當前位置:首頁 » 操作系統 » 人即演算法

人即演算法

發布時間: 2023-05-31 13:37:18

1. 演算法的概念

演算法(Algorithm)是解題的步驟,可以把演算法定義成解一確定類問題的任意一種特殊的方法。在計算機科學中,演算法要用計算機演算法語言描述,演算法代表用計算機解一類問題的精確、有效的方法。演算法+數據結構=程序,求解一個給定的可計算或可解的問題,不同的人可以編寫出不同的程序,來解決同一個問題,這里存在兩個問題:一是與計算方法密切相關的演算法問題;二是程序設計的技術問題。演算法和程序之間存在密切的關系。
演算法是一組有窮的規則,它們規定了解決某一特定類型問題的一系列運算,是對解題方案的准確與完整的描述。制定一個演算法,一般要經過設計、確認、分析、編碼、測試、調試、計時等階段。
對演算法的學習包括五個方面的內容:① 設計演算法。演算法設計工作是不可能完全自動化的,應學習了解已經被實踐證明是有用的一些基本的演算法設計方法,這些基本的設計方法不僅適用於計算機科學,而且適用於電氣工程、運籌學等領域;② 表示演算法。描述演算法的方法有多種形式,例如自然語言和演算法語言,各自有適用的環境和特點;③確認演算法。演算法確認的目的是使人們確信這一演算法能夠正確無誤地工作,即該演算法具有可計算性。正確的演算法用計算機演算法語言描述,構成計算機程序,計算機程序在計算機上運行,得到演算法運算的結果;④ 分析演算法。演算法分析是對一個演算法需要多少計算時間和存儲空間作定量的分析。分析演算法可以預測這一演算法適合在什麼樣的環境中有效地運行,對解決同一問題的不同演算法的有效性作出比較;⑤ 驗證演算法。用計算機語言描述的演算法是否可計算、有效合理,須對程序進行測試,測試程序的工作由調試和作時空分布圖組成。

