當前位置:首頁 » 操作系統 » 資料庫一體機平台

資料庫一體機平台

發布時間: 2023-05-24 16:22:20

『壹』 華為資料庫一體機支持哪些存儲協議

支持iSCSI、FC、NFS、CIFS、HTTP、FTP等多種存儲前差派協議。華為資料庫一體機是基於內存慶瞎運算的資料庫一體機,在華為創新的軟硬體平台中支持iSCSI、FC、NFS、CIFS、慧賀HTTP、FTP等多種存儲協議,搭載業界領先的SAP HANA內存資料庫軟體,為企業ERP、數據倉庫等關鍵應用加速,助力企業迅速分析和獲取關鍵數據。

『貳』 2019數據架構選型必讀:1月資料庫產品技術解析

本期目錄

DB-Engines資料庫排行榜

新聞快訊

一、RDBMS家族

二、Nosql家族

三、NewSQL家族

四、時間序列

五、大數據生態圈

六、國產資料庫概覽

七、雲資料庫

八、推出dbaplus Newsletter的想法

九、感謝名單

為方便閱讀、重點呈現,本期Newsletter(2019年1月)將對各個板塊的內容進行精簡。需要閱讀全文的同學可點擊文末 【閱讀原文】 或登錄https://pan..com/s/13BgipbaHeMfvm0YPtiYviA

進行下載。

DB-Engines資料庫排行榜

以下取自2019年1月的數據,具體信息可以參考http://db-engines.com/en/ranking/,數據僅供參考。

DB-Engines排名的數據依據5個不同的因素:

新聞快訊

1、2018年9月24日,微軟公布了SQL Server2019預覽版,SQL Server 2019將結合Spark創建統一數據平台。

2、2018年10月5日,ElasticSearch在美國紐約證券交易所上市。

3、亞馬遜放棄甲骨文資料庫軟體,導致最大倉庫之一在黃金時段宕機。受此消息影響,亞馬遜盤前股價小幅跳水,跌超2%。

4、2018年10月31日,Percona發布了Percona Server 8.0 RC版本,發布對MongoDB 4.0的支持,發布對XtraBackup測試第二個版本。

5、2018年10月31日,Gartner陸續發布了2018年的資料庫系列報告,包括《資料庫魔力象限》、《資料庫核心能力》以及《資料庫推薦報告》。

今年的總上榜資料庫產品達到了5家,分別來自:阿里雲,華為,巨杉資料庫,騰訊雲,星環 科技 。其中阿里雲和巨杉資料庫已經連續兩年入選。

6、2018年11月初,Neo4j宣布完成E輪8000萬美元融資。11月15日,Neo4j宣布企業版徹底閉源:

7、2019年1月8日,阿里巴巴以1.033億美元(9000萬歐元)的價格收購了Apache Flink商業公司DataArtisans。

8、2019年1月11日早間消息,亞馬遜宣布推出雲資料庫軟體,亞馬遜和MongoDB將會直接競爭。

RDBMS家族

Oracle 發布18.3版本

2018年7月,Oracle Database 18.3通用版開始提供下載。我們可以將Oracle Database 18c視為採用之前發布模式的Oracle Database 12c第2版的第一個補丁集。未來,客戶將不再需要等待多年才能用上最新版Oracle資料庫,而是每年都可以期待新資料庫特性和增強。Database 19c將於2019年Q1率先在Oracle cloud上發布雲版本。

Oracle Database 18c及19c部分關鍵功能:

1、性能

2、多租戶,大量功能增強及改進,大幅節省成本和提高敏捷性

3、高可用

4、數據倉庫和大數據

MySQL發布8.0.13版本

1、賬戶管理

經過配置,修改密碼時,必須帶上原密碼。在之前的版本,用戶登錄之後,就可以修改自己的密碼。這種方式存在一定安全風險。比如用戶登錄上資料庫後,中途離開一段時間,那麼非法用戶可能會修改密碼。由參數password_require_current控制。

