資料庫雪崩
Ⅰ redis常見問題
1. 緩存擊穿
緩存擊穿是指一個請求要訪問的數據,緩存中沒有,但資料庫中有的情況。這種情況一般都是緩存過期了。
但是這時由於並發訪問這個緩存的用戶特別多,這是一個熱點 key,這么多用戶的請求同時過來,在緩存裡面沒有取到數據,所以又同時去訪問資料庫取數據,引起資料庫流量激增,壓力瞬間增大,直接崩潰給你看。
所以一個數據有緩存,每次請求都從緩存中快速的返回了數據,但是某個時間點緩存失效了,某個請求在緩存中沒有請求到數據,這時候我們就說這個請求就"擊穿"了緩存。
針對這個場景,對應的解決方案一般來說有三種。
藉助Redis setNX命令設置一個標志位就行。設置成功的放行,設置失敗的就輪詢等待。就是在更新緩存時加把鎖
後台開一個定時任務,專門主動更新過期數據
比如程序中設置 why 這個熱點 key 的時候,同時設置了過期時間為 10 分鍾,那後台程序在第 8 分鍾的時候,會去資料庫查詢數據並重新放到緩存中,同時再次設置緩存為 10 分鍾。
其實上面的後台續命思想的最終體現是也是永不過期。
只是後台續命的思想,會主動更新緩存,適用於緩存會變的場景。會出現緩存不一致的情況,取決於你的業務場景能接受多長時間的緩存不一致。
2. 緩存穿透
緩存穿透是指一個請求要訪問的數據,緩存和資料庫中都沒有,而用戶短時間、高密度的發起這樣的請求,每次都打到資料庫服務上,給資料庫造成了壓力。一般來說這樣的請求屬於惡意請求。
解決方案有兩種:
就是在資料庫即使沒有查詢到數據,我們也把這次請求當做 key 緩存起來,value 可以是 NULL。下次同樣請求就會命中這個 NULL,緩存層就處理了這個請求,不會對資料庫產生壓力。這樣實現起來簡單,開發成本很低。
3. 緩存雪崩
緩存雪崩是指緩存中大多數的數據在同一時間到達過期時間,而查詢數據量巨大,這時候,又是緩存中沒有,資料庫中有的情況了。
防止雪崩的方案簡單來說就是錯峰過期。
在設置 key 過期時間的時候,在加上一個短的隨機過期時間,這樣就能避免大量緩存在同一時間過期,引起的緩存雪崩。
如果發了雪崩,我們可以有服務降級、熔斷、限流手段來拒絕一些請求,保證服務的正常。但是,這些對用戶體驗是有一定影響的。
4. Redis 高可用架構
Redis 高可用架構,大家基本上都能想到主從、哨兵、集群這三種模式。
哨兵模式:
它主要執行三種類型的任務:
哨兵其實也是一個分布式系統,我們可以運行多個哨兵。
然後這些哨兵之間需要相互通氣,交流信息,通過投票來決定是否執行自動故障遷移,以及選擇哪個從伺服器作為新的主伺服器。
哨兵之間採用的協議是 gossip,是一種去中心化的協議,達成的是最終一致性。
選舉規則:
Ⅱ 哪些因素影響了資料庫性能
網路寬頻,磁碟IO,查詢速度都會影響到資料庫的性能。
具體問題具體分析,舉例來說明為什麼磁碟IO成瓶頸資料庫的性能急速下降了。
為什麼當磁碟IO成瓶頸之後, 資料庫的性能不是達到飽和的平衡狀態,而是急劇下降。為什麼資料庫的性能有非常明顯的分界點,原因是什麼?
相信大部分做資料庫運維的朋友,都遇到這種情況。 資料庫在前一天性能表現的相當穩定,資料庫的響應時間也很正常,但就在今天,在業務人員反饋業務流量沒有任何上升的情況下,資料庫的變得不穩定了,有時候一個最簡單的insert操作, 需要幾十秒,但99%的insert卻又可以在幾毫秒完成,這又是為什麼了?
dba此時心中有無限的疑惑,到底是什麼原因呢? 磁碟IO性能變差了?還是業務運維人員反饋的流量壓根就不對? 還是資料庫內部出問題?昨天不是還好好的嗎?