2. 想問一下有沒有比較方便的人臉識別演算法,求推薦

主流的人臉識別技術基本上可以歸結為三類,即:基於幾何特徵的方法、基於模板的方法和基於模型的方法。
1. 基於幾何特徵的方法是最早、最傳統的方法,通常需要和其他演算法結合才能有比較好的效果;
2. 基於模板的方法可以分為基於相關匹配的方法、特徵臉方法、線性判別分析方法、奇異值分解方法、神經網路方法、動態連接匹配方法等。
3. 基於模型的方法則有基於隱馬爾柯夫模型,主動形狀模型和主動外觀模型的方法等。
1. 基於幾何特徵的方法
人臉由眼睛、鼻子、嘴巴、下巴等部件構成,正因為這些部件的形狀、大小和結構上的各種差異才使得世界上每個人臉千差萬別,因此對這些部件的形狀和結構關系的幾何描述,可以做為人臉識別的重要特徵。幾何特徵最早是用於人臉側面輪廓的描述與識別,首先根據側面輪廓曲線確定若干顯著點,並由這些顯著點導出一組用於識別的特徵度量如距離、角度等。Jia 等由正麵灰度圖中線附近的積分投影模擬側面輪廓圖是一種很有新意的方法。
採用幾何特徵進行正面人臉識別一般是通過提取人眼、口、鼻等重要特徵點的位置和眼睛等重要器官的幾何形狀作為分類特徵,但Roder對幾何特徵提取的精確性進行了實驗性的研究,結果不容樂觀。
可變形模板法可以視為幾何特徵方法的一種改進,其基本思想是 :設計一個參數可調的器官模型 (即可變形模板),定義一個能量函數,通過調整模型參數使能量函數最小化,此時的模型參數即做為該器官的幾何特徵。
這種方法思想很好,但是存在兩個問題,一是能量函數中各種代價的加權系數只能由經驗確定,難以推廣,二是能量函數優化過程十分耗時,難以實際應用。 基於參數的人臉表示可以實現對人臉顯著特徵的一個高效描述,但它需要大量的前處理和精細的參數選擇。同時,採用一般幾何特徵只描述了部件的基本形狀與結構關系,忽略了局部細微特徵,造成部分信息的丟失,更適合於做粗分類,而且目前已有的特徵點檢測技術在精確率上還遠不能滿足要求,計算量也較大。
2. 局部特徵分析方法(Local Face Analysis)
主元子空間的表示是緊湊的,特徵維數大大降低,但它是非局部化的,其核函數的支集擴展在整個坐標空間中,同時它是非拓撲的,某個軸投影後臨近的點與原圖像空間中點的臨近性沒有任何關系,而局部性和拓撲性對模式分析和分割是理想的特性,似乎這更符合神經信息處理的機制,因此尋找具有這種特性的表達十分重要。基於這種考慮,Atick提出基於局部特徵的人臉特徵提取與識別方法。這種方法在實際應用取得了很好的效果,它構成了FaceIt人臉識別軟體的基礎。
3. 特徵臉方法(Eigenface或PCA)
特徵臉方法是90年代初期由Turk和Pentland提出的目前最流行的演算法之一,具有簡單有效的特點, 也稱為基於主成分分析(principal component analysis,簡稱PCA)的人臉識別方法。
特徵子臉技術的基本思想是:從統計的觀點,尋找人臉圖像分布的基本元素,即人臉圖像樣本集協方差矩陣的特徵向量,以此近似地表徵人臉圖像。這些特徵向量稱為特徵臉(Eigenface)。
實際上,特徵臉反映了隱含在人臉樣本集合內部的信息和人臉的結構關系。將眼睛、面頰、下頜的樣本集協方差矩陣的特徵向量稱為特徵眼、特徵頜和特徵唇,統稱特徵子臉。特徵子臉在相應的圖像空間中生成子空間,稱為子臉空間。計算出測試圖像窗口在子臉空間的投影距離,若窗口圖像滿足閾值比較條件,則判斷其為人臉。
基於特徵分析的方法,也就是將人臉基準點的相對比率和其它描述人臉臉部特徵的形狀參數或類別參數等一起構成識別特徵向量,這種基於整體臉的識別不僅保留了人臉部件之間的拓撲關系,而且也保留了各部件本身的信息,而基於部件的識別則是通過提取出局部輪廓信息及灰度信息來設計具體識別演算法。現在Eigenface(PCA)演算法已經與經典的模板匹配演算法一起成為測試人臉識別系統性能的基準演算法;而自1991年特徵臉技術誕生以來,研究者對其進行了各種各樣的實驗和理論分析,FERET'96測試結果也表明,改進的特徵臉演算法是主流的人臉識別技術,也是具有最好性能的識別方法之一。
該方法是先確定眼虹膜、鼻翼、嘴角等面像五官輪廓的大小、位置、距離等屬性,然後再計算出它們的幾何特徵量,而這些特徵量形成一描述該面像的特徵向量。其技術的核心實際為「局部人體特徵分析」和「圖形/神經識別演算法。」這種演算法是利用人體面部各器官及特徵部位的方法。如對應幾何關系多數據形成識別參數與資料庫中所有的原始參數進行比較、判斷與確認。Turk和Pentland提出特徵臉的方法,它根據一組人臉訓練圖像構造主元子空間,由於主元具有臉的形狀,也稱為特徵臉 ,識別時將測試 圖像投影到主元子空間上,得到一組投影系數,和各個已知人的人臉圖像比較進行識別。Pentland等報告了相當好的結果,在 200個人的 3000幅圖像中得到 95%的正確識別率,在FERET資料庫上對 150幅正面人臉象只有一個誤識別。但系統在進行特徵臉方法之前需要作大量預處理工作如歸一化等。
