()和get_free pages () 。
__get_free_pages(unsigned int flags, unsigned int order) 該函數可分配多個頁並返回分配內存的首地址,分配的頁數為2order,分配的頁也不清零。order允許的最大值是10(即1024頁)或者11(即2048頁),這取決於具體的硬體平台。