當前位置:首頁 » 操作系統 » 古數學演算法

古數學演算法

發布時間: 2023-06-11 08:24:02

『壹』 古代的人如何運算數學的加減乘除

算籌

根據史書的記載和考古材料的發現,古代的算籌實際上是一根根同樣長短和粗細的小棍子,一般長為13--14cm,徑粗0.2~0.3cm,多用竹子製成,也有用木頭、獸骨、象牙、金屬等材料製成的,大約二百七十幾枚為一束,放在一個布袋裡,系在腰部隨身攜帶。需要記數和計算的時候,就把它們取出來,放在桌上、炕上或地上都能擺弄。別看這些都是一根根不起眼的小棍子,在中國數學史上它們卻是立有大功的。而它們的發明,也同樣經歷了一個漫長的歷史發展過程。

在算籌計數法中,以縱橫兩種排列方式來表示單位數目的,其中1-5均分別以縱橫方式排列相應數目的算籌來表示,6-9則以上面的算籌再加下面相應的算籌來表示。表示多位數時,個位用縱式,十位用橫式,百位用縱式,千位用橫式,以此類推,遇零則置空。這種計數法遵循十進位制。

算籌的出現年代已經不可考,但據史料推測,算籌最晚出現在春秋晚期戰國初年(公元前722年~公元前221年),一直到算盤發明推廣之前都是中國最重要的計算工具。

算籌的發明就是在以上這些記數方法的歷史發展中逐漸產生的。它最早出現在何時,現在已經不可查考了,但至遲到春秋戰國;算籌的使用已經非常普遍了。前面說過,算籌是一根根同樣長短和粗細的小棍子,那麼怎樣用這些小棍子來表示各種各樣的數目呢?

那麼為什麼又要有縱式和橫式兩種不同的擺法呢?這就是因為十進位制的需要了。所謂十進位制,又稱十進位值制,包含有兩方面的含義。其一是"十進制",即每滿十數進一個單位,十個一進為十,十個十進為百,十個百進為千……其二是"位值制,即每個數碼所表示的數值,不僅取決於這個數碼本身,而且取決於它在記數中所處的位置。如同樣是一個數碼"2",放在個位上表示2,放在十位上就表示20,放在百位上就表示200,放在千位上就表示2000……在我國商代的文字記數系統中,就已經有了十進位值制的蔭芽,到了算籌記數和運算時,就更是標準的十進位值制了。

按照中國古代的籌算規則,算籌記數的表示方法為:個位用縱式,十位用橫式,百位再用縱式,千位再用橫式,萬位再用縱式……這樣從右到左,縱橫相間,以此類推,就可以用算籌表示出任意大的自然數了。由於它位與位之間的縱橫變換,且每一位都有固定的擺法,所以既不會混淆,也不會錯位。毫無疑問,這樣一種算籌記數法和現代通行的十進位制記數法是完全一致的。

中國古代十進位制的算籌記數法在世界數學史上是一個偉大的創造。把它與世界其他古老民族的記數法作一比較,其優越性是顯而易見的。古羅馬的數字系統沒有位值制,只有七個基本符號,如要記稍大一點的數目就相當繁難。古美洲瑪雅人雖然懂得位值制,但用的是20進位;古巴比倫人也知道位值制,但用的是60進位。20進位至少需要19個數碼,60進位則需要59個數碼,這就使記數和運算變得十分繁復,遠不如只用9個數碼便可表示任意自然數的十進位制來得簡捷方便。中國古代數學之所以在計算方面取得許多卓越的成就,在一定程度上應該歸功於這一符合十進位制的算籌記數法。馬克思在他的《數學手稿》一書中稱十進位記數法為"最妙的發明之一",確實是一點也不過分的。

二進制思想的開創國

著名的哲學家數學家萊布尼茨(1646-1716)發明了對現代計算機系統有著重要意義的二進制,不過他認為在此之前,中國的《易經》中已經提到了有關二進制的初步思想。當代的許多科學家認為易經中並不含有復雜的二進制思想,可是這本中國古籍中的一些基本思想和二進制在很大程度上仍然有著千絲萬縷的聯系。

元始的《靈寶經》裡面把陰陽定義為陽是自冬至到夏至的上升的氣,陰為從夏至到冬至下降的氣,這是對地球周期運動的最簡練認識。陰陽是一種物質認識,後來轉化為思想方式,反者道之動等等,都是這種思想的表現。從而開創了對立統一的思想方式,實際上計算機的電子脈沖的思想是與之一致的,采樣定律也是與之一致的。

