基本演算法面試
A. 測試開發面試必知演算法
測試開發的技能之一就是需要掌握一些開發的語言,而針對於考察開發語言,業界內比較容易採用的方式就是考察各種演算法。在此做一個簡單的總結(最近比較喜歡玩python,所以都是以Python為例子,其它的語言類推。)
冒泡排序
冒泡排序演算法的運作如下:(從後往前)
比較相鄰的元素。如果第一個比第二個大,就交換他們兩個。
對每一對相鄰元素作同樣的工作,從開始第一對到結尾的最後一對。在這一點,最後的元素應該會是最大的數。
針對所有的元素重復以上的步驟,除了最後一個。
持續每次對越來越少的元素重復上面的步驟,直到沒有任何一對數字需要比較。
實例:對列表 [2, 8, 4, 7, 5, 9, 0]進行冒泡排序
遞歸
遞歸過程一般通過函數或子過程來實現。遞歸方法:在函數或子過程的內部,直接或者間接地調用自己的演算法。
實例:要計算1-10的10位數字的乘積,直觀的演算法是1 2 3 4 5 6 7 8 9,利用遞歸則思路是循環執行n*n-1,直到n=1時
二叉樹遍歷演算法
從二叉樹的遞歸定義可知,一棵非空的二叉樹由根結點及左、右子樹這三個基本部分組成。因此,在任一給定結點上,可以按某種次序執行三個操作:
⑴訪問結點本身(N),
⑵遍歷該結點的左子樹(L),
⑶遍歷該結點的右子樹(R)。
以上三種操作有六種執行次序含數喚:
NLR、LNR、LRN、NRL、RNL、RLN。
二叉樹的節點表示可以使用
前序遍歷:根節點->左子樹->右子樹
中談凱序遍歷:左子樹->根節點->右子樹
後序遍歷:左子樹->右子樹->根節點
實例:求二畢或叉樹深度和寬度
求深度用遞歸;求寬度用隊列,然後把每層的寬度求出來,找出最大的就是二叉樹的寬度
字元串倒序輸出
思路一:索引的方法
思路二:借組列表進行翻轉
後續還有的話會繼續添加的。
B. 面試經典數據結構和演算法匯總
如果說數據結構是骨架,那麼演算法就是靈魂。沒了骨架,靈魂沒有實體寄託;沒了靈魂,骨架也是個空殼。兩者相輔相成,缺一不可,在開發中起到了砥柱中流的作用。
現在我對各種數據結構和演算法做一總結,對比一下它們的效率
1.數據結構篇
1. 如果讓你手寫個棧和隊列,你還會寫嗎?
2. 開發了那麼多項目,你能自己手寫個健壯的鏈表出來嗎?
3. 下次面試若再被問到二叉樹,希望你能對答如流!
4. 面試還在被紅-黑樹虐?看完這篇輕松搞定面試官 !
2.排序演算法篇
1. 幾個經典的基礎排序演算法,你還記得嗎?
2. 手把手教你學會希爾排序,很簡單!
3. 快速排序演算法到底有多快?
4. 五分鍾教你學會歸並排序
5. 簡單說下二叉樹排序
6. 學會堆排序只需要幾分鍾
7. 圖,這個玩意兒竟然還可以用來排序!
掌握了這些經典的數據結構和演算法,面試啥的基本上沒什麼問題了,特別是對於那些應屆生來說。接下來再總結一下不同數據結構和演算法的效率問題,做一下對比,這也是面試官經常問的問題。
數據結構常用操作效率對比:
常用排序演算法效率的對比:
關於經典的數據結構和演算法,就總結到這,本文建議收藏,利用等公交、各種排隊之時提升自己。這世上天才很少,懶蛋卻很多,你若對得起時間,時間便對得起你。
C. 面試演算法題
定義一個函數實現數據類型的轉換
第一個元素是數據標識,第二個元素的數值必須大於等於50才返回,不夠50往後累加,加到最後如果不夠50也直接返回,因為沒有可加的數據了
例子1:
a = [[1,3],[2,51],[3,49],[4,42],[5,42]] #入參
a1 = [[2,54],[4,91],[5,42]] #返回
例子2:
b = [[1,50],[2,5],[3,10],[4,42],[5,42],[6,10]] #入參
b1 = [[1,50],[4,57],[6,52]] #返回
a = [[1, 3], [2, 51], [3, 49], [4, 42], [5, 42]]
li = []
n =0
for i, kin a:
n += k
if n >=50:
li.append([i, n])
n =0
elif len(a) == i:
li.append([i, k])
print(li)
一個球從100米高度自由落下,每次落地後反跳回原高度的一半;再落下,求它在第10次落地時,共經過多少米?第10次反彈多高?