當資料庫出現響應時間不穩定的時候,我們在操作系統上會看到磁碟的利用率會比較高,如果觀察仔細一點,還可以看到,存在一些讀的IO. 資料庫伺服器如果存在大量的寫IO,性能一般都是正常跟穩定的,但只要存在少量的讀IO,則性能開始出現抖動,存在大量的讀IO時(排除配備非常高速磁碟的機器),對於在線交易的資料庫系統來說,大概性能就雪崩了。為什麼操作系統上看到的磁碟讀IO跟寫IO所帶來的性能差距這么大呢?
如果親之前沒有注意到上述的現象,親對上述的結論也是懷疑。但請看下面的分解。
在寫這個文章之前,作者閱讀了大量跟的IO相關的代碼,如非同步IO線程的相關的,innodb_buffer池相關的,以及跟讀數據塊最相關的核心函數buf_page_get_gen函數以及其調用的相關子函數。為了將文章寫得通俗點,看起來不那麼累,因此不再一行一行的將代碼解析寫出來。
咱們先來提問題。buf_page_get_gen函數的作用是從Buffer bool裡面讀數據頁,可能存在以下幾種情況。
提問. 數據頁不在buffer bool 裡面該怎麼辦?
回答:去讀文件,將文件中的數據頁載入到buffer pool裡面。下面是函數buffer_read_page的函數,作用是將物理數據頁載入到buffer pool, 圖片中顯示
buffer_read_page函數棧的頂層是pread64(),調用了操作系統的讀函數。
通過解析buf_wait_for_read函數的下層函數,我們知道其實通過首先自旋加鎖pin的方式,超過設定的自旋次數之後,進入等待,等待IO完成被喚醒。這樣節省不停自旋pin時消耗的cpu,但需要付出被喚起時的開銷。
再繼續擴展問題: 如果會話線程A 經過物理IO將數據頁1001讀入buffer之後,他需要修改這個頁,而在會話線程A之後的其他的同樣需要訪問數據頁1001的會話線程,即使在數據頁1001被入讀buffer pool之後,將仍然處於等待中。因為在數據頁上讀取或者更新的時候,同樣需要上鎖,這樣才能保證數據頁並發讀取/更新的一致性。
由此可見,當一個高並發的系統,出現了熱點數據頁需要從磁碟上載入到buffer pool中時,造成的延遲,是難以想像的。因此排在等待熱點頁隊列最後的會話線程最後才得到需要的頁,響應時間也就越長,這就是造成了一個簡單的sql需要執行幾十秒的原因。
再回頭來看上面的問題,mysql資料庫出現性能下降時,可以看到操作系統有讀IO。 原因是,在資料庫對數據頁的更改,是在內存中的,然後通過檢查點線程進行非同步寫盤,這個非同步的寫操作是不堵塞執行sql的會話線程的。所以,即使看到操作系統上有大量的寫IO,資料庫的性能也是很平穩的。但當用戶線程需要查找的數據頁不在buffer pool中時,則會從磁碟上讀取,在一個熱點數據頁不是非常多的情況下,我們設置足夠大的innodb_buffer_pool的size, 基本可以緩存所有的數據頁,因此一般都不會出現缺頁的情況,也就是在操作系統上基本看不到讀的IO。 當出現讀的IO時,原因時在執行buf_read_page_low函數,從磁碟上讀取數據頁到buffer pool, 則資料庫的性能則開始下降,當出現大量的讀IO,資料庫的性能會非常差。
Ⅲ 用雲資料庫會被打死嗎
緩存雪崩、擊穿、穿透及解決方案
1、緩存雪崩,出現過程,假如一個系統,高峰期5000次/s,4000次走了緩存,1000次走資料庫,資料庫1000/s是正常指標,完全可以工作,但是如果緩存宕機了,或者緩存設置了相同的過期時間,導致緩存同一時間失效,然後5000次請求都打在了資料庫上,資料庫立馬被打死了,資料庫一般1s最多抗2000個請求(這個取決於具體硬體配置),如果DBA重啟資料庫,同樣的立馬會繼續被打死,這就是緩存雪崩。