《易經》是我國伏羲、周文王等當政者積累觀天測算經驗而成的關於天象氣象和人變易的經典,從八卦到六十四卦,就是二進制三位到六位表達,上世紀八十年代還有四位計算機,可以說,周文王的六十四卦在表達能力上已經高於四位計算機。

十進制的使用

《卜辭》中記載說,商代的人們已經學會用一、二、三、四、五、六、七、八、九、十、百、千、萬這13個單字記十萬以內的任何數字,但是現在能夠證實的當時最大的數字是三萬。甲骨卜辭中還有奇數、偶數和倍數的概念。

十進位位值制記數法包括十進位和位值制兩條原則,"十進"即滿十進一;"位值"則是同一個數位在不同的位置上所表示的數值也就不同,如三位數"111",右邊的"1"在個位上表示1個一,中間的"1"在十位上就表示1個十,左邊的"1"在百位上則表示1個百。這樣,就使極為困難的整數表示和演算變得如此簡便易行,以至於人們往往忽略它對數學發展所起的關鍵作用。

我們有個成語叫"屈指可數",說明古代人數數確實是離不開手指的,而一般人的手指恰好有十個。因此十進制的使用似乎應該是極其自然的事。但實際情況並不盡然。在文明古國巴比倫使用的是60進位制(這一進位制到現在仍留有痕跡,如一分=60秒等)另外還有採用二十進位制的。古代埃及倒是很早就用10進位制,但他們卻不知道位值制。所謂位值制就是一個數碼表示什麼數,要看它所在的位置而定。位值制是千百年來人類智慧的結晶。零是位值制記數法的精要所在。但它的出現卻並非易事。我國是最早使用十進制記數法,且認識到進位制的國家。我們的口語或文字表達的數字也遵守這一原則,比如一百二十七。同時我們對0的認識最早。

十進制是中國人民的一項傑出創造,在世界數學史上有重要意義。著名的英國科學史學家李約瑟教授曾對中國商代記數法予以很高的評價,"如果沒有這種十進制,就幾乎不可能出現我們現在這個統一化的世界了",李約瑟說"總的說來,商代的數字系統比同一時代的古巴比倫和古埃及更為先進更為科學。"

分數和小數的最早運用

分數的應用

最初分數的出現,並非由除法而來。分數被看作一個整體的一部分。"分"在漢語中有"分開""分割"之意。後來運算過程中也出現了分數,它表示兩整數比。分數的加減乘除運算我們小學就已完全掌握了。很簡單,是不是?不過在七、八百年以前的歐洲,如果你有這種水平那麼就可以說相當了不起了。那時精通自然數的四則運算就已達到了學者水平。至於分數,對當時人來說簡直難於上青天。德國有句諺語形容一個人陷入絕境,就說:"掉到分數里去了"。為什麼會如此呢?這都是笨拙的記數法導致的。在我國古代,《九章算術》中就有了系統的分數運算方法,這比歐洲大約早1400年。

西漢時期,張蒼、耿壽昌等學者整理、刪補自秦代以來的數學知識,編成了《九章算術》。在這本數學經典的《方田》章中,提出了完整的分數運演算法則。

從後來劉徽所作的《九章算術注》可以知道,在《九章算術》中,講到約分、合分(分數加法)、減分(分數減法)、乘分(分數乘法)、除分(分數除法)的法則,與我們現在的分數運演算法則完全相同。另外,還記載了課分(比較分數大小)、平分(求分數的平均值)等關於分數的知識,是世界上最早的系統敘述分數的著作。

分數運算,大約在15世紀才在歐洲流行。歐洲人普遍認為,這種演算法起源於印度。實際上,印度在七世紀婆羅門笈多的著作中才開始有分數運演算法則,這些法則都與《九章算術》中介紹的法則相同。而劉徽的《九章算術注》成書於魏景元四年(263年),所以,即使與劉徽的時代相比,我們也要比印度早400年左右。

小數的最早使用

劉徽在《九章算術注》中介紹,開方不盡時用十進分數(徽數,即小數)去逼近,首先提出了關於十進小數的概念。到公元 1300年前後,元代劉瑾所著《律呂成書》中,已將106368.6312寫成