def fun(n):
if n ==1:
return 100 /2
else:
res = fun(n -1) /2
return res
print(fun(10))
def func(n):
if n ==1:
return 100
else:
return (fun(n -1) *2) + func(n -1)
print(func(10))
# for 循環實現
def height_100():
# 定義S用來計算總距離
s =0
h =100
for iin range(10):
# 加上本次落地的距離
s += h
h = h /2
# 加上反彈的距離
s += h
print(f'第10次落地的總距離為:{s-h}')
print(f'第10次反彈的高度:{h}')
height_100()
斐波拉契數列
[1,1,2,3,5,8,13,21,34,55]
分析:
月份 數量
1 2隻
2 2隻
3 4隻
4 6隻
5 10隻
6 16隻
def tu_func(n):
if n ==1 or n ==2:
return 2
else:
return tu_func(n -1) + tu_func(n -2)
print(tu_func(10))
# for 循環實現
def tu_func1(n):
s = []
for iin range(1, n +1):
if i ==1 or i ==2:
s.append(2)
else:
s.append(s[i -2] + s[i -3])
return s
print(tu_func1(10))
小明有100元錢 打算買100本書,A類書籍5元一本,B類書籍3元一本,C類書籍1元兩本,
請用程序算出小明一共有多少種買法?
def func3():
count =0
for ain range(21):
for bin range(34):
c =100 - a - b
if a *5 + b *3 + c *0.5 ==100:
count +=1
print(a, b, c)
print(F'一共有{count}種買法')
func3()
D. 演算法崗面試都會考代碼嗎
會。
演算法崗面試的第一關,手撕代碼環節,主要考察你對數據結構和一般演算法的掌握,以及作為碼農最基本的編程能力。二至三道編程題寫完之後,就進入到了面試的第二關,演算法基礎知識考察環節,這里的演算法指的是機器學習、深度學習以及細分方向上,比如CV、NLP相關的演算法知識。
E. 面試官常問十大經典演算法排序(用Python實現)
演算法是一種與語言無關的東西,更確切地說就算解決問題的思路,就是一個通用的思想的問題。代碼本身不重要,演算法思想才是重中之重
我們在面試的時候總會被問到一下演算法,雖然演算法是一些基礎知識,但是難起來也會讓人非常頭疼。
排序演算法應該算是一些簡單且基礎的演算法,但是我們可以從簡單的演算法排序鍛煉我們的演算法思維。這里我就介紹經典十大演算法用python是怎麼實現的。
十大經典演算法可以分為兩大類:
比較排序: 通過對數組中的元素進行比較來實現排序。
非比較排序: 不通過比較來決定元素間的相對次序。
演算法復雜度
冒泡排序比較簡單,幾乎所有語言演算法都會涉及的冒泡演算法。
基本原理是兩兩比較待排序數據的大小 ,當兩個數據的次序不滿足順序條件時即進行交換,反之,則保持不變。
每次選擇一個最小(大)的,直到所有元素都被輸出。
將第一個元素逐個插入到前面的有序數中,直到插完所有元素為止。
從大范圍到小范圍進行比較-交換,是插入排序的一種,它是針對直接插入排序演算法的改進。先對數據進行預處理,使其基本有序,然後再用直接插入的排序演算法排序。
該演算法是採用 分治法 對集合進行排序。
把長度為n的輸入序列分成兩個長度為n/2的子序列,對這兩個子序列分別採用歸並排序,最終合並成序列。
選取一個基準值,小數在左大數在在右。
利用堆這種數據結構所設計的一種排序演算法。
堆是一個近似完全二叉樹的結構,並同時滿足堆積的性質:即子結點的鍵值或索引總是小於(或者大於)它的父節點。利用最大堆和最小堆的特性。
採用字典計數-還原的方法,找出待排序的數組中最大和最小的元素,統計數組中每個值為i的元素出現的次數,對所有的計數累加,將每個元素放在新數組依次排序。
