當前位置:首頁 » 操作系統 » rsa數字簽名演算法

rsa數字簽名演算法

發布時間: 2023-05-27 00:18:21

Ⅰ RSA數字簽名是什麼

在數字簽名技術出現之前,曾經出現過一種「數字化簽名」技術,簡單地說就是在手寫板上簽名,然後將圖像傳輸到電子文檔中,這種「數字化簽名」可以被剪切, 然後粘貼到任意文檔上,這樣非法復制變得非常容易,所以這種簽名的方式是不安全的。數字簽名技術與數字化簽名技術是兩種截然不同的安全技術,數字簽名與用 戶的姓名和手寫簽名形式毫無關系,它實際使用了信息發送者的私有密鑰變換所需傳輸的信息。對於不同的文檔信息,發送者的數字簽名並不相同。沒有私有密鑰, 任何人都無法完成非法復制。從這個意義上來說,「數字簽名」是通過一個單向函數對要傳送的報文進行處理得到的,用以認證報文來源並核實報文是否發生變化的 一個字母數字串。JAVA異常機制指南

原理

該技術在具體工作時,首先發送方對信息施以數學變換,所得的信息與原信息惟一對應;在接收方進行逆變換,得到原始信息。只要數學變換方法優良,變換後的信息在傳輸中就具有很強的安全性,很難被破譯、篡改。這一個過程稱為加密,對應的反變換過程稱為解密。
現在有兩類不同的加密技術,一類是對稱加密,雙方具有共享的密鑰,只有在雙方都知道密鑰的情況下才能使用,通常應用於孤立的環境之中,比如在使用自動取款 機(ATM)時,用戶需要輸入用戶識別號碼(PIN),銀行確認這個號碼後,雙方在獲得密碼的基礎上進行交易,如果用戶數目過多,超過了可以管理的范圍 時,這種機制並不可靠。
另一類是非對稱加密,也稱為公開密鑰加密,密鑰是由公開密鑰和私有密鑰組成的密鑰對,用私有密鑰進行加密,利用公開密鑰可以進行解密,但是由於公開密鑰無 法推算出私有密鑰,所以公開的密鑰並不會損害私有密鑰的安全,公開密鑰無須保密,可以公開傳播,而私有密鑰必須保密,丟失時需要報告鑒定中心及資料庫

演算法

數字簽名的演算法很多, 應用最為廣泛的三種是: Hash簽名、DSS簽名和RSA簽名。
1. Hash簽名
Hash簽名不屬於強計算密集型演算法,應用較廣泛。它可以降低伺服器資源的消耗,減輕中央伺服器的負荷。Hash的主要局限是接收方必須持有用戶密鑰的副本以檢驗簽名, 因為雙方都知道生成簽名的密鑰,較容易攻破,存在偽造簽名的可能。
2. DSS和RSA簽名
DSS和RSA採用了公鑰演算法,不存在Hash的局限性。RSA是最流行的一種加密標准,許多產品的內核中都有RSA的軟體和類庫。早在Web飛速發展之 前,RSA數據安全公司就負責數字簽名軟體與Macintosh操作系統的集成,在Apple的協作軟體PowerTalk上還增加了簽名拖放功能,用戶 只要把需要加密的數據拖到相應的圖標上,就完成了電子形式的數字簽名。與DSS不同,RSA既可以用來加密數據,也可以用於身份認證。和Hash簽名相 比,在公鑰系統中,由於生成簽名的密鑰只存儲於用戶的計算機中,安全系數大一些。

功能

數字簽名可以解決否認、偽造、篡改及冒充等問題。具體要求:發送者事後不能否認發送的報文簽名、接收者能夠核實發送者發送的報文簽名、接收者不能偽造發送 者的報文簽名、接收者不能對發送者的報文進行部分篡改、網路中的某一用戶不能冒充另一用戶作為發送者或接收者。數字簽名的應用范圍十分廣泛,在保障電子數 據交換(EDI)的安全性上是一個突破性的進展,凡是需要對用戶的身份進行判斷的情況都可以使用數字簽名,比如加密信件、商務信函、定貨購買系統、遠程金 融交易、自動模式處理等等。