Ⅳ java清緩存前可以進後台方法,清完緩存不進了
關於java清緩存前可以進後台方法,清完緩存不進了相關資料如下
java我們在使用緩存時,往往先嘗試去緩存中取值,如果沒有,再去資料庫取值,如果資料庫也沒有值,則根據業務需求,返回空或者拋異常。
如果用戶一直訪問一個資料庫不存在的數據,比如id為-1的數據,就會導致每次請求都會先去緩存查一次,然後再去資料庫查一次,造成嚴重的性能問題。這種情況就叫緩存穿透。
解決方案
以下幾種解決方案:對請求參數做校驗,比如用戶鑒權校驗,id做基礎校驗,id <= 0的直接攔截。
如果查詢到資料庫沒有值,也將對應的key存進緩存中,value為null。這樣下次查詢就直接從緩存返回了。但這里的key的緩存時間應該比較短,比如30s。防止後面在資料庫插入了這條數據,而用戶獲取不到。
使用布隆過濾器,判斷一個key是否已經查過了,如果已經查過了,就不去資料庫查詢。
緩存擊穿
緩存擊穿指的是,一個key的訪問量非常大,比如某秒殺活動,有1w/s的並發量。這個key在某一時刻過期,那這些大量的請求就會一瞬間到資料庫,資料庫可能會直接崩潰。
解決方案
緩存擊穿的解決方案也有幾種,可以配合使用:對於熱點數據,慎重考慮過期時間,確保熱點期間key不會過期,甚至有些可以設置永不過期。
使用互斥鎖(比如Java的多線程鎖機制),第一個線程訪問key的時候就鎖住,等查詢資料庫返回後,把值插入到緩存後再釋放鎖,這樣後面的請求就可以直接取緩存裡面的數據了。
緩存雪崩
緩存雪崩指的是,在某一時刻,多個key失效。這樣就會有大量的請求從緩存中獲取不到值,全部到資料庫。還有另一種情況,就是緩存伺服器宕機,也算做緩存雪崩。
解決方案
針對上述兩種情況,緩存雪崩有兩種解決方案:對每個key的過期時間設置一個隨機值,而不是所有key都相同。
使用高可用的分布式緩存集群,確保緩存的高可用性,比如redis-cluster。
Ⅳ 為什麼當磁碟IO成瓶頸之後資料庫的性能急劇下降
自從使用阿里雲以來,我們遇到了三次故障(一、二、三),這三次故障都與磁碟IO高有關。第一次故障發生在跑zzk.cnblogs.com索引服務的雲 伺服器上,當時的Avg.Disk Read Queue Length高達200多;第二次故障發生在跑images.cnblogs.com靜態文件的雲伺服器上,當時的Avg.Disk Read Queue Length在2左右(後來分析,對於圖片站點這樣的直接讀文件進行響應的應用,Disk Read Queue Length達到這個值會明顯影響響應速度);第三次故障發生在跑資料庫服務的雲伺服器上,當時的Avg. Disk Write Queue Length達到4~5,造成很多的資料庫寫入操作超時。
Ⅵ Redis緩存雪崩就這么簡單
在實際項目開發中,我們都知道Redis不可能把所有的數據都緩存起來( 內存昂貴且有限 ),所以Redis需要對數據設置過期時間,並採用的是惰性刪除+定期刪除兩種策略對過期鍵刪除。
如果緩存數據 設置的過期時間是相同 的,並且Redis恰好將這部分數據全部刪光了。這就會導致在這段時間內,這些緩存 同時失效 ,全部請求到資料庫中。
這就是緩存雪崩 :
緩存雪崩如果發生了,很可能就把我們的資料庫 搞垮 ,導致整個服務癱瘓,造成的後果很嚴重。
對緩存數據設置相同的過期時間,導致某段時間內緩存失效。」
對於「Redis掛掉了」,我們可以有以下的思路:
Ⅶ 華為技術架構師分享:高並發場景下緩存處理的一些思路
