天線的演算法
A. 陣列天線與智能天線原理
19021110368 余昆
1. 陣列天線
陣列天線是一類由不少於兩個天線單元規則或隨機排列並通過適當激勵獲得預定輻射特性的特殊天線。陣列天線的輻射電磁場是組成該天線陣各單元輻射場的總和—矢量和由於各單元的位置和饋電電流的振幅和相位均可以獨立調整,這就使陣列天線具有各種不同的功能,這些功能是單個天線無法實現的。方向圖原理:對於單元數很多的天線陣,用解析方法計算陣的總方向圖相當繁雜。假如一個多元天線陣能分解為幾個相同的子陣,則可利用方向圖相乘原理比較簡單地求出天線陣的總方向圖。
一個可分解的多元天線陣的方向圖,等於子陣的方向圖乘上以子陣為單元的天線陣的方向圖。這就是方向圖相乘原理。一個復雜的天線陣可考慮多次分解,即先分解成大的子陣,這些子陣再分解為較小的子陣,直至得到單元數很少的簡單子陣為止,然後再利用方向圖相乘原理求得陣的總方向圖。這種情況適應於單元是無方向性的條件,當單元以相同的取向排列並自身具有非均勻輻射的方向圖時,則天線陣的總方向圖應等於單元的方向圖乘以陣的方向圖。
2.智能天線
e( k )=d( k )-w H x( k )利用最小均方誤差法(MSE)求出
E[|e|2]=E[|d|2]-2w H r+w H Rxxw
相關性r定義為r=E[d*.x]=E[d*.(x s +x i +n)]
Rxx=E[xx H ]=Rss+R uu
Rss=E[xsxs H ]
R uu =R ii +R nn
對任意權值,可以求均方誤差關於權向量的梯度,由維納-霍普夫方程表示為
▽ w (E[|e|2])=2Rxxw-2 r
如果令參考信號d等於期望信號s,且s與所有干擾源無關,則可化簡相關性r,得r=E[s*.x]=S.a0
其中S=E[|s|2],最優權值可表示為
WMSE=SR xx -1a0
各用戶的波達方向的估計演算法主要有延遲-相加法、capon法、MUSIC法等。運用矩陣定義
X=AS+N
其中S為波前信號,N為測量雜訊,X為天線陣元的輸出信號。式中A為陣元對信號源的響應函數。具體為
X=[ x 1(t) x 2(t) … x m(t)] T
S=[s1(t) s2(t) … sD(t)] T
N=[n1(t) n2(t) … n M (t)] T
延遲-相加法(經典波束形成法)的輸出功率與達波方向DoA的關系為
P cbf (q)=w H R uu w=a H (q)R uu a(q)
Capon法的陣列輸出功率與波達方向DoA的關系為
MUSIC法的陣列空間譜為
其中V為雜訊特徵向量矩陣。
B. 手機天線長度的計算方法
取手機通信頻率為900MHz,根據公司入=c*f.可計算出手機信號波長為:0.33米。由於天線長度和電磁波長度成正比關系,經驗值天線長度為波長的四分之一時效果最好,所以天線長度0.083米=83mm.
C. 天線的原理與製作
作為電磁換能元件,天線在整個無線電通信系統中位置十分重要,質量好壞直接影響著收發信距離的遠近和通聯效果,可以說沒有了天線也就沒有了無線電通信。作為一款經典的定向天線,八木天線在HF、VHF以及UHF波段應用十分廣泛,它全稱為「八木/宇田天線」,英文名YAGI,是由上世紀二十年代日本東北帝國大學的電機工程學教授八木秀次,在與他的學生宇田新太郎研究短波束時發明的。相對於基本的半波對稱振子或者摺合振子天線,八木天線增益高、方向性強、抗干擾、作用距離遠,並且構造簡單、材料易得、價格低廉、擋風面小、輕巧牢固、架設方便。通常八木天線由一個激勵振子(也稱主振子)、一個反射振子(又稱反射器)和若干個引向振子(又稱引向器)組成,相比之下反射器最長,位於緊鄰主振子的一側,引向器都較短,並悉數位於主振子的另一側,全部振子加起來的數目即為天線的單元數,譬如一副五單元的八木天線就包括一個主振子、一個反射器和三個引向器,結構如圖1所示。主振子直接與饋電系統相連,屬於有源振子,反射器和引向器都屬無源振子,所有振子均處於同一個平面內,並按照一定間距平行固定在一根橫貫各振子中心的金屬橫樑上。