2、配置

Innodb表必須有主鍵。在用戶沒有指定主鍵時,系統會生成一個默認的主鍵。但是在主從復制的場景下,默認的主鍵,會對叢庫應用速度帶來致命的影響。如果設置sql_require_primary_key,那麼資料庫會強制用戶在創建表、修改表時,加上主鍵。

3、欄位默認值

BLOB、TEXT、GEOMETRY和JSON欄位可以指定默認值了。

4、優化器

1)Skip Scan

非前綴索引也可以用了。

之前的版本,任何沒有帶上f1欄位的查詢,都沒法使用索引。在新的版本中,它可以忽略前面的欄位,讓這個查詢使用到索引。其實現原理就是把(f1 = 1 AND f2 > 40) 和(f1 = 2 AND f2 > 40)的查詢結果合並。

2)函數索引

之前版本只能基於某個列或者多個列加索引,但是不允許在上面做計算,如今這個限制消除了。

5、SQL語法

GROUP BY ASC和GROUP BY DESC語法已經被廢棄,要想達到類似的效果,請使用GROUP BY ORDER BY ASC和GROUP BY ORDER BY DESC。

6、功能變化

1)設置用戶變數,請使用SET語句

如下類型語句將要被廢棄SELECT @var, @var:=@var+1。

2)新增innodb_fsync_threshold

該變數是控制文件刷新到磁碟的速率,防止磁碟在短時間內飽和。

3)新增會話級臨時表空間

在以往的版本中,當執行SQL時,產生的臨時表都在全局表空間ibtmp1中,及時執行結束,臨時表被釋放,空間不會被回收。新版本中,會為session從臨時表空間池中分配一個臨時表空間,當連接斷開時,臨時表空間的磁碟空間被回收。

4)在線切換Group Replication的狀態

5)新增了group_replication_member_expel_timeout

之前,如果某個節點被懷疑有問題,在5秒檢測期結束之後,那麼就直接被驅逐出這個集群。即使該節點恢復正常時,也不會再被加入集群。那麼,瞬時的故障,會把某些節點驅逐出集群。

group_replication_member_expel_timeout讓管理員能更好的依據自身的場景,做出最合適的配置(建議配置時間小於一個小時)。

MariaDB 10.3版本功能展示

1、MariaDB 10.3支持update多表ORDER BY and LIMIT

1)update連表更新,limit語句

update t1 join t2 on t1.id=t2.id set t1.name='hechunyang' limit 3;

MySQL 8.0直接報錯

MariaDB 10.3更新成功

2)update連表更新,ORDER BY and LIMIT語句

update t1 join t2 on t1.id=t2.id set t1.name='HEchunyang' order by t1.id DESC limit 3;

MySQL 8.0直接報錯

MariaDB 10.3更新成功

參考:

https://jira.mariadb.org/browse/MDEV-13911

2、MariaDB10.3增補AliSQL補丁——安全執行Online DDL

Online DDL從名字上看很容易誤導新手,以為不論什麼情況,修改表結構都不會鎖表,理想很豐滿,現實很骨感,注意這個坑!

有以下兩種情況執行DDL操作會鎖表的,Waiting for table metadata lock(元數據表鎖):

針對第二種情況,MariaDB10.3增補AliSQL補丁-DDL FAST FAIL,讓其DDL操作快速失敗。

例:

如果線上有某個慢SQL對該表進行操作,可以使用WAIT n(以秒為單位設置等待)或NOWAIT在語句中顯式設置鎖等待超時,在這種情況下,如果無法獲取鎖,語句將立即失敗。 WAIT 0相當於NOWAIT。

參考:

https://jira.mariadb.org/browse/MDEV-11388

3、MariaDB Window Functions窗口函數分組取TOP N記錄

窗口函數在MariaDB10.2版本里實現,其簡化了復雜SQL的撰寫,提高了可讀性。

參考:

https://mariadb.com/kb/en/library/window-functions-overview/

Percona Server發布8.0 GA版本

2018年12月21日,Percona發布了Percona Server 8.0 GA版本。

在支持MySQL8.0社區的基礎版上,Percona Server for MySQL 8.0版本中帶來了許多新功能:

1、安全性和合規性

2、性能和可擴展性

3、可觀察性和可用性

Percona Server for MySQL 8.0中將要被廢用功能:

Percona Server for MySQL 8.0中刪除的功能:

RocksDB發布V5.17.2版本

2018年10月24日,RocksDB發布V5.17.2版本。

RocksDB是Facebook在LevelDB基礎上用C++寫的高效內嵌式K/V存儲引擎。相比LevelDB,RocksDB提供了Column-Family,TTL,Transaction,Merge等方面的支持。目前MyRocks,TiKV等底層的存儲都是基於RocksDB來構建。

PostgreSQL發布11版本

2018年10月18日,PostgreSQL 11發布。

1、PostgreSQL 11的重大增強

2、PostgreSQL 插件動態

1)分布式插件citus發布 8.1

citus是PostgreSQL的一款sharding插件,目前國內蘇寧、鐵總、探探有較大量使用案例。

https://github.com/citusdata/citus

2)地理信息插件postgis發布2.5.1

PostGIS是專業的時空資料庫插件,在測繪、航天、氣象、地震、國土資源、地圖等時空專業領域應用廣泛。同時在互聯網行業也得到了對GIS有性能、功能深度要求的客戶青睞,比如共享出行、外賣等客戶。

http://postgis.net/

3)時序插件timescale發布1.1.1

timescale是PostgreSQL的一款時序資料庫插件,在IoT行業中有非常好的應用。github star數目前有5000多,是一個非常火爆的插件。

https://github.com/timescale/timescaledb

4)流計算插件 pipelinedb 正式插件化

Pipelinedb是PostgreSQL的一款流計算插件,使用這個創建可以對高速寫入的數據進行實時根據定義的聚合規則進行聚合(支持概率計算),實時根據定義的規則觸發事件(支持事件處理函數的自定義)。可用於IoT,監控,FEED實時計算等場景。

https://github.com/pipelinedb/pipelinedb

3、PostgreSQL衍生開源產品動態

1)agensgraph發布 2.0.0版本

agensgraph是兼容PostgreSQL、opencypher的專業圖資料庫,適合圖式關系的管理。

https://github.com/bitnine-oss/agensgraph

2)gpdb發布5.15

gpdb是兼容PostgreSQL的mpp資料庫,適合OLAP場景。近兩年,gpdb一直在追趕PostgreSQL的社區版本,預計很快會追上10的PostgreSQL,在TP方面的性能也會得到顯著提升。

https://github.com/greenplum-db/gpdb

3)antdb發布3.2

antdb是以Postgres-XC為基礎開發的一款PostgreSQL sharding資料庫,亞信主導開發,開源,目前主要服務於亞信自有客戶。

https://github.com/ADBSQL/AntDB

4)遷移工具MTK發布52版本

MTK是EDB提供的可以將Oracle、PostgreSQL、MySQL、MSSQL、Sybase資料庫遷移到PostgreSQL, PPAS的產品,遷移速度可以達到100萬行/s以上。

https://github.com/digoal/blog/blob/master/201812/20181226_01.md

DB2發布 11.1.4.4版本

DB2最新發布Mod Pack 4 and Fix Pack 4,包含以下幾方面的改動及增強:

1、性能

2、高可用

3、管理視圖

4、應用開發方面

5、聯邦功能

6、pureScale

NoSQL家族

Redis發布5.0.3版本

MongoDB升級更新MongoDB Mobile和MongoDB Stitch

2018年11月21日,MongoDB升級更新MongoDB Mobile和MongoDB Stitch,助力開發人員提升工作效率。

MongoDB 公司日前發布了多項新產品功能,旨在更好地幫助開發人員在世界各地管理數據。通過利用存儲在移動設備和後台資料庫的數據之間的實時、自動的同步特性,MongoDB Mobile通用版本助力開發人員構建更快捷、反應更迅速的應用程序。此前,這只能通過在移動應用內部安裝一個可供選擇或限定功能的資料庫來實現。

