信號重構演算法
發布時間: 2023-06-10 20:30:29
A. 有人在學壓縮感知嗎誰知道怎麼用0范數或者L1范數最小化重構原始信號或者給我文獻也行
用0范數或1范數解決cs重構歸屬一個數學問題,猶如給定你一個公式,利用這個公式或者說原理去做出很多的演算法,cs重構本歸屬與對0范數的求解問題上的。
但0范數屬於數學上一個NP_hard問題,是無法解決的,所以不能直接用求0范數的理論去做演算法,從而提出一系列基於求0范數最小的貪婪類演算法。如MP,OMP等演算法。,這類演算法中,最為基礎的算是MP演算法了。貪婪演算法的速度較快,但是重構效果相對較差,需要的測量數也較多,不能高效地壓縮信號,並且對測量矩陣的要求更高。但總的來說,應用范圍廣。
數學家同時發現,求解L1范數也可以逼近與0范數的效果,即把NP_hard問題轉化為線性規劃問題。所以現在有很多用求L1范數原理而創造了各類演算法,最典型的是BP(基追蹤)演算法和梯度投影稀疏重構演算法。這種演算法重構效果很好,但是運算量大,復雜,應用於實際上可能不大。至少得改進其演算法。
還有一大類演算法,我不關注,不說了。
具體那些演算法怎麼實現,自己去網上下程序模擬一下吧。。。。
熱點內容