八木天線定向工作的原理,可依據電磁學理論進行詳盡地數學推導,但是比較繁瑣復雜,普通讀者也不易理解,這里只做定性的簡單分析:我們知道,與天線電氣指標密切相關的是波長λ,長度略長於λ/4整數倍的導線呈電感性,長度略短於λ/4整數倍的導線呈電容性。由於主振子L採用長約λ/2的半波對稱振子或半波摺合振子,在中心頻點工作時處於諧振狀態,阻抗呈現為純電阻,而反射器A比主振子略長,呈現感性,假設兩者間距a為λ/4,以接收狀態為例,從天線前方某點過來的電磁波將先到達主振子,並產生感應電動勢ε1和感應電流I1,再經λ/4的距離後電磁波方到達反射器,產生感應電動勢ε2和感應電流I2,因空間上相差λ/4的路程,故ε2比ε1滯後90°,又因反射器呈感性I2比ε2滯後90°,所以I2比ε1滯後180°,反射器感應電流I2產生輻射到達主振子形成的磁場H2又比I2滯後90°,根據電磁感應定律H2在主振子上產生的感應電動勢ε1'比H2滯後90°,也就是ε1'比ε1滯後360°,即反射器在主振子產生的感應電動勢ε1'與電磁信號源直接產生的感應電動勢ε1是同相的,天線輸出電壓為兩者之和。同理可推導出,對天線後方某點來的信號,反射器在主振子產生的感應電動勢與信號直接產生的感應電動勢是反相的,起到了抵消輸出的作用。而引向器B、C、D等都比主振子略短,阻抗呈容性,假定振子間距b、c、d也等於λ/4,按上述方法也可推出引向器對前方過來的信號起著增強天線輸出的作用。綜上所述,反射器能夠有效消除天線方向圖後瓣,並和引向器共同增強天線對前方信號的靈敏度,使天線具有了強方向性,提高了天線增益。對於發射狀態,推導過程亦然。實際製作過程中,通過縝密設計和適當調整各振子的長度及其間距,就能獲得工作在不同中心頻點、具有一定帶寬、一定阻抗值和較好端射方向圖的八木天線。
對於設計調整一副天線,我們總希望它能夠有較高的效率和增益,足夠的帶寬,以及較強的信號選擇和抗干擾能力,同時與饋線阻抗盡量匹配,竭力降低駐波比和減小信號損耗。然而天線的各項幾何參數對其電氣性能都有影響,並且往往彼此矛盾、相互牽制,設計調整時不能顧此失彼,要結合實際的用途綜合考慮,分清主次,必要時還得犧牲一些次要的性能指標。由於八木天線的增益與軸向長度(從反射器到最末引向器的距離)、單元數目、振子長度及間距密切相關,軸向越長,單元數實際也就是引向器越多,方向越尖銳,增益越高,作用距離越遠,但超過四個引向器後,改善效果就不太明顯了,而體積、重量、製作成本則大幅增加,對材料強度要求也更嚴格,同時導致工作頻帶更窄。一般情況下採用 6 ~ 12 單元就足夠了,天線增益可達 10~15 dB,對於高增益的要求,可採用天線陣的辦法加以解決。引向器的長度通常為(0.41~0.46)λ,單元數愈多,引向器的最佳長度也就愈短,如果要求工作頻段較寬,引向器的長度也應取得短些。引向器的間距一般取(0.15~0.4)λ,大於0.4λ後天線增益將迅速下降,但第一引向器B和主振子的間距應略小於其它間距,例如取b≈0.1λ時,增益將會有所提高。
一般來說,反射器A的長度及與主振子的間距對天線增益影響不大,而對前後輻射比和輸入阻抗卻有較大的影響,反射器長度通常為(0.5~0.55)λ,與主振子的間距為(0.15~0.23)λ。反射器較長或間距較小可有效地抑制後向輻射,但輸入阻抗較低,難於和饋線良好匹配,因而要採取折衷措施。對某些前後輻射比要求較高的使用場合,可以在與天線平面垂直方向上上下安裝兩個反射器,或者乾脆採用反射網的形式。有時為了著重改善天線帶寬的低頻端特性,還會在主振子的後面不同距離處排列兩個長度不等的反射器,其中較短的要離主振子近些。若想改善天線的高頻端特性,可適當調短引向器的長度。多元八木天線中引向器的長度和間距可以相等也可不等,從而分成均勻結構和不均勻結構兩種形式,不均勻結構的引向器,離主振子越遠長度越短,間隔越大,使得工作頻帶向高頻端方向拓展,調整起來相對靈活機動。天線增益越高,帶寬也會越窄,有時為展寬頻帶,還可採用兩個激勵振子,稱為雙激,或者直接選用復合式引向天線。考慮到八木天線的各項電氣指標在頻帶低端比較穩定,而高端變化較快,所以最初設計時頻率通常要稍高於中心頻率。另外振子所用金屬管材越粗,其特性阻抗越低,天線帶寬也就越大,振子直徑通常為(1/100~1/150)λ,當然實際選擇時還要考慮天線的整體機械特性。振子的粗細還會影響振子的實用最佳長度,這是因為電波在金屬中行進的速度與真空中不盡相同,實際製作長度都要在理論值上減去一個縮短系數,而導線越粗縮短系數越大,振子長度越小,對阻抗特性也造成一定影響。
