當前位置:首頁 » 操作系統 » linux越界

linux越界

發布時間: 2023-05-30 01:30:54

linux存儲管理方式

這種方式中,將用戶程序的地址空間,注意,是 用戶程序的地址空間 分為若干個固定大小的區域,成為「頁」或「頁面」。我們可以知道,這也頁其實是不存在的,只是一種劃分內存空間的方法。也就是說,這種方式將用戶的程序 「肢解」 了,分成很多個小的部分,每個部分稱為一個「頁」。

將邏輯地址的前n位作為頁號,後面32-n位作為頁內偏移量。

由於進程的最後一頁經常裝不滿一個塊,從而形成了不可利用的碎片,稱之為 「頁內碎片」

作用:實現頁號到物理號的地址映射。

頁表是記錄邏輯空間(虛擬內存)中每一頁在內存中對應的物理塊號。但並非每一頁邏輯空間都會實際對應著一個物理塊,只有實際駐留在物理內存空間中的頁才會對應著物理塊。

系統會為每一個進程建立一張頁表,頁表是需要一直駐留在物理內存中的(多級頁表除外),另外頁表的起址和長度存放在 PCB(Process Control Block)進程式控制制結構體中。

可以在頁表的表項中設置相關的許可權控制欄位,例如設置存取控制欄位,用於保護該存儲塊的讀寫;若存取控制欄位為2位,則可以設置讀/寫、只讀和只執行等存取方式。

物理塊是實實在在存在於內存中的:

由於執行頻率高,要求效率比較高,需要使用硬體實現。

在系統中設置一個 頁表寄存器(PTR) ,其中存放頁表在內存的起始地址和頁表的長度。平時進程未執行的時候,頁表的起始地址和頁表長度放在本進程的PCB中。當調度程序調度到某個進程的時候,才將這兩個數據裝入 頁表寄存器

變換過程:

快表的變換機構

為了提高地址變換速度,可在地址變換機構中增設一個具有並行查詢能力的特殊高速緩沖寄存器,又稱為"聯想寄存器"或者「快表」。俗稱TLB。

快表與頁表的功能類似,其實就是將一部分頁表存到 CPU 內部的高速緩沖存儲器 Cache。CPU 定址時先到快表查詢相應的頁表項形成物理地址,如果查詢不到,則到內存中查詢,並將對應頁表項調入到快表中。但,如果快表的存儲空間已滿,則需要通過演算法找到一個暫時不再需要的頁表項,將它換出內存。

由於成本的關系,快表不可能做得很大,通常只存放 16~512 個頁表項,這對中、小型作業來說,已有可能把全部頁表項放在快表中;但對於大型作業而言,則只能將其一部分頁表項放入其中。由於對程序和數據的訪問往往帶有局限性,因此,據統計,從快表中能找到所需頁表項的概率可達 90% 以上。這樣,由於增加了地址變換機構而造成的速度損失可減少到 10% 以下,達到了可接受的程度。

我們可以採用這樣兩個方法來解決這一問題:

① 對於頁表所需的內存空間,可採用離散分配方式,以解決難以找到一塊連續的大內存空間的問題;

只將當前需要的部分頁表項調入內存,其餘的頁表項仍駐留在磁碟上,需要時再調入。

二級頁表的頁表項:

過程:

在採用兩級頁表結構的情況下,對於正在運行的進程,必須將其外層頁表調入內存,而對於內頁表則只需調入一頁或幾頁。為了表徵某頁的頁表是否已經調入內存,還應在外層頁表項中增設一個狀態位 S,其值若為 0,表示該頁表分頁不在內存中,否則說明其分頁已調入內存。進程運行時,地址變換機構根據邏輯地址中的 P1去查找外層頁表;若所找到的頁表項中的狀態位為 0,則產生一個中斷信號,請求 OS 將該頁表分頁調入內存。

多級頁表和二級頁表類似。多級頁表和二級頁表是為了節省物理內存空間。使得頁表可以在內存中離散存儲。(單級頁表為了隨機訪問必須連續存儲,如果虛擬內存空間很大,就需要很多頁表項,就需要很大的連續內存空間,但是多級頁表不需要。)

為什麼引入分段存儲管理?