把小數部分降低一行寫在整數部分的後邊。而西方的斯台汶直到1585年才有十進小數的概念,且他的表示方法遠不如中國先進,如上述的小數,他記成或106368。

九九表的使用

作為啟蒙教材,我們都背過九九乘法表:一一得一、一二得二……九九八十一。而古代是從"九九八十一"開始,因此稱"九九表"。九九表的使用,對於完成乘法是大有幫助的。齊恆公納賢的故事說明,到公元前7世紀時,九九歌訣已不希罕。也許有人認為這種成績不值一提。但在古代埃及作乘法卻要用倍乘的方式呢。舉個例子。如算23×13,就需要從23開始,加倍得到23×2,23×4,23×8,然後注意到13=1+4+8,於是23+23×4+23×8加起來的結果就是23×13。從比較中不難看出使用九九表的優越性了。

根據考古專家在湖南張家界古人堤漢代遺址出土的簡牘上發現的漢代"九九乘法表",竟與現今生活中使用的乘法口訣表有著驚人的一致。這枚記載有"九九乘法表"的簡牘是木質的,大約有22厘米長,殘損比較嚴重。此前在湘西里耶古城出土的一枚秦簡上也發現了距今2200多年的乘法口訣表,並被考證為中國現今發現的最早的乘法口訣表實物。

除了里耶秦簡外,與張家界古人堤遺址發現的這枚簡牘樣式基本一致的"九九乘法表"還曾在樓蘭文書中見到過,那是寫在兩張殘紙上的九九乘法表,為瑞典探險家斯文赫定在上個世紀初期發掘。

乘法表在古代並非中國一家獨有,古巴比倫的泥版書上也有乘法表。但漢字(包括數目字)單音節發聲的特點,使之讀起來朗朗上口;後來發展起來的珠算口訣也承繼了這一特點,對於運算速度的提高和演算法的改進起到一定作用。

負數的使用

人們在解方程或其它數的運算過程中,往往要碰到從較小數減去較大數的情形,另外,還遇到了增加與減小,盈餘與虧損等互為相反意義的量,這樣,人們自然地引進了負數。

負數的引進,是中國古代數學家對數學的一個巨大貢獻。在我國古代秦、漢時期的算經《九章算術》的第八章"方程"中,就自由地引入了負數,如負數出現在方程的系數和常數項中,把"賣(收入錢)"作為正,則"買(付出錢)"作為負,把"余錢"作為正,則"不足錢"作為負。在關於糧谷計算的問題中,是以益實(增加糧谷)為正,損實(減少糧谷)為負等,並且該書還指出:"兩算得失相反,要以正負以名之"。當時是用算籌來進行計算的,所以在算籌中,相應地規定以紅籌為正,黑籌為負;或將算籌直列作正,斜置作負。這樣,遇到具有相反意義的量,就能用正負數明確地區別了。

在《九章算術》中,除了引進正負數的概念外,還完整地記載了正負數的運演算法則,實際上是正負數加減法的運演算法則,也就是書中解方程時用到的"正負術"即"同名相除,異名相益,正無入正之,負無入負之;其異名相除,同名相益,正無入正之,負無入負之。"這段話的前四句說的是正負數減法法則,後四句說的是正負數加法法則。它的意思是:同號兩數相減,等於其絕對值相減;異號兩數相減,等於其絕對值相加;零減正數得負數,零減負數得正數。異號兩數相加,等於其絕對值相減;同號兩數相加,等於其絕對值相加;零加正數得正數,零加負數得負數,當然,從現代數學觀點看,古書中的文字敘述還不夠嚴謹,但直到公元17世紀以前,這還是正負數加減運算最完整的敘述。

在國外,負數出現得很晚,直至公元1150年(比《九章算術》成書晚l千多年),印度人巴土卡洛首先提到了負數,而且在公元17世紀以前,許多數學家一直採取不承認的態度。如法國大數學家韋達,盡管在代數方面作出了巨大貢獻,但他在解方程時卻極力迴避負數,並把負根統統捨去。有許多數學家由於把零看作"沒有",他們不能理解比"沒有"還要"少"的現象,因而認為負數是"荒謬的"。直到17世紀,笛卡兒創立了坐標系,負數獲得了幾何解釋和實際意義,才逐漸得到了公認。

從上面可以看出,負數的引進,是我國古代數學家貢獻給世界數學的一份寶貴財富。負數概念引進後,整數集和有理數集就完整地形成了。

圓周率的計算

圓周率是數學中最重要的常數之一。對它的計算,可以作為顯示出一個國家古代數學發展的水平的尺度之一。而我國古代數學在這方面取得了令世人矚目的成績。

我國古代最初把圓周率取作3,這雖應用起來簡便,但太不準確。在求准確圓周率值的征途中,首先邁出關鍵一步的是劉徽。他創立割圓術,用圓內接正多邊形無限逼近圓而求取圓周率值。用這種方法他求得圓周率的近似值為3.14,也有人認為他得到了更好的結果:3.1416。青出於藍,而勝於藍。後繼者祖沖之利用割圓術得出了正確的小數點後七位。而且他還給出了約率與密率。密率的發現是數學史上卓越的成就,保持了一千多年的世界紀錄,是一項空前傑作。