在傳統特徵臉的基礎上,研究者注意到特徵值大的特徵向量 (即特徵臉 )並不一定是分類性能好的方向,據此發展了多種特徵 (子空間 )選擇方法,如Peng的雙子空間方法、Weng的線性歧義分析方法、Belhumeur的FisherFace方法等。事實上,特徵臉方法是一種顯式主元分析人臉建模,一些線性自聯想、線性壓縮型BP網則為隱式的主元分析方法,它們都是把人臉表示為一些向量的加權和,這些向量是訓練集叉積陣的主特徵向量,Valentin對此作了詳細討論。總之,特徵臉方法是一種簡單、快速、實用的基於變換系數特徵的演算法,但由於它在本質上依賴於訓練集和測試集圖像的灰度相關性,而且要求測試圖像與訓練集比較像,所以它有著很大的局限性。
基於KL 變換的特徵人臉識別方法
基本原理:
KL變換是圖象壓縮中的一種最優正交變換,人們將它用於統計特徵提取,從而形成了子空間法模式識別的基礎,若將KL變換用於人臉識別,則需假設人臉處於低維線性空間,且不同人臉具有可分性,由於高維圖象空間KL變換後可得到一組新的正交基,因此可通過保留部分正交基,以生成低維人臉空間,而低維空間的基則是通過分析人臉訓練樣本集的統計特性來獲得,KL變換的生成矩陣可以是訓練樣本集的總體散布矩陣,也可以是訓練樣本集的類間散布矩陣,即可採用同一人的數張圖象的平均來進行訓練,這樣可在一定程度上消除光線等的干擾,且計算量也得到減少,而識別率不會下降。
4. 基於彈性模型的方法
Lades等人針對畸變不變性的物體識別提出了動態鏈接模型 (DLA),將物體用稀疏圖形來描述 (見下圖),其頂點用局部能量譜的多尺度描述來標記,邊則表示拓撲連接關系並用幾何距離來標記,然後應用塑性圖形匹配技術來尋找最近的已知圖形。Wiscott等人在此基礎上作了改進,用FERET圖像庫做實驗,用 300幅人臉圖像和另外 300幅圖像作比較,准確率達到 97.3%。此方法的缺點是計算量非常巨大 。
Nastar將人臉圖像 (Ⅰ ) (x,y)建模為可變形的 3D網格表面 (x,y,I(x,y) ) (如下圖所示 ),從而將人臉匹配問題轉化為可變形曲面的彈性匹配問題。利用有限元分析的方法進行曲面變形,並根據變形的情況判斷兩張圖片是否為同一個人。這種方法的特點在於將空間 (x,y)和灰度I(x,y)放在了一個 3D空間中同時考慮,實驗表明識別結果明顯優於特徵臉方法。
Lanitis等提出靈活表現模型方法,通過自動定位人臉的顯著特徵點將人臉編碼為 83個模型參數,並利用辨別分析的方法進行基於形狀信息的人臉識別。彈性圖匹配技術是一種基於幾何特徵和對灰度分布信息進行小波紋理分析相結合的識別演算法,由於該演算法較好的利用了人臉的結構和灰度分布信息,而且還具有自動精確定位面部特徵點的功能,因而具有良好的識別效果,適應性強識別率較高,該技術在FERET測試中若干指標名列前茅,其缺點是時間復雜度高,速度較慢,實現復雜。
5. 神經網路方法(Neural Networks)
人工神經網路是一種非線性動力學系統,具有良好的自組織、自適應能力。目前神經網路方法在人臉識別中的研究方興未艾。Valentin提出一種方法,首先提取人臉的 50個主元,然後用自相關神經網路將它映射到 5維空間中,再用一個普通的多層感知器進行判別,對一些簡單的測試圖像效果較好;Intrator等提出了一種混合型神經網路來進行人臉識別,其中非監督神經網路用於特徵提取,而監督神經網路用於分類。Lee等將人臉的特點用六條規則描述,然後根據這六條規則進行五官的定位,將五官之間的幾何距離輸入模糊神經網路進行識別,效果較一般的基於歐氏距離的方法有較大改善,Laurence等採用卷積神經網路方法進行人臉識別,由於卷積神經網路中集成了相鄰像素之間的相關性知識,從而在一定程度上獲得了對圖像平移、旋轉和局部變形的不變性,因此得到非常理想的識別結果,Lin等提出了基於概率決策的神經網路方法 (PDBNN),其主要思想是採用虛擬 (正反例 )樣本進行強化和反強化學習,從而得到較為理想的概率估計結果,並採用模塊化的網路結構 (OCON)加快網路的學習。這種方法在人臉檢測、人臉定位和人臉識別的各個步驟上都得到了較好的應用,其它研究還有 :Dai等提出用Hopfield網路進行低解析度人臉聯想與識別,Gutta等提出將RBF與樹型分類器結合起來進行人臉識別的混合分類器模型,Phillips等人將MatchingPursuit濾波器用於人臉識別,國內則採用統計學習理論中的支撐向量機進行人臉分類。
神經網路方法在人臉識別上的應用比起前述幾類方法來有一定的優勢,因為對人臉識別的許多規律或規則進行顯性的描述是相當困難的,而神經網路方法則可以通過學習的過程獲得對這些規律和規則的隱性表達,它的適應性更強,一般也比較容易實現。因此人工神經網路識別速度快,但識別率低 。而神經網路方法通常需要將人臉作為一個一維向量輸入,因此輸入節點龐大,其識別重要的一個目標就是降維處理。
PCA的演算法描述:利用主元分析法 (即 Principle Component Analysis,簡稱 PCA)進行識別是由 Anderson和 Kohonen提出的。由於 PCA在將高維向量向低維向量轉化時,使低維向量各分量的方差最大,且各分量互不相關,因此可以達到最優的特徵抽取。