設置一個定量的數組當作空桶;遍歷輸入數據,並且把數據一個一個放到對應的桶里去;對每個不是空的桶進行排序;從不是空的桶里把排好序的數據拼接起來。
元素分布在桶中:
然後,元素在每個桶中排序:
取得數組中的最大數,並取得位數;從最低位開始取每個位組成新的數組;然後進行計數排序。
上面就是我整理的十大排序演算法,希望能幫助大家在演算法方面知識的提升。看懂之後可以去試著自己到電腦上運行一遍。最後說一下每個排序是沒有調用數據的,大家記得實操的時候要調用。
參考地址:https://www.runoob.com/w3cnote/ten-sorting-algorithm.html
F. 面試必會八大排序演算法(Python)
一、插入排序
介紹
插入排序的基本操作就是將一個數據插入到已經排好序的有序數據中,從而得到一個新的、個數加一的有序數據。
演算法適用於少量數據的排序,時間復雜度為O(n^2)。
插入排演算法是穩定的排序方法。
步驟
①從第一個元素開始,該元素可以認為已經被排序
②取出下一個元素,在已經排序的元素序列中從後向前掃描
③如果該元素(已排序)大於新元素,將該元素移到下一位置
④重復步驟3,直到找到已排序的元素小於或者等於新元素的位置
⑤將新元素插入到該位置中
⑥重復步驟2
排序演示
演算法實現
二、冒泡排序
介紹
冒泡排序(Bubble Sort)是一種簡單的排序演算法,時間復雜度為O(n^2)。
它重復地走訪過要排序的數列,一次比較兩個元素,如果他們的順序錯誤就把他們交換過來。走訪數列的工作是重復地進行直到沒有再需要交換,也就是說該數列已經排序完成。
這個演算法的名字由來是因為越小的元素會經由交換慢慢「浮」到數列的頂端。
原理
循環遍歷列表,每次循環找出循環最大的元素排在後面;
需要使用嵌套循環實現:外層循環控制總循環次數,內層循環負責每輪的循環比較。
步驟
①比較相鄰的元素。如果第一個比第二個大,就交換他們兩個。
②對每一對相鄰元素作同樣的工作,從開始第一對到結尾的最後一對。在這一點,最後的元素應該會是最大的數。
③針對所有的元素重復以上的步驟,除了最後一個。
④持續每次對越來越少的元素重復上面的步驟,直到沒有任何一對數字需要比較。
演算法實現:
三、快速排序
介紹
快速排序(Quicksort)是對冒泡排序的一種改進,借用了分治的思想,由C. A. R. Hoare在1962年提出。
基本思想
快速排序的基本思想是:挖坑填數 + 分治法。
首先選出一個軸值(pivot,也有叫基準的),通過一趟排序將待排記錄分隔成獨立的兩部分,其中一部分記錄的關鍵字均比另一部分的關鍵字小,則可分別對這兩部分記錄繼續進行排序,以達到整個序列有序。
實現步驟
①從數列中挑出一個元素,稱為 「基準」(pivot);
②重新排序數列,所有元素比基準值小的擺放在基準前面,所有元素比基準值大的擺在基準的後面(相同的數可以到任一邊);
③對所有兩個小數列重復第二步,直至各區間只有一個數。
排序演示
演算法實現
四、希爾排序
介紹
希爾排序(Shell Sort)是插入排序的一種,也是縮小增量排序,是直接插入排序演算法的一種更高效的改進版本。希爾排序是非穩定排序演算法,時間復雜度為:O(1.3n)。
希爾排序是基於插入排序的以下兩點性質而提出改進方法的:
·插入排序在對幾乎已經排好序的數據操作時, 效率高, 即可以達到線性排序的效率;
·但插入排序一般來說是低效的, 因為插入排序每次只能將數據移動一位。
基本思想
①希爾排序是把記錄按下標的一定量分組,對每組使用直接插入演算法排序;
②隨著增量逐漸減少,每組包1含的關鍵詞越來越多,當增量減至1時,整個文件恰被分成一組,演算法被終止。
排序演示
演算法實現
五、選擇排序
介紹
選擇排序(Selection sort)是一種簡單直觀的排序演算法,時間復雜度為Ο(n2)。
基本思想
選擇排序的基本思想:比較 + 交換。
第一趟,在待排序記錄r1 ~ r[n]中選出最小的記錄,將它與r1交換;
第二趟,在待排序記錄r2 ~ r[n]中選出最小的記錄,將它與r2交換;
以此類推,第 i 趟,在待排序記錄ri ~ r[n]中選出最小的記錄,將它與r[i]交換,使有序序列不斷增長直到全部排序完畢。
排序演示
選擇排序的示例動畫。紅色表示當前最小值,黃色表示已排序序列,藍色表示當前位置。