缺憾

數字簽名的引入過程中不可避免地會帶來一些新問題,需要進一步加以解決,數字簽名需要相答輪關法律條文的支持。
1. 需要立法機構對數字簽名技術有足夠的重視,並且在立法上加快腳步,迅速制定有關法律,以充分實現數字簽名具有的特殊鑒別作用,有力地推動電子商務以及其他網上事務的發展。
2. 如果發送方的信息已經進行了數字簽名,那麼接收方就一定要有數字簽名軟體,這就要求軟體具有很高的普及性。
3. 假設某人發送信息後脫離了某個組織,被取消了原有數字簽名的許可權,以往發送的數字簽名在鑒定時只能在取消確認列表中找到原有確認信息,這樣就需要鑒定中心結合時間信息進行鑒定。
4. 基礎設源神施(鑒定中心、在線存取資料庫等)的費用,是採用公共資金還是在使用期內向用戶收費?如果在使用期內收費,會不會影響到這項技術的全面推廣?

實施

實現數字簽雹舉虧名有很多方法,目前採用較多的是非對稱加密技術和對稱加密技術。雖然這兩種技術實施步驟不盡相同,但大體的工作程序是一樣的。 用戶首先可以下載或者購買數字簽名軟體,然後安裝在個人電腦上。在產生密鑰對後,軟體自動向外界傳送公開密鑰。由於公共密鑰的存儲需要,所以需要建立一個 鑒定中心(CA)完成個人信息及其密鑰的確定工作。鑒定中心是一個政府參與管理的第三方成員,以便保證信息的安全和集中管理。用戶在獲取公開密鑰時,首先 向鑒定中心請求數字確認,鑒定中心確認用戶身份後,發出數字確認,同時鑒定中心向資料庫發送確認信息。然後用戶使用私有密鑰對所傳信息簽名,保證信息的完 整性、真實性,也使發送方無法否認信息的發送,之後發向接收方;接收方接收到信息後,使用公開密鑰確認數字簽名,進入資料庫檢查用戶確認信息的狀況和可信 度;最後資料庫向接收方返回用戶確認狀態信息。不過,在使用這種技術時,簽名者必須注意保護好私有密鑰,因為它是公開密鑰體系安全的重要基礎。如果密鑰丟 失,應該立即報告鑒定中心取消認證,將其列入確認取消列表之中。其次,鑒定中心必須能夠迅速確認用戶的身份及其密鑰的關系。一旦接收到用戶請求,鑒定中心 要立即認證信息的安全性並返回信息。