3. 演算法在實際生活中的應用

求解問題類的、機械的、統一的方法,它由有限多個步驟組成,對於問題類中的每個給定的具體問題,機械地執行這些步驟就可以得到問題的解答。演算法的這種特性,使得計算不僅可以由人,而且可以由計算機來完成。用計算機解決問題的過程可以分成三個階段:分析問題、設計演算法和實現演算法。
中國古代的籌算口決與珠算口決及其執行規則就是演算法的雛形,這里,所解決的問題類是算術運算。古希臘數學家歐幾里得在公元前3世紀就提出了一個演算法,來尋求兩個正整數的最大公約數,這就是有名的歐幾里得演算法,亦稱輾轉相除法。中國早已有「算術「、「演算法」等詞彙,但是它們的含義是指當時的全部數學知識和計算技能,與現代演算法的含義不盡相同。英文algorithm(演算法)一詞也經歷了一個演變過程,最初的拼法為algorism或algoritmi,原意為用阿拉伯數字進行計算的過程。這個詞源於公元 9世紀波斯數字家阿爾·花拉子米的名字的最後一部分。
在古代,計算通常是指數值計算。現代計算已經遠遠地突破了數值計算的范圍,包括大量的非數值計算,例如檢索、表格處理、判斷、決策、形式邏輯演繹等。
在20世紀以前,人們普遍地認為,所有的問題類都是有演算法的。20世紀初,數字家們發現有的問題類是不存在演算法的,遂開始進行能行性研究。在這一研究中,現代演算法的概念逐步明確起來。30年代,數字家們提出了遞歸函數、圖靈機等計算模型,並提出了丘奇-圖靈論題(見可計算性理論),這才有可能把演算法概念形式化。按照丘奇-圖靈論題,任意一個演算法都可以用一個圖靈機來實現,反之,任意一個圖靈機都表示一個演算法。
按照上述理解,演算法是由有限多個步驟組成的,它有下述兩個基本特徵:每個步驟都明確地規定要執行何種操作;每個步驟都可以被人或機器在有限的時間內完成。人們對於演算法還有另一種不同的理解,它要求演算法除了上述兩個基本特徵外,還要具有第三個基本特徵:雖然有些步驟可能被反復執行多次,但是在執行有限多次之後,就一定能夠得到問題的解答。也就是說,一個處處停機(即對任意輸入都停機)的圖靈機才表示一個演算法,而每個演算法都可以被一個處處停機的圖靈機來實現
演算法分類
演算法可大致分為基本演算法、數據結構的演算法、數論與代數演算法、計算幾何的演算法、圖論的演算法、動態規劃以及數值分析、加密演算法、排序演算法、檢索演算法、隨機化演算法、並行演算法。
演算法可以宏泛的分為三類:
有限的,確定性演算法 這類演算法在有限的一段時間內終止。他們可能要花很長時間來執行指定的任務,但仍將在一定的時間內終止。這類演算法得出的結果常取決於輸入值。
有限的,非確定演算法 這類演算法在有限的時間內終止。然而,對於一個(或一些)給定的數值,演算法的結果並不是唯一的或確定的。
無限的演算法 是那些由於沒有定義終止定義條件,或定義的條件無法由輸入的數據滿足而不終止運行的演算法。通常,無限演算法的產生是由於未能確定的定義終止條件。演算法特徵一個演算法應該具有以下五個方面的重要特徵:1、輸入。一個演算法有零個或多個輸入,以刻畫運算對象的初始情況。例如,在歐幾里得演算法中,有兩個輸入,即m和n。2、確定性。演算法的每一個步驟必須要確切地定義。即演算法中所有有待執行的動作必須嚴格而不含混地進行規定,不能有歧義性。例如,歐幾里得演算法中,步驟1中明確規定「以m除以n,而不能有類似以m除n以或n除以m這類有兩種可能做法的規定。3、有窮性,一個演算法在執行有窮步滯後必須結束。也就是說,一個演算法,它所包含的計算步驟是有限的。例如,在歐幾里得演算法中,m和n均為正整數,在步驟1之後,r必小於n,若r不等於0,下一次進行步驟1時,n的值已經減小,而正整數的遞降序列最後必然要終止。因此,無論給定m和n的原始值有多大,步驟1的執行都是有窮次。4、輸出。演算法有一個或多個的輸出,即與輸入有某個特定關系的量,簡單地說就是演算法的最終結果。例如,在歐幾里得演算法中只有一個輸出,即步驟2中的n。5、能行性。演算法中有待執行的運算和操作必須是相當基本的,換言之,他們都是能夠精確地進行的,演算法執行者甚至不需要掌握演算法的含義即可根據該演算法的每一步驟要求進行操作,並最終得出正確的結果。演算法的描述1、用自然語言描述演算法前面關於歐幾里得演算法以及演算法實例的描述,使用的都是自然語言。自然語言是人們日常所用的語言,如漢語、英語、德語等。使用這些語言不用專門訓練,所描述的演算法也通俗易懂。2、用流程圖描述演算法在數學課程里,我們學習了用程序框圖來描述演算法。在程序框圖中流程圖是描述演算法的常用工具由一些圖形符號來表示演算法。3、用偽代碼描述演算法偽代碼是用介於自然語言和計算機語言之間的文字和符號來描述演算法的工具。它不用圖形符號,因此,書寫方便、格式緊湊,易於理解,便於向計算機程序設計語言過度。