在實際的開發當中,我們經常需要進行磁碟數據的讀取和搜索,因此經常會有出現從資料庫讀取數據的場景出現。但是當數據訪問量次數增大的時候,過多的磁碟讀取可能會最終成為整個系統的性能瓶頸,甚至是壓垮整個資料庫,導致系統卡死等嚴重問題。
常規的應用系統中,我們通常會在需要的時候對資料庫進行查找,因此系統的大致結構如下所示:
1.緩存和資料庫之間數據一致性問題
常用於緩存處理的機制我總結為了以下幾種:
首先來簡單說說Cache aside的這種方式:
Cache Aside模式
這種模式處理緩存通常都是先從資料庫緩存查詢,如果緩存沒有命中則從資料庫中進行查找。
這裡面會發生的三種情況如下:
緩存命中:
當查詢的時候發現緩存存在,那麼直接從緩存中提取。
緩存失效:
當緩存沒有數據的時候,則從database裡面讀取源數據,再加入到cache裡面去。
緩存更新:
當有新的寫操作去修改database裡面的數據時,需要在寫操作完成之後,讓cache裡面對應的數據失效。
關於這種模式下依然會存在缺陷。比如,一個是讀操作,但是沒有命中緩存,然後就到資料庫中取數據,此時來了一個寫操作,寫完資料庫後,讓緩存失效,然後,之前的那個讀操作再把老的數據放進去,所以,會造成臟數據。
Facebook的大牛們也曾經就緩存處理這個問題發表過相關的論文,鏈接如下:
分布式環境中要想完全的保證數據一致性是一件極為困難的事情,我們只能夠盡可能的減低這種數據不一致性問題產生的情況。
Read Through模式
Read Through模式是指應用程序始終從緩存中請求數據。 如果緩存沒有數據,則它負責使用底層提供程序插件從資料庫中檢索數據。 檢索數據後,緩存會自行更新並將數據返回給調用應用程序。使用Read Through 有一個好處。
我們總是使用key從緩存中檢索數據, 調用的應用程序不知道資料庫, 由存儲方來負責自己的緩存處理,這使代碼更具可讀性, 代碼更清晰。但是這也有相應的缺陷,開發人員需要給編寫相關的程序插件,增加了開發的難度性。
Write Through模式
Write Through模式和Read Through模式類似,當數據發生更新的時候,先去Cache裡面進行更新,如果命中了,則先更新緩存再由Cache方來更新database。如果沒有命中的話,就直接更新Cache裡面的數據。
2.緩存穿透問題
在高並發的場景中,緩存穿透是一個經常都會遇到的問題。
什麼是緩存穿透?
大量的請求在緩存中沒有查詢到指定的數據,因此需要從資料庫中進行查詢,造成緩存穿透。
會造成什麼後果?
大量的請求短時間內湧入到database中進行查詢會增加database的壓力,最終導致database無法承載客戶單請求的壓力,出現宕機卡死等現象。
常用的解決方案通常有以下幾類:
1.空值緩存
在某些特定的業務場景中,對於數據的查詢可能會是空的,沒有實際的存在,並且這類數據信息在短時間進行多次的反復查詢也不會有變化,那麼整個過程中,多次的請求資料庫操作會顯得有些多餘。
不妨可以將這些空值(沒有查詢結果的數據)對應的key存儲在緩存中,那麼第二次查找的時候就不需要再次請求到database那麼麻煩,只需要通過內存查詢即可。這樣的做法能夠大大減少對於database的訪問壓力。
2.布隆過濾器
通常對於database裡面的數據的key值可以預先存儲在布隆過濾器裡面去,然後先在布隆過濾器裡面進行過濾,如果發現布隆過濾器中沒有的話,就再去redis裡面進行查詢,如果redis中也沒有數據的話,再去database查詢。這樣可以避免不存在的數據信息也去往存儲庫中進行查詢情況。
什麼是緩存雪崩?
當緩存伺服器重啟或者大量緩存集中在某一個時間段失效,這樣在失效的時候,也會給後端系統(比如DB)帶來很大壓力。
如何避免緩存雪崩問題?