Ⅱ 數字簽名為保證其不可更改性雙方約定使用什麼演算法

RSA演算法。數字簽名為保證其談段轎不燃如可更改性雙方約定使用RSA演算法。數字簽名是基於公鑰密碼體制(含肆非對稱密鑰密碼體制)的。

Ⅲ RSA演算法的基本含義

RSA公開密鑰密碼體制。所謂的公開密鑰密碼體制就是使用不同的加密密鑰與解密密鑰,是一種「由已知加密密鑰推導出解密密鑰在計算上是不可行的」密碼體制。
在公開密鑰密碼體制中,加密密鑰(即公開密鑰)PK是公開信息,而解密密鑰(即秘密密鑰)SK是需要保密的。加密演算法E和解密演算法D也都是公開的。雖然解密密鑰SK是由公開密鑰PK決定的,但卻不能根據PK計算出SK。
正是基於這種理論,1978年出現了著名的RSA演算法,它通常是先生成一對RSA 密鑰,其中之一是保密密鑰,由用戶保存;另一個為公開密鑰,可對外公開,甚至可在網路伺服器中注冊。為提高保密強度,RSA密鑰至少為500位長,一般推薦使用1024位。這就使加密的計算量很大。為減少計算量,在傳送信息時,常採用傳統加密方法與公開密鑰加密方法相結合的方式,即信息採用改進的DES或IDEA對話密鑰加密,然後使用RSA密鑰加密對話密鑰和信息摘要。對方收到信息後,用不同的密鑰解密並可核對信息摘要。
RSA演算法是第一個能同時用於加密和數字簽名的演算法,也易於理解和操作。RSA是被研究得最廣泛的公鑰演算法,從提出到現今的三十多年裡,經歷了各種攻擊的考驗,逐漸為人們接受,普遍認為是目前最優秀的公鑰方案之一。
SET(Secure Electronic Transaction)協議中要求CA採用2048bits長的密鑰,其他實體使用1024比特的密鑰。RSA密鑰長度隨著保密級別提高,增加很快。下表列出了對同一安全級別所對應的密鑰長度。 保密級別 對稱密鑰長度(bit) RSA密鑰長度(bit) ECC密鑰長度(bit) 保密年限 80 80 1024 160 2010 112 112 2048 224 2030 128 128 3072 256 2040 192 192 7680 384 2080 256 256 15360 512 2120 這種演算法1978年就出現了,它是第一個既能用於數據加密也能用於數字簽名的演算法。它易於理解和操作,也很流行。演算法的名字以發明者的名字命名:Ron Rivest, Adi Shamir 和 Leonard Adleman。早在1973年,英國國家通信總局的數學家Clifford Cocks就發現了類似的演算法。但是他的發現被列為絕密,直到1998年才公諸於世。
RSA演算法是一種非對稱密碼演算法,所謂非對稱,就是指該演算法需要一對密鑰,使用其中一個加密,則需要用另一個才能解密。
RSA的演算法涉及三個參數,n、e1、e2。
其中,n是兩個大質數p、q的積,n的二進製表示時所佔用的位數,就是所謂的密鑰長度。
e1和e2是一對相關的值,e1可以任意取,但要求e1與(p-1)*(q-1)互質;再選擇e2,要求(e2*e1)mod((p-1)*(q-1))=1。
(n,e1),(n,e2)就是密鑰對。其中(n,e1)為公鑰,(n,e2)為私鑰。
RSA加解密的演算法完全相同,設A為明文,B為密文,則:A=B^e2 mod n;B=A^e1 mod n;(公鑰加密體制中,一般用公鑰加密,私鑰解密)
e1和e2可以互換使用,即:
A=B^e1 mod n;B=A^e2 mod n;

Ⅳ 什麼是RSA和ECC演算法

RSA(Rivest-Shamir-Adleman)加密演算法:它是第 一個既能用於數據加密也能用於數字簽名的演算法。比較易於理解和操作,是高強度非對稱加密系統,密鑰長度少則512位,多則2048位,非常難破解,安全系數是非常高的。ECC(Elliptic Curve Cryptosystems )加密演算法:橢圓曲線密碼體制,它同樣也是在數據位上額外的位存儲一個用數據加密的代碼。橢圓曲線其實可能比RSA更復雜。國內的老品牌CA機構-天威誠信,旗下的vTrus SSL證書,該證書支持 SHA256 with RSA 2048 演算法/ECC 256 演算法。

Ⅳ rsa演算法原理

RSA演算法是最常用的非對稱加密演算法,它既能用於加密,也能用於數字簽名。RSA的安全基於大數分解的難度。其公鑰和私鑰是一對大素數(100到200位十進制數或更大)的函數。從一個公鑰和密文恢復出明文的難度,等價於分解兩個大素數之積。

我們可以通過一個簡單的例子來理解RSA的工作原理。為了便於計算。在以下實例中只選取小數值的素數p,q,以及e,假設用戶A需要將明文「key」通過RSA加密後傳遞給用戶B,過程如下:設計公私密鑰(e,n)和(d,n)。

令p=3,q=11,得出n=p×q=3×11=33;f(n)=(p-1)(q-1)=2×10=20;取e=3,(3與20互質)則e×d≡1 mod f(n),即3×d≡1 mod 20。通過試算我們找到,當d=7時,e×d≡1 mod f(n)同餘等式成立。因此,可令d=7。從而我們可以設計出一對公私密鑰,加密密鑰(公鑰)為:KU =(e,n)=(3,33),解密密鑰(私鑰)為:KR =(d,n)=(7,33)。