演算法實現
六、堆排序
介紹
堆排序(Heapsort)是指利用堆積樹(堆)這種數據結構所設計的一種排序演算法,它是選擇排序的一種。
利用數組的特點快速指定索引的元素。
基本思想
堆分為大根堆和小根堆,是完全二叉樹。
大根堆的要求是每個節點的值不大於其父節點的值,即A[PARENT[i]] >=A[i]。
在數組的非降序排序中,需要使用的就是大根堆,因為根據大根堆的要求可知,最大的值一定在堆頂。
排序演示
演算法實現
七、歸並排序
介紹
歸並排序(Merge sort)是建立在歸並操作上的一種有效的排序演算法。該演算法是採用分治法(Divide and Conquer)的一個非常典型的應用。
基本思想
歸並排序演算法是將兩個(或兩個以上)有序表合並成一個新的有序表,即把待排序序列分為若干個子序列,每個子序列是有序的。然後再把有序子序列合並為整體有序序列。
演算法思想
自上而下遞歸法(假如序列共有n個元素)
① 將序列每相鄰兩個數字進行歸並操作,形成 floor(n/2)個序列,排序後每個序列包含兩個元素;
② 將上述序列再次歸並,形成 floor(n/4)個序列,每個序列包含四個元素;
③ 重復步驟②,直到所有元素排序完畢。
自下而上迭代法
① 申請空間,使其大小為兩個已經排序序列之和,該空間用來存放合並後的序列;
② 設定兩個指針,最初位置分別為兩個已經排序序列的起始位置;
③ 比較兩個指針所指向的元素,選擇相對小的元素放入到合並空間,並移動指針到下一位置;
④ 重復步驟③直到某一指針達到序列尾;
⑤ 將另一序列剩下的所有元素直接復制到合並序列尾。
排序演示
演算法實現
八、基數排序
介紹
基數排序(Radix Sort)屬於「分配式排序」,又稱為「桶子法」。
基數排序法是屬於穩定性的排序,其時間復雜度為O (nlog(r)m) ,其中 r 為採取的基數,而m為堆數。
在某些時候,基數排序法的效率高於其他的穩定性排序法。
基本思想
將所有待比較數值(正整數)統一為同樣的數位長度,數位較短的數前面補零。然後,從最低位開始,依次進行一次排序。這樣從最低位排序一直到最高位排序完成以後,數列就變成一個有序序列。
基數排序按照優先從高位或低位來排序有兩種實現方案:
MSD(Most significant digital) 從最左側高位開始進行排序。先按k1排序分組, 同一組中記錄, 關鍵碼k1相等,再對各組按k2排序分成子組, 之後, 對後面的關鍵碼繼續這樣的排序分組, 直到按最次位關鍵碼kd對各子組排序後. 再將各組連接起來,便得到一個有序序列。MSD方式適用於位數多的序列。
LSD (Least significant digital)從最右側低位開始進行排序。先從kd開始排序,再對kd-1進行排序,依次重復,直到對k1排序後便得到一個有序序列。LSD方式適用於位數少的序列。
排序效果
演算法實現
九、總結
各種排序的穩定性、時間復雜度、空間復雜度的總結:
平方階O(n²)排序:各類簡單排序:直接插入、直接選擇和冒泡排序;
從時間復雜度來說:
線性對數階O(nlog₂n)排序:快速排序、堆排序和歸並排序;
O(n1+§))排序,§是介於0和1之間的常數:希爾排序 ;
線性階O(n)排序:基數排序,此外還有桶、箱排序。
G. 經典C語言面試演算法題
經典C語言面試演算法題
1.寫一個函數,它的原形是int continumax(char *outputstr,char *intputstr)
功能:
在字元串中找出連續最長的數字串,並把這個串的長度返回,並把這個最長數字串付給其中一個函數參數outputstr所指內存。例如:"abcd12345ed125ss123456789"的首地址傳給intputstr後,函數將返回
9,outputstr所指的值為123456789。
#include
#include
#include
int FindMax_NumStr(char *outputstr,char *inputstr)
{
char *in = inputstr,*out = outputstr,*temp;
char *final;
int count = 0;
int maxlen = 0;
int i;
while(*in!='