4. 人的年齡應該怎麼正確的算

主要看你想怎麼算,一般是以下的三種演算法

虛歲年齡

中國在習慣上常用的年齡計算方法,按出生後所經歷的日歷年頭計算,即生下來就算1歲,以後每過一次新年便增加1歲。一般按農歷新年算,也有按公歷算的。例如,12月末出生的嬰兒,出生後就算1歲,過了公歷1月1日或當地農歷新年又算1歲。這樣,嬰兒出生才幾天,已算虛歲2歲了。這種計算方法較為實用。

周歲年齡

又稱實足年齡,指從出生到計算時為止,共經歷的周年數或生日數。例如,1990年7月1日零時進行人口普查登記,一個1989年12月15日出生的嬰兒,按虛歲計算是2歲,實際剛剛6個多月,還未過一次生日,按周歲計算應為不滿1周歲,即0歲。周歲年齡比虛歲年齡常常小1~2歲,它是人口統計中常用的年齡計算方法。

周歲—出生時為0歲,每過一個公歷生日長1歲

確切年齡

指從出生之日起到計算之日止所經歷的天數。它比周歲年齡更為精確地反映人們實際生存的時間,但由於其統計匯總時較為繁瑣,故人口統計中使用甚少。在實際生活中,人們除對不滿1周歲的嬰兒,特別是不滿1個月的新生兒常常按月日計算外,一般不按日計算確切年齡。

心理年齡

是心理學「智力測驗」中的術語,指根據標准化智力測驗量表測得的結果來衡量人體的智力水平,把心理學年齡與歷法年齡相對照,就能看出智力絕對水平的高低。

心理年齡是指人的整體心理特徵所表露的年齡特徵,與實際年齡並不完全一致。人的一生共經歷8個心理時期,即胎兒期、乳兒期、幼兒期、學齡期、青少年期、青年期、中年期、老年期。每個心理年齡期都有不同的心理特點,如幼兒期天真活潑;青少年期自我意識增強,身心飛躍突變,心理活動進入劇烈動盪期;進入老年期,心理活動趨向成熟穩定、老成持重、身心功能彈性降低、情感容易傾向憂郁、猜疑。自測表是測試每個人的心理年齡的量表。