『貳』 中國古代數學中的演算法


關於輾轉相除法,
搜了一下,
在我國古代的《九章算術》中就有記載,現摘錄如下:
約分術曰:「可半者半之,不可半者,副置分母、子之數,以少減多,更相減損,求其等也。以等數約之。」
其中所說的「等數」,就是最大公約數。求「等數」的辦法是「更相減損」法,實際上就是輾轉相除法。
輾轉相除法求最大公約數,是一種比較好的方法,比較快。
對於52317和75569兩個數,你能迅速地求出它們的最大公約數嗎?一般來說你會找一找公共的使因子,這題可麻煩了,不好找,質因子大。
現在教你用輾轉相除法來求最大公約數。
先用較大的75569除以52317,得商1,余數23252,再以52317除以23252,得商2,余數是5813,再用23252做被除數,5813做除數,正好除盡得商數4。這樣5813就是75569和52317的最大公約數。你要是用分解使因數的辦法,肯定找不到。
那麼,這輾轉相除法為什麼能得到最大公約數呢?下面我就給大夥談談。
比如說有要求a、b兩個整數的最大公約數,a>b,那麼我們先用a除以b,得到商8,余數r1:a÷b=q1…r1我們當然也可以把上面這個式子改寫成乘法式:a=bq1+r1------l)
如果r1=0,那麼b就是a、b的最大公約數3。要是r1≠0,就繼續除,用b除以r1,我們也可以有和上面一樣的式子:
b=r1q2+r2-------2)
如果余數r2=0,那麼r1就是所求的最大公約數3。為什麼呢?因為如果2)式變成了b=r1q2,那麼b1r1的公約數就一定是a1b的公約數。這是因為一個數能同時除盡b和r1,那麼由l)式,就一定能整除a,從而也是a1b的公約數。
反過來,如果一個數d,能同時整除a1b,那麼由1)式,也一定能整除r1,從而也有d是b1r1的公約數。
這樣,a和b的公約數與b和r1的公約數完全一樣,那麼這兩對的最大公約數也一定相同。那b1r1的最大公約數,在r1=0時,不就是r1嗎?所以a和b的最大公約數也是r1了。
有人會說,那r2不等於0怎麼辦?那當然是繼續往下做,用r1除以r2,……直到余數為零為止。
在這種方法里,先做除數的,後一步就成了被除數,這就是輾轉相除法名字的來歷吧。