引入效果:

它將用戶程序的地址空間分為若干個大小不同的的段,每個段可以定義一組完整的信息。

段號表示段名,每個段都從0開始編址,並且採用一段連續的地址空間。

在該地址結構中,允許一個作業最長有64K個段,每個段的最大長度為64KB。

在分段式存儲管理系統中,為每一個分段分配一個連續的分區。進程的各個段,可以離散地裝入內存中不同的分區中。

作用:實現從邏輯地址到物理內存區的映射。

為了保證程序能夠正常運行,就必須能夠從物理內存中找出每個邏輯段所對應的位置。為此在系統中會為每一個進程建立一張 段表 。每個段在表中有一個表項,其中記錄了該段在內存中的起始地址和段的長度。一般將段表保存在內存中。

在配置了段表之後,執行的過程可以通過查找段表,找到每一個段所對應的內存區。

為了實現進程從邏輯地址到物理地址的變換功能,在系統設置了段表寄存器,用於存放段表的起始地址和段表長度TL。

在進行地址變換時,系統將邏輯地址中的段號與段表長度TL 進行比較。若 S > TL,表示段號太大,是訪問越界,於是產生越界中斷信號。若未越界,則根據段表的始址和該段的段號,計算出該段對應段表項的位置,從中讀出該段在內存的起始地址。然後,再檢查段內地址 d 是否超過該段的段長 SL。若超過,即 d>SL,同樣發出越界中斷信號。若未越界,則將該段的基址 d 與段內地址相加,即可得到要訪問的內存。

分頁和分段系統相似之處:兩者都採用離散分配方式,且都是通過地址映射機構實現地址變換。

但在概念上兩者完全不同,主要表現在下述三個方面:

分頁系統以頁面作為內存分配的基本單位,能有效地提高內存利用率,而分段系統以段作為內存分配的基本單位,它能夠更好地滿足用戶多方面的需要。

段頁式地址結構由段號、段內頁號及頁內地址三部分所組成

段頁式系統的基本原理是分段和分頁原理的結合,即先將用戶程序分成若干個段,再把每個段分成若干個頁,並為每一個段賦予一個段名。如下圖展示了一個作業地址空間的結構。該作業有三個段:主程序段、子程序段和數據段;頁面大小為 4 KB:

在段頁式系統中,為了實現從邏輯地址到物理地址的變換,系統中需要同時配置段表和頁表。段表的內容與分段系統略有不同,它不再是內存始址和段長,而是頁表始址和頁表長度。下圖展示出了利用段表和頁表進行從用戶地址空間到物理(內存)空間的映射。

在段頁式系統中,為了便於實現地址變換,須配置一個段表寄存器,其中存放段表始址和段長 TL。進行地址變換時,首先利用段號 S,將它與段長 TL 進行比較。若 S < TL,表示未越界,於是利用段表始址和段號來求出該段所對應的段表項在段表中的位置,從中得到該段的頁表始址,並利用邏輯地址中的段內頁號 P 來獲得對應頁的頁表項位置,從中讀出該貝所在的物理塊號 b,再利用塊號 b 和頁內地址來構成物理地址。

在段頁式系統中,為了獲得一條指令或數據,須三次訪問內存。第一次訪問是訪問內存中的段表,從中取得頁表始址;第二次訪問是訪問內存中的頁表,從中取出該頁所在的物理塊號,並將該塊號與頁內地址一起形成指令或數據的物理地址;第三次訪問才是真正從第二次訪問所得的地址中取出指令或數據。

顯然,這使訪問內存的次數增加了近兩倍。為了提高執行速度,在地址變換機構中增設一個高速緩沖寄存器。每次訪問它時,都須同時利用段號和頁號去檢索高速緩存,若找到匹配的表項,便可從中得到相應頁的物理塊號,用來與頁內地址一起形成物理地址:若未找到匹配表項,則仍需第三次訪問內存。

參考鏈接:

② linux用戶空間內存越界怎麼辦

linux用戶空間內存越界調試方法如下。
1、通過查看linux找到是哪個函數訪問了異常地址,進行改正。
2、在linux數組或者結構體成員的前後分別加上magicnumber,復現故障,使用linux工具查看對喊祥應的magicnumber是否被修改,判斷是向前踩內存還是向後踩內存,內存越界是軟體系統主要錯誤之碼滲肆一,是指當內存輸入超出了預分配的空遲轎間大小,就會覆蓋該空間之後的一段存儲區域,導致系統異常,其後果往往不可預料且非常嚴重。

③ 嵌入式linux 線程不執行

解決方法如下:
這個問題是由於訪問內存錯誤造成的,例如一次時因為循環越界,導致訪問界外內存時出現過此種問題。
2、程序卡死的問題,就是程序的進程還在,但是卻卡在那裡什麼都不做,該問題可能也是內存訪問越界造成的;
另外還可能是多線程中混合使用C和C++的函數造成,例如:某些嵌入式linux平台對C++支持的不好,這時候如果在多線程中混合使用printf和cout,就會造成此問題。

④ 在linux系統下使用內存技術,檢測堆越界錯誤

一般使用c或cpp編程時,堆棧越界訪問(read/write)往往會引起很多意想不到的錯誤,比如延後的進程崩潰等。因此,如果有一種方法,可以讓越界訪問立即觸發系統錯誤(讓進程拋出異常而終止,再生成coremp文件),就可以立即檢測出內存越界行為,並將對這種隱藏的錯誤,及時作出反應,以免在生產環境下造成更大的損失。

我們知道,在windows系統下面,我們可以使用VirtualAlloc系列函數,通過申請2頁內存,並設置某頁的保護參數(比如,可讀,可寫等),就可以實現類似的保護機制。這樣,當我們對新增加的類(數據結構),就可以重載operator new/delete,將類的邊界設置到一頁的邊緣,再將相鄰頁設置為不可讀不可寫。這樣就能有效監測堆越界讀寫問題。而且可以,設置某個編譯宏,比如PROTECT_CLASSX。演示代碼如下:

在linux下,則需要藉助mmap和mprotect來實現這個機制。具體步驟如下,首先用mmap使用PROT_NONE映射一個特殊文件,比如/dev/zero(或者使用MAP_ANONYMOUS),然後再用mprotect提交內存。上面的例子,可以繼續使用,但是只列出來核心的代碼,什麼重載操作符就不寫了,另外,內存映射文件j句柄最好用內存池來hold,最後在close掉。演示代碼只說明大致用法,並不能直接拿來用。

下面補充mprotect的用法:

再把mmap函數的用法示例如下:

⑤ linux內存讀寫不一致是什麼問題

1、linux內存讀腔歲鍵寫雀塵不一致是多核CPU在訪問內存時,每個核都有自己的cache,由於cache的寫回機制,部分數據沒有及時更新到內存,在不同線程訪問同一伍巧個變數的時候就會出現不一致的情況。
2、linux內存讀寫不一致是內存越界(數組越界,變數類型不一致等)訪問到不屬於自己的內存區域。

熱點內容
scratch少兒編程課程 發布:2025-04-16 17:11:44 瀏覽:639
榮耀x10從哪裡設置密碼 發布:2025-04-16 17:11:43 瀏覽:368
java從入門到精通視頻 發布:2025-04-16 17:11:43 瀏覽:84
php微信介面教程 發布:2025-04-16 17:07:30 瀏覽:310
android實現陰影 發布:2025-04-16 16:50:08 瀏覽:793
粉筆直播課緩存 發布:2025-04-16 16:31:21 瀏覽:344
機頂盒都有什麼配置 發布:2025-04-16 16:24:37 瀏覽:213
編寫手游反編譯都需要學習什麼 發布:2025-04-16 16:19:36 瀏覽:812
proteus編譯文件位置 發布:2025-04-16 16:18:44 瀏覽:366
土壓縮的本質 發布:2025-04-16 16:13:21 瀏覽:592