輸入阻抗是天線的一個重要特性指標,它主要由有源振子固有的自阻抗及與其鄰近的幾個無源振子間的互阻抗來決定的。遠處的引向器,由於和主振子耦合較弱,互阻抗可忽略不計。通常主振子有半波對稱振子和半波摺合振子兩種形式,單獨諧振狀態下,輸入阻抗都為純電阻,半波對稱振子的Zin = 73.1 歐,標稱 75 歐,半波摺合振子的Zin = 292.4 歐,標稱300歐,是半波對稱振子的四倍。而加了引向器、反射器無源振子後,由於相互之間的電磁耦合,阻抗關系變得比較復雜,輸入阻抗顯著降低,並且八木天線各單元間距越小阻抗也越低。為了增大輸入阻抗,提高天線效率,故主振子多選用半波摺合振子的形式,這樣也能同時增加天線的帶寬。只要適當選擇摺合振子的長度,兩導體的直徑比及其間距,並結合調整反射器及附近幾個引向振子的尺寸,就可以使輸入阻抗變換到等於或接近饋線特性阻抗的數值。尤其值得一提的是,雖然無線電通信機天線埠及採用的同軸電纜特性阻抗都設計成50Ω,而廣播電視接收和傳輸同軸電纜特性阻抗為75Ω,但是對於任一天線,人們總可以通過阻抗調試,在要求頻率范圍內,使天饋線良好匹配,獲得滿意的駐波比,所以實用中並不十分注意八木天線輸入阻抗的具體數值,而主要以饋線上的駐波比為依據進行尺寸選擇或試驗調整。如果選用同軸電纜饋電,為保證天線的對稱性及與饋線的阻抗匹配,就必須在饋線和天線介面處加入「平衡—不平衡」轉換器,例如半波U型環式匹配器、變壓器式匹配器等,否則高頻信號在傳輸中衰減嚴重。因半波U型環式匹配器只需一段λ/2的同軸電纜,結構簡單,應用廣泛,具體接線方法如圖2所示。
由於引向器陣列對增益、後向輻射、輸入阻抗等都有影響,故實驗調整是八木天線投入使用前必不可少的一個步驟。調試時注意一定要把天線架起來,離開地面高度兩、三米以上,以免影響天線的阻抗和仰角。架設八木天線時,振子所在的天線平面既可以和大地平行又可以垂直,只要收、發雙方的天線保持相同姿勢就行,平行則輻射水平極化波,垂直則輻射垂直極化波,因有足夠的隔離度,還可共桿架設兩副相互垂直的引向天線,使用起來十分方便。為避免相位關系更加復雜化,降低調整難度,通常摺合振子平面要與橫梁垂直。因為各振子長度都約為半個波長,振子中點恰好位於電波感應信號電壓的零點,所以振子的中點能用金屬螺栓和鋁質橫梁直接固定,不必絕緣,這樣還能方便地泄放感應靜電。若主振子採用半波對稱振子,與饋線相接的地方必須和橫梁保持良好絕緣,若採用半波摺合振子,中點仍與橫梁相通。金屬橫梁與端射方向上的電場極化方向垂直,因此對天線輻射場不會產生顯著的影響。另外需要注意的是,由於天線一般架設在樓頂、陽台等室外環境,受風吹日曬雨淋後介面容易氧化生銹,影響信號的傳輸和天線的匹配,使收發效果變差,需用防水膠帶提前處理,同時還應注意防雷。
雖然說八木天線結構並不復雜,但是若想做好做精也不是一件輕而易舉的事,如果自行設計沒有足夠的把握,可以完全仿照工程理論書籍給出的尺寸,或者藉助於一些現成的設計軟體,如國外的yagi(下載地址 http://www.ve3sqb.com/)等,只需直接輸入頻率、單元數和振子直徑,就能得到各個單元的最佳尺寸和位置,如圖3所示,確保你也能製造出一副優秀的YAGI。理論歸理論,只有實踐才能出真知,怎麼樣,還不抓緊動手試一試!
八木天線分配器(雙排定向天線製作)
許多人在成功的製作完定向天線後, 其野心也越來越大, 因為既然一個陣列的定向天線已經成功, 何不做做雙排的定向天線呢? 沒錯! 我們就是要本著一顆龐大的野心, 朝著想要達到的目標前進, 這樣我們的技術才會提升, 這也是業餘無線電玩家的精神.
只要你完成了前一個單元的實驗144MHZ 九節八木天線, 那你要製作一個雙排定向天線, 絕不是一件難事. 只要你有了分配器, 想要做幾排定向天線都沒問題.