相對年齡

即靈魂醫學(soul medicine)相對有效年齡(壽命),是指人類區別於其它生物(主要包括動物)的、由最高級靈魂所支配進行的、符合人類社會倫理道德規范以及有利於自然、社會良性發展的各種生命活動包括腦力活動所佔用的時空。

可見,人類一切由最高級靈魂支配進行的符合人類社會倫理道德規范以及有利於自然社會良性發展的各種生命活動包括腦力活動所佔用的時空就是人類相對有效年齡(壽命)。反之,就是無效年齡(壽命),甚至年齡(壽命)是負數。

所以,人類相對有效年齡(壽命)計算方法應為,相對年齡(壽命)等於實際年齡(壽命)加上或減去超出或低於同層次普通人士年平均勞動量或者年創造物質精神財富的倍數。

可見,一個即勤奮,勞動效率又高,其個人工作量相當於幾個人、幾十個人、幾百個人、甚至幾千個人的工作量,那麼他的壽命相對於一般同層次人士則大大延長,年齡也相應地大大增加。

至於存在於社會上的殺人放火、偷盜搶劫、地痞流氓、投毒強奸等各種超過倫理道德底線的犯罪分子,以及靈魂醫學所討論的患有倫理道德及社會病的人,他們的有效年齡(壽命)理應是短的,甚至是負數,既作為人的概念時間很短暫,甚至就不是人。

參考

網路-年齡



5. 演算法具有哪幾個特徵

演算法是一種解決特定問題的方法和步驟的描述。通常來說,演算法具有以下幾個特徵:

  • 有窮性:演算法必須在有限的時間內終止,否則將無限循環下去。

  • 確定性:演算法的每一步都必須是確定的,沒有任何決策點。

  • 可行性:演算法必須是可行的,即它的每一步都必須是可以實現的。

  • 有效性:演算法必須是有效的,即它必須能夠解決所規定的問題。

  • 健壯性:演算法必須是健壯的,即它必須能夠適應輸入數據的各種變化。

  • 可讀性:演算法必須是可讀的,即它必須能夠被人類理解。

  • 可維護性:演算法必須是可維護的,即它必須能夠被修改和改進。

  • 可擴展性:演算法必須是可擴展的,即它必須能夠應對輸入數據規模的增長。

  • 可重復使用性:演算法必須是可重復使用的,即它必須能夠被用於解決多個不同的問題。

  • 可復制性:演算法必須是可復制的,即它必須能夠被拷貝和重新使用。

  • 希望這些信息對您有所幫助。

6. 人臉識別會不會被照片騙到呢

不會,可以識別的。

人臉檢測演算法的輸入是一張圖片,輸出是人臉框坐標序列(0個人臉框或1個人臉框或多個人臉框)。一般情況下,輸出的人臉坐標框為一個正朝上的正方形,但也有一些人臉檢測技術輸出的是正朝上的矩形,或者是帶旋轉方向的矩形。

常見的人臉檢測演算法基本是一個「掃描畢緩」加「判別」的過程,即演算法在圖像范圍內掃描,再逐個判定候選區域是否是人臉的過程。因此人臉檢測演算法的計算速度會跟圖像尺寸、圖像內容相關。開發過程中,我們可以通過設置「輸入圖像尺寸」、或「最小臉尺寸森胡限制」、或「人臉數量上限」的方式來加速演算法。

人臉配准

「人臉配准(Face Alignment)」是定位出人臉上五官關鍵點坐標的一項技術。

人臉配准演算法的輸入是「一張人臉圖片」加「人臉坐標框」,輸出五官此數攔關鍵點的坐標序列。五官關鍵點的數量是預先設定好的一個固定數值,可以根據不同的語義來定義(常見的有5點、68點、90點等等)。

當前效果的較好的一些人臉配准技術,基本通過深度學習框架實現,這些方法都是基於人臉檢測的坐標框,按某種事先設定規則將人臉區域扣取出來,縮放的固定尺寸,然後進行關鍵點位置的計算。