英文數字化。將明文信息數字化,並將每塊兩個數字分組。假定明文英文字母編碼表為按字母順序排列數值。則得到分組後的key的明文信息為:11,05,25。

明文加密。用戶加密密鑰(3,33) 將數字化明文分組信息加密成密文。由C≡Me(mod n)得:
C1(密文)≡M1(明文)^e (mod n) == 11≡11^3 mod 33 ;
C2(密文)≡M2(明文)^e (mod n) == 26≡05^3 mod 33;
C3(密文)≡M3(明文)^e (mod n) == 16≡25^3 mod 33;
所以密文為11.26.16。

密文解密。用戶B收到密文,若將其解密,只需要計算,即:
M1(明文)≡C1(密文)^d (mod n) == 11≡11^7 mod 33;
M2(明文)≡C2(密文)^d (mod n) == 05≡26^7 mod 33;
M3(明文)≡C3(密文)^d (mod n) == 25≡16^7 mod 33;
轉成明文11.05.25。根據上面的編碼表將其轉換為英文,我們又得到了恢復後的原文「key」。

當然,實際運用要比這復雜得多,由於RSA演算法的公鑰私鑰的長度(模長度)要到1024位甚至2048位才能保證安全,因此,p、q、e的選取、公鑰私鑰的生成,加密解密模指數運算都有一定的計算程序,需要仰仗計算機高速完成。

Ⅵ RSA加密演算法原理

RSA加密演算法是一種典型的非對稱加密演算法,它基於大數的因式分解數學難題,它也是應用最廣泛的非對稱加密演算法,於1978年由美國麻省理工學院(MIT)的三位學著:Ron Rivest、Adi Shamir 和 Leonard Adleman 共同提出。

它的原理較為簡單,假設有消息發送方A和消息接收方B,通過下面的幾個步驟,就可以完成消息的加密傳遞:
消息發送方A在本地構建密鑰對,公鑰和私鑰;
消息發送方A將產生的公鑰發送給消息接收方B;
B向A發送數據時,通過公鑰進行加密,A接收到數據後通過私鑰進行解密,完成一次通信;
反之,A向B發送數據時,通過私鑰對數據進行加密,B接收到數據後通過公鑰進行解密。
由於公鑰是消息發送方A暴露給消息接收方B的,所以這種方式也存在一定的安全隱患,如果公鑰在數據傳輸過程中泄漏,則A通過私鑰加密的數據就可能被解密。
如果要建立更安全的加密消息傳遞模型,需要消息發送方和消息接收方各構建一套密鑰對,並分別將各自的公鑰暴露給對方,在進行消息傳遞時,A通過B的公鑰對數據加密,B接收到消息通過B的私鑰進行解密,反之,B通過A的公鑰進行加密,A接收到消息後通過A的私鑰進行解密。
當然,這種方式可能存在數據傳遞被模擬的隱患,但可以通過數字簽名等技術進行安全性的進一步提升。由於存在多次的非對稱加解密,這種方式帶來的效率問題也更加嚴重。

Ⅶ 什麼是RSA用於何種場合

RSA
RSA演算法是第一個能同時用於加密和數字簽名的演算法,也易於理解和操作。 RSA是被研究得最廣泛的公鑰演算法,從提出到現在已近二十年,經歷了各種攻擊的考驗,逐漸為人們接受,普遍認為是目前最優秀的公鑰方案之一。RSA的安全性依賴於大數的因子分解,但並沒有從理論上證明破譯RSA的難度與大數分解難度等價。即RSA的重大缺陷是無法從理論上把握它的保密性能如何,而且密碼學界多數人士傾向於因子分解不是NPC問題。RSA的缺點主要有:A)產生密鑰很麻煩,受到素數產生技術的限制,因而難以做到一次一密。B)分組長度太大,為保證安全性,n 至少也要 600 bits以上,使運算代價很高,尤其是速度較慢,較對稱密碼演算法慢幾個數量級;且隨著大數分解技術的發展,這個長度還在增加,不利於數據格式的標准化。目前,SET(Secure Electronic Transaction)協議中要求CA採用2048比特長的密鑰,其他實體使用1024比特的密鑰。

