地圖路徑規劃演算法
❶ 全局路徑規劃演算法
全局路徑規劃,主要演算法有
1、網格法、
2、拓撲法、
3、視圖法。
❷ 常用的導航/路徑規劃軟體都用到哪些演算法
一般都是分層做的。譬如說你要從廣州到北京,開車怎麼走,當然不可能直接在路上規劃吧,這樣計算量太大了。比較理想的方法是,我先知道到底要經過多少城市,從每一個城市到下一個城市之間如何走才能用高速連接起來,你需要訪問的數據就小得多。當最後約束到一個區那麼大的地方的時候,直接上DP還是可以在可接受的時間內做出來的。
❸ 有哪些應用於移動機器人路徑規劃的演算法
機器人家上了解到,在二維二值地圖(FREE or OCCUPIED)場景下進行路徑規劃的方法。我看之前有同學在回答的時候配上了這幅圖:
這幅圖上的演算法羅列的還是很全面的,體現了各個演算法的出生順序。但是並不能很好的對他們進行一個本質的分類。剛剛那位同學說的graph-based和sampling-based的分類方法我感覺有點概念重疊不能夠對規劃演算法進行這樣的分類,下面通過自己這一年多的研究和實踐對規劃演算法進行一個簡單的分類:
這幅圖上的演算法羅列的還是很全面的,體現了各個演算法的出生順序。但是並不能很好的對他們進行一個本質的分類。剛剛那位同學說的graph-based和sampling-based的分類方法我感覺有點概念重疊不能夠對規劃演算法進行這樣的分類,下面通過自己這一年多的研究和實踐對規劃演算法進行一個簡單的分類:
兩大類:
1. 完備的(complete)
2. 基於采樣的(sampling-based)又稱為概率完備的
一 完備的規劃演算法
A*演算法
所謂完備就是要達到一個systematic的標准,即:如果在起始點和目標點間有路徑解存在那麼一定可以得到解,如果得不到解那麼一定說明沒有解存在。
這一大類演算法在移動機器人領域通常直接在occupancy grid網格地圖上進行規劃(可以簡單理解成二值地圖的像素矩陣)以深度優先尋路演算法、廣度優先尋路演算法、Dijkstra(迪傑斯特拉)演算法為始祖,以A*演算法(Dijstra演算法上以減少計算量為目的加上了一個啟發式代價)最為常用,近期的Theta*演算法是在A*演算法的基礎上增加了line-of-sight優化使得規劃出來的路徑不完全依賴於單步的柵格形狀(答主以為這個演算法意義不大,不就是規劃了一條路徑再簡單平滑了一下么)。
完備的演算法的優勢在與它對於解的捕獲能力是完全的,但是由此產生的缺點就是演算法復雜度較大。這種缺點在二維小尺度柵格地圖上並不明顯,但是在大尺度,尤其是多維度規劃問題上,比如機械臂、蛇形機器人的規劃問題將帶來巨大的計算代價。這樣也直接促使了第二大類演算法的產生。
二 基於采樣的規劃演算法
RRT-connect演算法
這種演算法一般是不直接在grid地圖進行最小柵格解析度的規劃,它們採用在地圖上隨機撒一定密度的粒子來抽象實際地圖輔助規劃。如PRM演算法及其變種就是在原始地圖上進行撒點,抽取roadmap在這樣一個拓撲地圖上進行規劃;RRT以及其優秀的變種RRT-connect則是在地圖上每步隨機撒一個點,迭代生長樹的方式,連接起止點為目的,最後在連接的圖上進行規劃。這些基於采樣的演算法速度較快,但是生成的路徑代價(可理解為長度)較完備的演算法高,而且會產生「有解求不出」的情況(PRM的逢Narrow space卒的情況)。這樣的演算法一般在高維度的規劃問題中廣泛運用。
三 其他規劃演算法
除了這兩類之外還有間接的規劃演算法:Experience-based(Experience Graph經驗圖演算法)演算法:基於經驗的規劃演算法,這是一種存儲之前規劃路徑,建立知識庫,依賴之進行規劃的方法,題主有興趣可以閱讀相關文獻。這種方法犧牲了一定的空間代價達到了速度與完備兼得的優勢。此外還有基於廣義Voronoi圖的方法進行的Fast-marching規劃,類似dijkstra規劃和勢場的融合,該方法能夠完備地規劃出位於道路中央,遠離障礙物的路徑。答主最近也在研究此類演算法相關的工作。
APF(人工勢場)演算法
至於D* 、勢場法、DWA(動態窗口法)、SR-PRM屬於在動態環境下為躲避動態障礙物、考慮機器人動力學模型設計的規劃演算法。
❹ 局部路徑規劃演算法
局部路徑規劃,常用的演算法有柵格法、人工勢場法、遺傳演算法、空間搜索法、層次法、動作行為法、Dijkstra演算法、Lee演算法、Floyd演算法等