『叄』 古時候人們常用的計演算法有哪些

1. 數學:
1)正字計演算法——畫正字
2)算籌是中國古代的主要計算工具,它具有簡單、形象、具體等優點,但也存在布籌佔用面積大,運籌速度加快時容易擺弄不正而造成錯誤等缺點,因此很早就開始進行改革。現傳本《數術記遺》(題東漢徐岳撰,北周甄鸞注)載有「積算」、「太乙」、「兩儀」、「三才」、「五行」、「八卦」、「九宮」、「運籌」、「了知」、「成數」、「把頭」、「龜算」、「珠算」、「計數」等14種演算法,反映了這種改革的情況。唐中期以後,商業繁榮,數字計算增多,迫切要求改革計算方法,從《新唐書》等文獻留下來的算書書目,可以看出這次演算法改革主要是簡化乘、除演算法,書目中提到的「一位演算法」、「求一」、「得一」的內容就是用分解因數的方法;化多位乘除為個位乘除;或用折半、加倍、退位的方法把乘除數化為首位是1的數,從而變乘除為加減。現傳本《夏侯陽算經》(唐代韓延)記有很多這樣的例子,例如「九因五添」、「添四四」、「身外減二」、「隔位加二」、「損一位」等等,唐代的演算法改革使乘除法可以在一個橫列中進行運算,它既適用於籌算,也適用於珠算。
3)珠算是以算盤為工具進行數字計算的一種方法。「珠算」一詞,最早見於漢代徐岳撰的《數術記遺》,其中有雲:「珠算,控帶四時,經緯三才。」北周甄鸞為此作注,大意是:把木板刻為三部分,上下兩部分是停游珠用的,中間一部分是作定位用的。每位各有五顆珠,上面一顆珠與下面四顆珠用顏色來區別。上面一珠當五,下面四顆,每珠當一。
2. 時間
古時的時不以一二三四來算,而用子丑寅卯作標,又分別用鼠牛虎兔等動物作代。
時間劃分:
子(鼠)時是十一到一點,以十二點為正點;
丑(牛)時是一點到三點,以兩點為正點;
寅(虎)時是三點到五點,以四點為正點;
卯(兔)時是五點到七點,以六點為正點;
辰(龍)時是七點到九點,以八點為正點;
巳(蛇)時是九點到十一點,以十點為正點;
午(馬)時是十一點到一點,以十二點為正點;
未(羊)時是一點到三點,以兩點為正點;
申(猴)時是三點到五點,以四點為正點;
酉(雞)時是五點到七點,以六點為正點;
戌(狗)時是七點到九點,以八點為正點;
亥(豬)時是九點到十一點,以十點為正點。
古人說時間,白天與黑夜各不相同,白天說「鍾」,黑夜說「更」或「鼓」。又有「晨鍾暮鼓」之說,古時城鎮多設鍾鼓樓,晨起(辰時,今之七點)撞鍾報時,所以白天說「幾點鍾」;暮起(酉時,今之十九點)鼓報時,故夜晚又說是幾鼓天。夜晚說時間又有用「更」的,這是由於巡夜人,邊巡行邊打擊梆子,以點數報時。全夜分五個更,第三更是子時,所以又有「三更半夜」之說。
時以下的計量單位為「刻」,一個時辰分作八刻,每刻等於現時的十五分鍾。刻以下為「字」。「字」以下的分法不詳,據《隋書律歷志》載,秒為古時間單位,秒以下為「忽」;如何換算,書上沒說清楚,只說:「『秒』如芒這樣細;『忽』如最細的蜘蛛絲」。
換算:
天色 五更 五鼓 五夜 現代時間
黃昏 一更 一鼓 甲夜 19-21點
人定 二更 二鼓 乙夜 21-23點
夜半 三更 三鼓 丙夜 23-1點
雞鳴 四更 四鼓 丁夜 1-3點
平旦 五更 五鼓 戊夜 3-5點
3. 紀年
天乾地支紀年,一個周期的第一年為「甲子」,第二年為「乙丑」,依此類推,60年一個周期;一個周期完了重復使用,周而復始,循環下去。
必須特別注意的是干支紀年是以立春作為一年即歲次的開始,是為歲首,不是以農歷正月初一作為一年的開始。
天干:甲 乙 丙 丁 戊 己 庚 辛 壬 癸
地支:子 丑 寅 卯 辰 巳 午 未 申 酉 戌 亥
4. 風水
三元九運計演算法
三元即 : "上, 中, 下三元"; 九運即 : "九星當運". 以合元運之方位及方向為吉, 反之為凶.
年飛星計演算法
年飛星是每年在立春後之後,更換年歲之天乾地支時一齊更換的飛星。
起例訣:
上元甲子起一白,中元四綠甲子游,下元七赤兌上發,九星順走逆年頭。
古歷以一百八十年為一周,每一甲子六十年為一元,共謂之三元。
前六十年謂之上元,中六十年謂之中元,後六十年謂之下元。
三元分九運,每運為一飛星,管二十年吉凶,共一百八十年。
周而復始,循環不息。

『肆』 中國古代數學中的演算法

★ 關於輾轉相除法, 搜了一下, 在我國古代的《九章算術》中卜察鄭就有記載,現摘錄如下:

約分術曰:「可半者半之,不可半者,副置分母、子之數,以少減多,更相減損,求其等也。以等數約之。」

其中所說的「等數」,就是最大公約數。求「等數」的辦法是「更相減損」法,實際上就是輾轉相除法。

輾轉相除法求最大公約數,是一種比較好的方法,比較快。

對於52317和75569兩個數,你能迅速地求出它們的最大公約數嗎?一般來說你會找一找公共的使因子,這題可麻煩了,不好找,質因型頌子大。

現在教你用輾轉相除法來求最大公約數。

先用較大的75569除以52317,得商1,余數23252,再以52317除以23252,得商2,余數是5813,再用23252做被除數,5813做除數,正好除盡得商數4。這樣5813就是75569和52317的最大公約數。你要是用分解使因數的辦法,肯定找不到。

那麼沒悔,這輾轉相除法為什麼能得到最大公約數呢?下面我就給大夥談談。

比如說有要求a、b兩個整數的最大公約數,a>b,那麼我們先用a除以b,得到商8,余數r1:a÷b=q1…r1我們當然也可以把上面這個式子改寫成乘法式:a=bq1+r1------l)