這種演算法1978年就出現了,它是第一個既能用於數據加密也能用於數字簽名的演算法。它易於理解和操作,也很流行。演算法的名字以發明者的名字命名:Ron Rivest, AdiShamir 和Leonard Adleman。但RSA的安全性一直未能得到理論上的證明。

RSA的安全性依賴於大數分解。公鑰和私鑰都是兩個大素數( 大於 100個十進制位)的函數。據猜測,從一個密鑰和密文推斷出明文的難度等同於分解兩個大素數的積。

密鑰對的產生。選擇兩個大素數,p 和q 。計算:

n = p * q

然後隨機選擇加密密鑰e,要求 e 和 ( p - 1 ) * ( q - 1 ) 互質。最後,利用Euclid 演算法計算解密密鑰d, 滿足

e * d = 1 ( mod ( p - 1 ) * ( q - 1 ) )

其中n和d也要互質。數e和n是公鑰,d是私鑰。兩個素數p和q不再需要,應該丟棄,不要讓任何人知道。

加密信息 m(二進製表示)時,首先把m分成等長數據塊 m1 ,m2,..., mi ,塊長s,其中 2^s <= n, s 盡可能的大。對應的密文是:

ci = mi^e ( mod n ) ( a )

解密時作如下計算:

mi = ci^d ( mod n ) ( b )

RSA 可用於數字簽名,方案是用 ( a ) 式簽名, ( b )式驗證。具體操作時考慮到安全性和 m信息量較大等因素,一般是先作 HASH 運算。

RSA 的安全性。

RSA的安全性依賴於大數分解,但是否等同於大數分解一直未能得到理論上的證明,因為沒有證明破解RSA就一定需要作大數分解。假設存在一種無須分解大數的演算法,那它肯定可以修改成為大數分解演算法。目前, RSA的一些變種演算法已被證明等價於大數分解。不管怎樣,分解n是最顯然的攻擊方法。現在,人們已能分解140多個十進制位的大素數。因此,模數n必須選大一些,因具體適用情況而定。

RSA的速度。

由於進行的都是大數計算,使得RSA最快的情況也比DES慢上100倍,無論是軟體還是硬體實現。速度一直是RSA的缺陷。一般來說只用於少量數據加密。

RSA的選擇密文攻擊。

RSA在選擇密文攻擊面前很脆弱。一般攻擊者是將某一信息作一下偽裝(Blind),讓擁有私鑰的實體簽署。然後,經過計算就可得到它所想要的信息。實際上,攻擊利用的都是同一個弱點,即存在這樣一個事實:乘冪保留了輸入的乘法結構:

( XM )^d = X^d *M^d mod n

前面已經提到,這個固有的問題來自於公鑰密碼系統的最有用的特徵--每個人都能使用公鑰。但從演算法上無法解決這一問題,主要措施有兩條:一條是採用好的公鑰協議,保證工作過程中實體不對其他實體任意產生的信息解密,不對自己一無所知的信息簽名;另一條是決不對陌生人送來的隨機文檔簽名,簽名時首先使用One-Way Hash Function對文檔作HASH處理,或同時使用不同的簽名演算法。在中提到了幾種不同類型的攻擊方法。

RSA的公共模數攻擊。

若系統中共有一個模數,只是不同的人擁有不同的e和d,系統將是危險的。最普遍的情況是同一信息用不同的公鑰加密,這些公鑰共模而且互質,那末該信息無需私鑰就可得到恢復。設P為信息明文,兩個加密密鑰為e1和e2,公共模數是n,則:

C1 = P^e1 mod n

C2 = P^e2 mod n

密碼分析者知道n、e1、e2、C1和C2,就能得到P。

因為e1和e2互質,故用Euclidean演算法能找到r和s,滿足:

r * e1 + s * e2 = 1

假設r為負數,需再用Euclidean演算法計算C1^(-1),則

( C1^(-1) )^(-r) * C2^s = P mod n

另外,還有其它幾種利用公共模數攻擊的方法。總之,如果知道給定模數的一對e和d,一是有利於攻擊者分解模數,一是有利於攻擊者計算出其它成對的e』和d』,而無需分解模數。解決辦法只有一個,那就是不要共享模數n。

RSA的小指數攻擊。 有一種提高RSA速度的建議是使公鑰e取較小的值,這樣會使加密變得易於實現,速度有所提高。但這樣作是不安全的,對付辦法就是e和d都取較大的值。

Ⅷ RSA演算法的具體過程

具體過程很復雜哦。主要思想是基於大數分解的復雜度:
例如:
你的明文是abc,可用ASCII等方式化成整數串,例如化成117.
選取密鑰為129,
開始加密,進行質數計算:117*129=15093。 這個過程很快。

把密文15093公開到網路上。
敵人解密時,只知道15093,想要得到117會花費很長的時間。解密非常控困難。

而你的朋友由於知道密鑰129,則可以很快得到明文117.

Ⅸ RSA為什麼能實現數字簽名

數字簽名,就是只有信息的發送者才能產生的別人無法偽造的一段數字串,這段數字串同時也是對信息的發送者發手敬送信息真實性的一個有效證明。

數字簽名是非對稱密鑰加密技術與數字摘要技術的應用。

數字簽名了的文件的完整性是很容易驗證的(不需要騎縫章,騎縫簽名,也不需要筆跡專家),而且數字簽名具有不可抵賴性(不需要筆跡專家來驗證)。

簡單地說,所謂數字簽名就是附加在數據單元上的一些數據,或是對數據單元所作的密碼變換。這種數據或變換允許數據單元的接收者用以確認數據單元的來源和數據單元的完整性並保護數據,防止被人(例如滑薯攔接收者)進行偽造。它是對電信鬍子形式的消息進行簽名的一種方法,一個簽名消息能在一個通信網路中傳輸。基於公鑰密碼體制和私鑰密碼體制都可以獲得數字簽名,目前主要是基於公鑰密碼體制的數字簽名。包括普通數字簽名和特殊數字簽名。普通數字簽名演算法有RSA等

所以一句話解釋你的問題:主要原因是:RSA具備了公鑰、私鑰這個特點。

Ⅹ RSA演算法舉例

首先看下rsa演算法:
找兩素數p和q
計算n=p*q和
t=(p-1)*(q-1)
取小於n的一個數e,並且e與t互質,就是最大公約數是1
找一個數d,d滿足(ed-1)
mod
t
=0
公鑰取(n,e),私鑰取(n,d)
現在開始分析,
已知公鑰是(n=35,e=5),那麼
n=p*q,p與q只能是7和5
那麼t就是24
而(ed-1)%t=0
也就是(5d-1)%24=0,那麼可以取d為5
所以私鑰是
(d=5,n=35)
解密公式:m=c^d
mod
n
=10^5
mod
35
=5
所以明文m是5

熱點內容
scratch少兒編程課程 發布:2025-04-16 17:11:44 瀏覽:642
榮耀x10從哪裡設置密碼 發布:2025-04-16 17:11:43 瀏覽:368
java從入門到精通視頻 發布:2025-04-16 17:11:43 瀏覽:88
php微信介面教程 發布:2025-04-16 17:07:30 瀏覽:310
android實現陰影 發布:2025-04-16 16:50:08 瀏覽:794
粉筆直播課緩存 發布:2025-04-16 16:31:21 瀏覽:346
機頂盒都有什麼配置 發布:2025-04-16 16:24:37 瀏覽:213
編寫手游反編譯都需要學習什麼 發布:2025-04-16 16:19:36 瀏覽:818
proteus編譯文件位置 發布:2025-04-16 16:18:44 瀏覽:367
土壓縮的本質 發布:2025-04-16 16:13:21 瀏覽:594