兩排定向天線合並, 中間一定要有一個分配器, 而兩排定向天線的距離大約是天線本身主桿的80%~90%長, 而且分配器兩端75歐姆的同軸電纜線要等長.
注意事項:
分配器兩端的長度最好是奇數個電子上的四分之一波長, 當你算出物理上的四分之一波長天線長度(也就是第一單元所講的四分之一波長的演算法), 還要用此長度算出電子上的四分之一波長的長度, 來運用在75歐姆同軸電纜線的長度.
例如:天線頻率144MHZ, 它的四分之一波長為 0.5 公尺(物理上的), 而我使用的75歐姆同軸電纜線規格為 RG-59, 而RG-59的速率因素為 0.66 (75歐姆同軸電纜線規格有很多種,其速率因素也不同, 請參考出廠規格說明), 所以我還要將剛剛算出的 0.5 公尺再乘上 0.66 , 所以求出在電子上的四分之一波長的長度為0.33公尺. 假設我所需要的電纜線從天線的供電點到T型接頭的長度為1.98公尺, 這個長度剛好是6個電子的四分之一波長, 是個偶數, 而我們不要偶數倍, 我們要奇數倍, 所以我們把長度加到2.3公尺(這個長度是7個電子的四分之一波長), 讓它成為奇數倍, 這樣的效率才是最好的.
D. 什麼是最小均方(LMS)演算法
全稱 Least mean square 演算法。中文是最小均方演算法。
感知器和自適應線性元件在歷史上幾乎是同時提出的,並且兩者在對權值的調整的演算法非常相似。它們都是基於糾錯學習規則的學習演算法。感知器演算法存在如下問題:不能推廣到一般的前向網路中;函數不是線性可分時,得不出任何結果。而由美國斯坦福大學的Widrow和Hoff在研究自適應理論時提出的LMS演算法,由於其容易實現而很快得到了廣泛應用,成為自適應濾波的標准演算法。
LMS演算法步驟:
1,、設置變數和參量:
X(n)為輸入向量,或稱為訓練樣本
W(n)為權值向量
b(n)為偏差
d(n)為期望輸出
y(n)為實際輸出
η為學習速率
n為迭代次數
2、初始化,賦給w(0)各一個較小的隨機非零值,令n=0
3、對於一組輸入樣本x(n)和對應的期望輸出d,計算
e(n)=d(n)-X^T(n)W(n)
W(n+1)=W(n)+ηX(n)e(n)
4、判斷是否滿足條件,若滿足演算法結束,若否n增加1,轉入第3步繼續執行。
E. 智能天線的實現原理
智能天線技術前身是一種波束成形(Beamforming)技術。波束成形技術是發送方在獲取一定的當前帶指時刻當前位置發送方和接收方之間的信道信息,調整信號發送的參數,使得射頻能量向接收方所處位置集中,從而使得接收方接收到的信號質量較好,最終能保持較高的吞吐量。該技術又分為晶元方式(On-Chip) 和硬體智能天線方式 (On-Antenna)的兩種。
智能天線的原理是將無線電的信號導向具體的方向,產生空間定向波束,使天線主波束對准用戶信號到達方向,旁瓣或零陷對准干擾信號到達方向,達到充分高效利用移動用戶信號並刪除或抑制干擾信號的目的。同時,智能天線技術利用各個移動用戶間信號空間特徵的差異,通過陣列天線技術在同一信道上接收和發射多個移動用戶信號而不攔塵發生相互干擾,使無線電頻譜的利用和信號的傳輸更為有效。在不增加系統復雜度的情況下,使用智能天線可滿足服務質量和網路擴容的需要。
智能天線系統的核心是智能演算法,智能演算法決定瞬時響應速率和電路實現的復雜程度,因此重要的是選擇較好演算法實現波束的智能控制。通過演算法自動調整加權值得到所需空間和頻率濾波器的作用。已提出很多著名演算法,概括地講有非盲演算法和盲演算法兩大類。非盲演算法是指需藉助參考信號(導頻序列或導頻信道)的演算法,此時,接收端知道發送的是什麼,進行演算法處理時要麼先確定信道響應再按一定準則(比如最優的迫零准則zero forcing)確定各加權值,要麼直接按一定的准則確定或逐漸調整權值,以使智能天線輸出與已知輸入最大相關,常用的相關准則有SE(最小均方誤差)、LS(最小均方)和LS(最小二乘)等。盲演算法則無需發端傳送已知的導頻信號,判決反饋演算法(Decision Feedback)是一種較特殊的演算法,接收端自己簡行禪估計發送的信號並以此為參考信號進行上述處理,但需注意的是應確保判決信號與實際傳送的信號間有較小差錯。