1.使用加鎖隊列來應付這種問題。當有多個請求湧入的時候,當緩存失效的時候加入一把分布式鎖,只允許搶鎖成功的請求去庫裡面讀取數據然後將其存入緩存中,再釋放鎖,讓後續的讀請求從緩存中取數據。但是這種做法有一定的弊端,過多的讀請求線程堵塞,將機器內存占滿,依然沒有能夠從根本上解決問題。
2.在並發場景發生前,先手動觸發請求,將緩存都存儲起來,以減少後期請求對database的第一次查詢的壓力。數據過期時間設置盡量分散開來,不要讓數據出現同一時間段出現緩存過期的情況。
3.從緩存可用性的角度來思考,避免緩存出現單點故障的問題,可以結合使用 主從+哨兵的模式來搭建緩存架構,但是這種模式搭建的緩存架構有個弊端,就是無法進行緩存分片,存儲緩存的數據量有限制,因此可以升級為Redis Cluster架構來進行優化處理。(需要結合企業實際的經濟實力,畢竟Redis Cluster的搭建需要更多的機器)
4.Ehcache本地緩存 + Hystrix限流&降級,避免MySQL被打死。
使用 Ehcache本地緩存的目的也是考慮在 Redis Cluster 完全不可用的時候,Ehcache本地緩存還能夠支撐一陣。
使用 Hystrix進行限流 & 降級 ,比如一秒來了5000個請求,我們可以設置假設只能有一秒 2000個請求能通過這個組件,那麼其他剩餘的 3000 請求就會走限流邏輯。
然後去調用我們自己開發的降級組件(降級),比如設置的一些默認值呀之類的。以此來保護最後的 MySQL 不會被大量的請求給打死。
Ⅷ 《雪崩》epub下載在線閱讀,求百度網盤雲資源
《雪崩》([美] 尼爾·斯蒂芬森)電子書網盤下載免費在線閱讀
資源鏈接:
鏈接:https://pan..com/s/1B0AFf5XovrmXGIDhkEc8ag
書名:雪崩
作者:[美] 尼爾·斯蒂芬森
譯者:郭澤
豆瓣評分:8.1
出版社:四川科學技術出版社
出版年份:2018-7
頁數:588
內容簡介:
中央情報局成了中央情報公司,國會圖書館成了中央情報公司資料庫;至於國會,沒幾個人知道它是什麼玩意兒。美國的大地上到處是特許邦國,也就是特許經營組織准國家實體,一種類似麥當勞連鎖店的機構。
美國政府呢?這個東西僅僅存在於不多的幾處聯邦建築里,由聯邦特工持槍把守,隨時准備抵抗來自街頭的襲擊。
這就是未來的美國,一個車水馬龍與頹廢荒涼並存、尖端科技與野蠻低俗混雜之地。
但在這片喧囂混亂之上,還存在著另一個無比廣闊、無比自由的國度:賽博空間,由電腦和網路構成的虛擬空間。
在現實生活中,本書主人公只是個微不足道的披薩速遞員,但在虛擬空間中,他是首屈一指的黑客、擅使雙刀的高手。這樣的人擁有毀滅世界的力量 —— 也可以拯救這個世界……
作者簡介:
[美]尼爾•斯蒂芬森
美國著名幻想文學作家,其作品包括科幻小說、歷史小說和高科技驚險小說,題材涉及數學、哲學、宗教、金融、密碼破譯和科技史等多個學科領域。
出版於1992年的《雪崩》是斯蒂芬森重要的科幻作品之一,標志著他創作風格的成熟,面世後引發洶涌的賽博朋克閱讀風潮。此後,他的作家生涯進入黃金期,幾乎每四年便推出一部膾炙人口的大作。其中,1995年的《鑽石時代》獲得雨果獎;1999年的《編碼寶典》及此後的「巴洛克」三部曲以破譯數據密碼為中心線索,結合歷史小說和科技驚險小說的元素,戲劇性地重述了科技發展史,大受讀者好評。其後,斯蒂芬森推出的《飛越修道院》和《七族》都成功入圍雨果獎決選。