如果r1=0,那麼b就是a、b的最大公約數3。要是r1≠0,就繼續除,用b除以r1,我們也可以有和上面一樣的式子:

b=r1q2+r2-------2)

如果余數r2=0,那麼r1就是所求的最大公約數3。為什麼呢?因為如果2)式變成了b=r1q2,那麼b1r1的公約數就一定是a1b的公約數。這是因為一個數能同時除盡b和r1,那麼由l)式,就一定能整除a,從而也是a1b的公約數。

反過來,如果一個數d,能同時整除a1b,那麼由1)式,也一定能整除r1,從而也有d是b1r1的公約數。

這樣,a和b的公約數與b和r1的公約數完全一樣,那麼這兩對的最大公約數也一定相同。那b1r1的最大公約數,在r1=0時,不就是r1嗎?所以a和b的最大公約數也是r1了。

有人會說,那r2不等於0怎麼辦?那當然是繼續往下做,用r1除以r2,……直到余數為零為止。

在這種方法里,先做除數的,後一步就成了被除數,這就是輾轉相除法名字的來歷吧。

『伍』 為什麼中國古代數學會形成演算法思想它對後世的影響如何

數學的發展包括了兩大主要活動:證明定理和創造演算法。定理證明是希臘人首倡,後構成數學發展中演繹傾向的脊樑;演算法創造昌盛於古代和中世紀的中國、印度,形成了數學發展中強烈的演算法傾向。統觀數學的歷史將會發現,數學的發展並非總是演繹傾向獨占鰲頭。在數學史上,演算法傾向與演繹傾向總是交替地取得主導地位。古代巴比倫和埃及式的原始演算法時期,被希臘式的演繹幾何所接替,而在中世紀,希臘數學衰落下去,演算法傾向在中國、印度等東方國度繁榮起來;東方數學在文藝復興前夕通過阿拉伯傳播到歐洲,對近代數學興起產生了深刻影響。事實上,作為近代數學誕生標志的解析幾何與微積分,從思想方法的淵源看都不能說是演繹傾向而是演算法傾向的產物。

從微積分的歷史可以知道,微積分的產生是尋找解決一系列實際問題的普遍演算法的結果6。這些問題包括:決定物體的瞬時速度、求極大值與極小值、求曲線的切線、求物體的重心及引力、面積與體積計算等。從16世紀中開始的100多年間,許多大數學家都致力於獲得解決這些問題的特殊演算法。牛頓與萊布尼茲的功績是在於將這些特殊的演算法統一成兩類基本運算——微分與積分,並進一步指出了它們的互逆關系。無論是牛頓的先驅者還是牛頓本人,他們所使用的演算法都是不嚴格的,都沒有完整的演繹推導。牛頓的流數術在邏輯上的瑕疵更是眾所周知。對當時的學者來說,首要的是找到行之有效的演算法,而不是演算法的證明。這種傾向一直延續到18世紀。18世紀的數學家也往往不管微積分基礎的困難而大膽前進。如泰勒公式,歐拉、伯努利甚至19世紀初傅里葉所發現的三角展開等,都是在很長時期內缺乏嚴格的證明。正如馮·諾伊曼指出的那樣:沒有一個數學家會把這一時期的發展看作是異端邪道;這個時期產生的數學成果被公認為第一流的。並且反過來,如果當時的數學家一定要在有了嚴密的演繹證明之後才承認新演算法的合理性,那就不會有今天的微積分和整個分析大廈了。

現在再來看一看更早的解析幾何的誕生。通常認為,笛卡兒發明解析幾何的基本思想,是用代數方法來解幾何問題。這同歐氏演繹方法已經大相徑庭了。而事實上如果我們去閱讀笛卡兒的原著,就會發現貫穿於其中的徹底的演算法精神。《幾何學》開宗明義就宣稱:「我將毫不猶豫地在幾何學中引進算術的術語,以便使自己變得更加聰明」。眾所周知,笛卡兒的《幾何學》是他的哲學著作《方法論》的附錄。笛卡兒在他另一部生前未正式發表的哲學著作《指導思維的法則》(簡稱《法則》)中曾強烈批判了傳統的主要是希臘的研究方法,認為古希臘人的演繹推理只能用來證明已經知道的事物,「卻不能幫助我們發現未知的事情」。因此他提出「需要一種發現真理的方法」,並稱之為「通用數學」(mathesis universakis)。笛卡兒在《法則》中描述了這種通用數學的藍圖,他提出的大膽計劃,概而言之就是要將一切科學問題轉化為求解代數方程的數學問題:

任何問題→數學問題→代數問題→方程求解而笛卡兒的《幾何學》,正是他上述方案的一個具體實施和示範,解析幾何在整個方案中扮演著重要的工具作用,它將一切幾何問題化為代數問題,這些代數問題則可以用一種簡單的、幾乎自動的或者毋寧說是機械的方法去解決。這與上面介紹的古代中國數學家解決問題的路線可以說是一脈相承。

因此我們完全有理由說,在從文藝復興到17世紀近代數學興起的大潮中,回響著東方數學特別是中國數學的韻律。整個17—18世紀應該看成是尋求無窮小演算法的英雄年代,盡管這一時期的無窮小演算法與中世紀演算法相比有質的飛躍。而從19世紀特別是70年代直到20世紀中,演繹傾向又重新在比希臘幾何高得多的水準上占據了優勢。因此,數學的發展呈現出演算法創造與演繹證明兩大主流交替繁榮、螺旋式上升過程:

演繹傳統——定理證明活動

演算法傳統——演算法創造活動

中國古代數學家對演算法傳統的形成與發展做出了毋容置疑的巨大貢獻。

我們強調中國古代數學的演算法傳統,並不意味中國古代數學中沒有演繹傾向。事實上,在魏晉南北朝時期一些數學家的工作中,已出現具有相當深度的論證思想。如趙爽勾股定理證明、劉徽「陽馬」一種長方錐體體積證明、祖沖之父子對球體積公式的推導等等,均可與古希臘數學家相應的工作媲美。趙爽勾股定理證明示意圖「弦圖」原型,已被採用作2002年國際數學家大會會標。令人迷惑的是,這種論證傾向隨著南北朝的結束,可以說是戛然而止。囿於篇幅和本文重點,對這方面的內容這里不能詳述,有興趣的讀者可參閱參考文獻3。

3 古為今用,創新發展

到了20世紀,至少從中葉開始,電子計算機的出現對數學的發展帶來了深遠影響,並孕育出孤立子理論、混沌動力學、四色定理證明等一系列令人矚目的成就。藉助計算機及有效的演算法猜測發現新事實、歸納證明新定理乃至進行更一般的自動推理……,這一切可以說已揭開了數學史上一個新的演算法繁榮時代的偉大序幕。科學界敏銳的有識之士紛紛預見到數學發展的這一趨勢。在我國,早在上世紀50年代,華羅庚教授就親自領導建立了計算機研製組,為我國計算機科學和數學的發展奠定了基礎。吳文俊教授更是從70年代中開始,毅然由原先從事的拓撲學領域轉向定理機器證明的研究,並開創了現代數學的嶄新領域——數學機械化。被國際上譽為「吳方法」的數學機械化方法已使中國在數學機械化領域處於國際領先地位,而正如吳文俊教授本人所說:「幾何定理證明的機械化問題,從思維到方法,至少在宋元時代就有蛛絲馬跡可尋,」他的工作「主要是受中國古代數學的啟發」。「吳方法」,是中國古代數學演算法化、機械化精髓的發揚光大。

計算機影響下演算法傾向的增長,自然也引起一些外國學者對中國古代數學中演算法傳統的興趣。早在上世紀70年代初,著名的計算機科學家D.E.Knuth就呼籲人們關注古代中國和印度的演算法5。多年來這方面的研究取得了一定進展,但總的來說還亟待加強。眾所周知,中國古代文化包括數學是通過著名的絲綢之路向西方傳播的,而阿拉伯地區是這種文化傳播的重要中轉站。現存有些阿拉伯數學與天文著作中包含有一定的中國數學與天文學知識,如著名的阿爾·卡西《算術之鑰》一書中有相當數量的數學問題顯示出直接或間接的中國來源,而根據阿爾·卡西本人記述,他所工作的天文台中就有不少來自中國的學者。

然而長期以來由於「西方中心論」特別是「希臘中心論」的影響以及語言文字方面的障礙,有關資料還遠遠沒有得到發掘。正是為了充分揭示東方數學與歐洲數學復興的關系,吳文俊教授特意從他榮獲的國家最高科學獎中撥出專款成立了「吳文俊數學與天文絲路基金」,鼓勵支持年輕學者深入開展這方面的研究,這是具有深遠意義之舉。

『陸』 中國古代數學優秀演算法,除輾轉相除法秦九韶演算法和更相減損術外

「方程術」的關鍵演算法叫「遍乘直除」,《九章算術》卷4中有「開方術」和「開立方術」 「四念拆敬元御洞術」 「中國剩餘定理」
中國古代數學將幾何問題也歸結為代數方程,然後用程式化的演算法來求解.因此,中國古代數學具有明顯的演算法化、機械化的特徵.以下擇要舉例仔慎說明中國古代數學發展的這種特徵.

