當前位置:首頁 » 操作系統 » mahout演算法

mahout演算法

發布時間: 2023-06-12 16:03:13

A. mahout包括哪些演算法

一、分類演算法

(一)Logistic 回歸(SGD)

(二)Bayesian 

(三)SVM

(四)Perceptron 和Winnow

(五)神經網路

(六)隨機森林

(七)受限玻爾茲曼機

(八)Boosting

(九)HMM

(十)Online Passive Aggressive

二、聚類演算法

(一)Canopy

(二)K-Means

(三)Fuzzy K-means

(四)EM

(五)Mean shift

(六)層次聚類

(七)Dirichlet process 

(八)LDA

(九)Spectral 

(十)MinHash

(十一)Top Down

三、推薦演算法

           Mahout包括簡單的非並行的推薦和基於Hadoop的並行推薦的實現。

(一)非並行推薦

(二)分布式的基於Item的協同過濾

(三)並行矩陣分解的協同過濾

四、關聯規則挖掘演算法

 

並行FP-Growth 

五、回歸

Locally Weighted Linear Regression

六、降維

(一)SVD

(二)SSVD

(三)PCA

(四)ICA

(五)GDA

七、進化演算法

八、向量相似性計算

B. mahout的fpgrowth演算法可以求出置信度和規則嗎

在此命令行的末尾添加Kickstart文件的位置信息,例如,下面添加的信息表示此文件保存在第二個硬碟驅動器的第一個分區上,此硬碟可能是USB驅動器。

ks=hd:sdb1:/ks.cfg

或者,如果Kickstart文件保存在引導CD上,則添加以下命令:

ks=cdrom:/ks.cfg

或者,如果Kickstart文件保存在第一個軟盤驅動器上,則輸入下面的位置信息:

ks=hd:fd0:/ks.cfg

這種方法需要不斷嘗試,可能會有錯誤。確實,設備文件是按順序分配名字(sda、sdb、sdc等)。然而,除非我們用給定的存儲媒介引導Linux,否則無法確定哪個設備文件指定給一個特定的設備驅動器。