因此,若不計入圖像縮放過程的耗時,人臉配准演算法是可以計算量固定的過程。另外,相對於人臉檢測,或者是後面將提到的人臉提特徵過程,人臉配准演算法的計算耗時都要少很多。



7. 舉例說明何謂演算法,特點是什麼評價一個演算法的優劣,主要從哪些因素分析

評價演算法優劣的四個分析因素:

1.正確性

能正確地實現預定的功能,滿足具體問題的需要。處理數據使用的演算法是否得當,能不能得到預想的結果。

2.易讀性

易於閱讀、理解和交流,便於調試、修改和擴充。寫出的演算法,能不能讓別人看明白,能不能讓別人明白演算法的邏輯?如果通俗易懂,在系統調試和修改或者功能擴充的時候,使系統維護更為便捷。

3.健壯性

輸入非法數據,演算法也能適當地做出反應後進行處理,不會產生預料不到的運行結果。數據的形式多種多樣,演算法可能面臨著接受各種各樣的數據,當演算法接收到不適合演算法處理的數據,演算法本身該如何處理呢?如果演算法能夠處理異常數據,處理能力越強,健壯性越好。

4.時空性

演算法的時空性是該演算法的時間性能和空間性能。主要是說演算法在執行過程中的時間長短和空間佔用多少問題。

演算法處理數據過程中,不同的演算法耗費的時間和內存空間是不同的。

(7)人即演算法擴展閱讀:

演算法是對特定問題求解步驟的一種描述,它是指令的有限序列,其中每一條指令表示一個或多個操作。此外,一個演算法還具有下列5個重要的特性。

(1)、有窮性

一個演算法必須總是(對任何合法的輸入值)在執行有窮步之後結束,且每一步都可在有窮時間內完成。

(2)、確定性

演算法中每一條指令必須有明確的含義,讀者理解時不會產生二義性。即對於相同的輸入只能得到相同的輸出。

(3)、可行性

一個演算法是可行的,即演算法中描述的操作都是可以通過已經實現的基本運算執行有限次來實現的。

(4)、輸入

一個演算法有零個或多個的輸入,這些輸入取自於某個特定的對象的集合。

(5)、輸出

一個演算法有一個或多個的輸出,這些輸出是同輸入有著某種特定關系的量。

8. 騰訊人臉識別分幾步

騰訊的人臉識別有三個步驟,分別是輸入姓名和本人的身份證號,完成之後需要對人臉進行識別,在識別成功之後才可以進入應用或者游戲,而且騰訊官方還會不定期進行二次人臉識別,以防止他人冒用頂替本人進行登錄,希望您合理使用騰訊的人臉識別技術。

9. 人生演算法——追求高「維差」

「維差」是我自創的詞彙,用來表示維度的差異。維差產生勢能,從高維向低維的轉變,導致能量的釋放。就像高處的小球之於地面,具備了重力勢能,小球落回地面的過程,就是重力勢能釋放的過程。反之,則需要外部做功,才能從慶並低維提升至高維,從而儲存能量。

類比亞里士多德「潛能-實現」的哲學思想首沒,維差譽芹跡就代表著「潛能」;降維的過程,就是「潛能」逐步走向「實現」的過程。從這個角度來講,維差同樣代表著可能性,高維意味著擁有更多的可能性,當高維退化到低維,可能性也就消失了。

舉個生物學的例子,葡萄糖是我們身體的能量來源,處於能量最高的維度。乳酸和水是葡萄糖不同分解階段的產物,對應著釋放不同數量的ATP(能量)。能量以葡萄糖形式存在的時候具有最多的可能性,既可以分解為乳酸,也可以分解為二氧化碳和水。當能量以乳酸的形式存在的時候,就只能分解為水和二氧化碳了。這就是「維差」的不同,造成的「潛能」不同,即可能性的不同。

「維差」是能量之源,同維度的競爭則是能量消耗,取勝的關鍵是維差的大小。維差較高的,可以選擇多樣的策略,或快速降維形成飽和打擊,或採用消耗戰術,都能夠取得競爭優勢。所以,在人生的競技場中,積累「維差」是我們的有利演算法。