『柒』 古代人的計算方法有(3個)

1、結繩計數

結繩計數這種方法,不但在遠古時候使用,而且一直在某些民族中沿用下來。

如藏族、彝族等,雖都有文字,但在一般不識字的人中間都還長期使用這種方法。中央民族大學就收藏著一副高山族的結繩,由兩條繩組成:每條上有兩個結,再把兩條繩結在一起。

有趣的是,不但我們東方有過結繩,西方也結過繩。看樣子,咱們這個星球早就像個地球村了,只不過那時還沒有電報電話。傳說古波斯王有一次打仗,命令手下兵馬守一座橋,要守60天。

為了讓將士們不少守一天也不多守一天,波斯王用一根長長的皮條,把上面系了60個扣。他對守橋的官兵們說:「我走後你們一天解一個扣,什麼時候解完了,你們就可以回家了。」

2、書契記數

書契記數是指古代記數結繩方法之後出現的記數方法。當時主要用於剩餘糧食數量的記數。書契記數是用刻刀將數刻在獸骨、竹木、龜甲、土石崖上,以便長久保存,不易損壞。

書契記數記事記錄方法一般是在原始社會的後期,漢代徐岳在《數術記遺》一書中,記明書契始於黃帝,有「十等」記法。

3、算籌

根據史書的記載和考古材料的發現,古代的算籌實際上是一根根同樣長短和粗細的小棍子,一般長為13--14cm,徑粗0.2~0.3cm,多用竹子製成,也有用木頭、獸骨、象牙、金屬等材料製成的,大約二百七十幾枚為一束,放在一個布袋裡,系在腰部隨身攜帶。

需要記數和計算的時候,就把它們取出來,放在桌上、炕上或地上都能擺弄。別看這些都是一根根不起眼的小棍子,在中國數學史上它們卻是立有大功的。而它們的發明,同樣經歷了一個漫長的歷史發展過程。

4、珠算

珠算是以算盤為工具進行數字計算的一種方法,被譽為中國的第五大發明。

算盤是中國古代勞動人民發明創造的一種簡便的計算工具。

2008年6月14日,安徽省黃山市屯溪區、中國珠算心算協會申報的珠算經國務院批准列入第二批國家級非物質文化遺產名錄。

2013年12月4日,聯合國教科文組織保護非物質文化遺產政府間委員會第八次會議在亞塞拜然首都巴庫通過決議,正式將中國珠算項目列入教科文組織人類非物質文化遺產名錄。這也是中國第30項被列為非遺的項目。

5、割圓術

3世紀中期,魏晉時期的數學家劉徽首創割圓術,為計算圓周率建立了嚴密的理論和完善的演算法,所謂割圓術,就是不斷倍增圓內接正多邊形的邊數求出圓周率的方法。

『捌』 除了更相減損術,秦九韶算術和割圓術還有哪些中國古代數學中的演算法

秦九韶 數學 1202~1247 創立解一次同餘式的「大 衍求一術」和求高次方程數值解的正負開方術 秦九韶—— 1202~1247 年,中國數學家。寫有《數書九章》,創立解一次同餘式的「大 衍求一術」和求高次方程數值解的正負開方術。

李治 數學 測園海鏡 李治——中國數學家,著有「測園海鏡」是中國第一本系統改述「天元術」的巨書。

朋友`你可以參考http://www.nikerchina.com/nikezhongguo/chengchefangfa.htm

熱點內容
喵喵試玩腳本 發布:2025-04-05 19:42:08 瀏覽:454
我的世界布吉島伺服器怎麼加材質包 發布:2025-04-05 19:32:27 瀏覽:593
ftp怎麼連接路由 發布:2025-04-05 19:20:52 瀏覽:231
手游腳本商城 發布:2025-04-05 19:08:23 瀏覽:799
摘星游戲腳本 發布:2025-04-05 18:49:51 瀏覽:589
c語言中k什麼意思 發布:2025-04-05 18:49:40 瀏覽:86
php在線編程 發布:2025-04-05 18:47:30 瀏覽:541
sqlserver運行 發布:2025-04-05 18:41:32 瀏覽:44
如何安卓遷移蘋果 發布:2025-04-05 18:35:03 瀏覽:577
c語言輸入處理 發布:2025-04-05 18:34:58 瀏覽:99