C. 如何讓Hadoop結合R語言做大數據分析

R語言和Hadoop讓我們體會到了,兩種技術在各自領域的強大。很多開發人員在計算機的角度,都會提出下面2個問題。問題1: Hadoop的家族如此之強大,為什麼還要結合R語言?x0dx0a問題2: Mahout同樣可以做數據挖掘和機器學習,和R語言的區別是什麼?下面我嘗試著做一個解答:問題1: Hadoop的家族如此之強大,為什麼還要結合R語言?x0dx0ax0dx0aa. Hadoop家族的強大之處,在於對大數據的處理,讓原來的不可能(TB,PB數據量計算),成為了可能。x0dx0ab. R語言的強大之處,在於統計分析,在沒有Hadoop之前,我們對於大數據的處理,要取樣本,假設檢驗,做回歸,長久以來R語言都是統計學家專屬的工具。x0dx0ac. 從a和b兩點,我們可以看出,hadoop重點是全量數據分析,而R語言重點是樣本數據分析。 兩種技術放在一起,剛好是最長補短!x0dx0ad. 模擬場景:對1PB的新聞網站訪問日誌做分析,預測未來流量變化x0dx0ad1:用R語言,通過分析少量數據,對業務目標建回歸建模,並定義指標d2:用Hadoop從海量日誌數據中,提取指標數據d3:用R語言模型,對指標數據進行測試和調優d4:用Hadoop分步式演算法,重寫R語言的模型,部署上線這個場景中,R和Hadoop分別都起著非常重要的作用。以計算機開發人員的思路,所有有事情都用Hadoop去做,沒有數據建模和證明,」預測的結果」一定是有問題的。以統計人員的思路,所有的事情都用R去做,以抽樣方式,得到的「預測的結果」也一定是有問題的。所以讓二者結合,是產界業的必然的導向,也是產界業和學術界的交集,同時也為交叉學科的人才提供了無限廣闊的想像空間。問題2: Mahout同樣可以做數據挖掘和機器學習,和R語言的區別是什麼?x0dx0ax0dx0aa. Mahout是基於Hadoop的數據挖掘和機器學習的演算法框架,Mahout的重點同樣是解決大數據的計算的問題。x0dx0ab. Mahout目前已支持的演算法包括,協同過濾,推薦演算法,聚類演算法,分類演算法,LDA, 樸素bayes,隨機森林。上面的演算法中,大部分都是距離的演算法,可以通過矩陣分解後,充分利用MapRece的並行計算框架,高效地完成計算任務。x0dx0ac. Mahout的空白點,還有很多的數據挖掘演算法,很難實現MapRece並行化。Mahout的現有模型,都是通用模型,直接用到的項目中,計算結果只會比隨機結果好一點點。Mahout二次開發,要求有深厚的JAVA和Hadoop的技術基礎,最好兼有 「線性代數」,「概率統計」,「演算法導論」 等的基礎知識。所以想玩轉Mahout真的不是一件容易的事情。x0dx0ad. R語言同樣提供了Mahout支持的約大多數演算法(除專有演算法),並且還支持大量的Mahout不支持的演算法,演算法的增長速度比mahout快N倍。並且開發簡單,參數配置靈活,對小型數據集運算速度非常快。x0dx0a雖然,Mahout同樣可以做數據挖掘和機器學習,但是和R語言的擅長領域並不重合。集百家之長,在適合的領域選擇合適的技術,才能真正地「保質保量」做軟體。x0dx0ax0dx0a如何讓Hadoop結合R語言?x0dx0ax0dx0a從上一節我們看到,Hadoop和R語言是可以互補的,但所介紹的場景都是Hadoop和R語言的分別處理各自的數據。一旦市場有需求,自然會有商家填補這個空白。x0dx0ax0dx0a1). RHadoopx0dx0ax0dx0aRHadoop是一款Hadoop和R語言的結合的產品,由RevolutionAnalytics公司開發,並將代碼開源到github社區上面。RHadoop包含三個R包 (rmr,rhdfs,rhbase),分別是對應Hadoop系統架構中的,MapRece, HDFS, HBase 三個部分。x0dx0ax0dx0a2). RHiveRHive是一款通過R語言直接訪問Hive的工具包,是由NexR一個韓國公司研發的。x0dx0ax0dx0a3). 重寫Mahout用R語言重寫Mahout的實現也是一種結合的思路,我也做過相關的嘗試。x0dx0ax0dx0a4).Hadoop調用Rx0dx0ax0dx0a上面說的都是R如何調用Hadoop,當然我們也可以反相操作,打通JAVA和R的連接通道,讓Hadoop調用R的函數。但是,這部分還沒有商家做出成形的產品。x0dx0ax0dx0a5. R和Hadoop在實際中的案例x0dx0ax0dx0aR和Hadoop的結合,技術門檻還是有點高的。對於一個人來說,不僅要掌握Linux, Java, Hadoop, R的技術,還要具備 軟體開發,演算法,概率統計,線性代數,數據可視化,行業背景 的一些基本素質。在公司部署這套環境,同樣需要多個部門,多種人才的的配合。Hadoop運維,Hadoop演算法研發,R語言建模,R語言MapRece化,軟體開發,測試等等。所以,這樣的案例並不太多。

熱點內容
低速存儲卡可以放mp3 發布:2025-04-04 13:18:40 瀏覽:407
用友資料庫置疑 發布:2025-04-04 13:12:58 瀏覽:854
什麼樣配置手機適合玩大型游戲 發布:2025-04-04 13:00:51 瀏覽:142
ios天天酷跑刷分腳本 發布:2025-04-04 13:00:05 瀏覽:268
c二維碼源碼 發布:2025-04-04 12:47:31 瀏覽:639
地鐵加密線是什麼意思 發布:2025-04-04 12:32:00 瀏覽:123
linux下載解壓 發布:2025-04-04 12:23:45 瀏覽:793
怎麼在伺服器里設材質包 發布:2025-04-04 12:10:08 瀏覽:630
php學習路線 發布:2025-04-04 12:05:13 瀏覽:756
壓縮文件視頻 發布:2025-04-04 12:00:48 瀏覽:321