「維差」的提升要求我們主動邁出舒適區,進入學習區。需要付出辛苦,才能有所積累。學習的內容就像巨石,升維的過程就是我們推巨石上山, 巨石越重,每提升一分積累的能量才越大。巨石不重,要積累同樣的能量,就需要把它推的更高,總體做功是一樣的。因此,學習總要不畏艱難,進一寸,有一寸的所得,有一寸的歡喜。

「維差」的積累過程雖然來不得半點虛假,但是卻可以選擇徒手推石,還是使用工具。這期間的差別就是「認知」。培養正確的認知,就像學習「易筋經」,雖然仍舊需要做功,但卻有事半功倍的效果。認知是我們學習的底層操作系統,需要不停的升級迭代,才能更好的運行程序,更快的取得結果。

高「維差」會幫助我們在面對人生困難的時候,掌握更多的底牌和底氣,使我們握有更多的選擇權。為了這種選擇的自由,盡量提升維差甚至成為了「剛需」。當我們把它內化為習慣,就像一日三餐一樣,也許感受到的就不再是勞累痛苦,而是能量被不斷補充的充實感,以及目標被滿足的快感。

這才是追求高」維差「的最高境界吧。雖暫不能至,實心嚮往之!

10. 演算法的重要特性有哪些呢

演算法的五個重要的特徵:確定性、可行性、輸入、輸出、有窮性/有限性。
演算法是解決「做什麼」和「怎麼做」的問題。解決一個問題可能有多種不同的演算法,從效率上考慮,其中最為核心的還是演算法的速度。因此,解決問題的步驟需要在有限的時間內完成,並且操作步驟中不可以有歧義性語句,以免後繼步驟無法繼續進行下去。通過對演算法概念的分析,可以總結出一個演算法必須滿足如下 5個特性。
(1)有窮性。一個演算法在執行有限步驟後,在有限時間內能夠實現的,就稱該演算法具有有窮性。
有的演算法在理論上滿足有窮性,在有限的步驟後能夠完成,但是計算機可能實際上會執行一天、一年、十年等等。演算法的核心就是速度,那麼這個演算法也就沒有意義了。總而言之,有窮性沒有特定的限度,取決於人們的需要。
(2)確定性。演算法中每一個步驟的表述都應該是確定的、沒有歧義的語句。在人們的日常生活中,遇到歧義性語句,可以根據常識、語境等理解,然而還有可能理解錯誤。計算機不比人腦,不會根據演算法的意義來揣測每一個步驟的意思,所以演算法的每一步都要有確定的含義。
(3)有零個或多個輸入。程序中的演算法和數據是相互聯系的。演算法中,需要輸入的是數據的量值。輸入可以是多個也可以是零個。其實,零個輸入並不是這個演算法沒有輸入,而是這個輸入沒有直觀地顯現出來,隱藏在演算法本身當中。
(4)有一個輸出或多個輸出。輸出就是演算法實現所得到的結果,是演算法經過數據加工處理後得到的結果。有的演算法輸出的是數值,有的是圖形,有的輸出並不是那麼顯而易見。沒有輸出的演算法是沒有意義的。
(5)可行性。演算法的可行性就是指每一個步驟都能夠有效地執行,並得到確定的結果,而且能夠用來方便地解決一類問題。

熱點內容
scratch少兒編程課程 發布:2025-04-16 17:11:44 瀏覽:637
榮耀x10從哪裡設置密碼 發布:2025-04-16 17:11:43 瀏覽:366
java從入門到精通視頻 發布:2025-04-16 17:11:43 瀏覽:82
php微信介面教程 發布:2025-04-16 17:07:30 瀏覽:308
android實現陰影 發布:2025-04-16 16:50:08 瀏覽:789
粉筆直播課緩存 發布:2025-04-16 16:31:21 瀏覽:339
機頂盒都有什麼配置 發布:2025-04-16 16:24:37 瀏覽:210
編寫手游反編譯都需要學習什麼 發布:2025-04-16 16:19:36 瀏覽:810
proteus編譯文件位置 發布:2025-04-16 16:18:44 瀏覽:364
土壓縮的本質 發布:2025-04-16 16:13:21 瀏覽:590