MongoDB Mobile在為客戶提供隨處運行的自由度方面更進了一步。用戶在iOS和安卓終端設備上可擁有MongoDB所有功能,將網路邊界擴展到其物聯網資產范疇。應用系統還可以使用MongoDB Stitch的軟體開發包訪問移動客戶端或後台數據,幫助開發人員通過他們希望的任意方式查詢移動終端數據和物聯網數據,包括本地讀寫、本地JSON存儲、索引和聚合。通過Stitch移動同步功能(現可提供beta版),用戶可以自動對保存在本地的數據以及後台資料庫的數據進行同步。

本期新秀:Cassandra發布3.11.3版本

2018年8月11日,Cassandra發布正式版3.11.3。

Apache Cassandra是一款開源分布式NoSQL資料庫系統,使用了基於Google BigTable的數據模型,與面向行(row)的傳統關系型資料庫或鍵值存儲key-value資料庫不同,Cassandra使用的是寬列存儲模型(Wide Column Stores)。與BigTable和其模仿者HBase不同,數據並不存儲在分布式文件系統如GFS或HDFS中,而是直接存於本地。

Cassandra的系統架構與Amazon DynamoDB類似,是基於一致性哈希的完全P2P架構,每行數據通過哈希來決定應該存在哪個或哪些節點中。集群沒有master的概念,所有節點都是同樣的角色,徹底避免了整個系統的單點問題導致的不穩定性,集群間的狀態同步通過Gossip協議來進行P2P的通信。

3.11.3版本的一些bug fix和改進:

NewSQL家族

TiDB 發布2.1.2版本

2018 年 12 月 22 日,TiDB 發布 2.1.2 版,TiDB-Ansible 相應發布 2.1.2 版本。該版本在 2.1.1 版的基礎上,對系統兼容性、穩定性做出了改進。

TiDB 是一款定位於在線事務處理/在線分析處理( HTAP: Hybrid Transactional/Analytical Processing)的融合型資料庫產品。除了底層的 RocksDB 存儲引擎之外,分布式SQL層、分布式KV存儲引擎(TiKV)完全自主設計和研發。

TiDB 完全開源,兼容MySQL協議和語法,可以簡單理解為一個可以無限水平擴展的MySQL,並且提供分布式事務、跨節點 JOIN、吞吐和存儲容量水平擴展、故障自恢復、高可用等優異的特性;對業務沒有任何侵入性,簡化開發,利於維護和平滑遷移。

TiDB:

PD:

TiKV:

Tools:

1)TiDB-Lightning

2)TiDB-Binlog

EsgynDB發布R2.5版本

2018年12月22日,EsgynDB R2.5版本正式發布。

作為企業級產品,EsgynDB 2.5向前邁進了一大步,它擁有以下功能和改進:

CockroachDB發布2.1版本

2018年10月30日,CockroachDB正式發布2.1版本,其新增特性如下:

新增企業級特性:

新增SQL特性:

新增內核特性:

Admin UI增強:

時間序列

本期新秀:TimescaleDB發布1.0版本

10月底,TimescaleDB 1.0宣布正式推出,官方表示該版本已可用於生產環境,支持完整SQL和擴展。

TimescaleDB是基於PostgreSQL資料庫開發的一款時序資料庫,以插件化的形式打包提供,隨著PostgreSQL的版本升級而升級,不會因為另立分支帶來麻煩。

TimescaleDB架構:

數據自動按時間和空間分片(chunk)

更新亮點:

https://github.com/timescale/timescaledb/releases/tag/1.0.0

大數據生態圈

Hadoop發布2.9.2版本

2018年11月中旬,Hadoop在2.9分支上發布了新的2.9.2版本,該版本進行了204個大大小小的變更,主要變更如下:

Greenplum 發布5.15版本

Greenplum最新的5.15版本中發布了流式數據載入工具。

該版本中的Greenplum Streem Server組件已經集成了Kafka流式載入功能,並通過了Confluent官方的集成認證,其支持的主要功能如下:

國產資料庫概覽

K-DB發布資料庫一體機版

2018年11月7日,K-DB發布了資料庫一體機版。該版本更新情況如下:

OceanBase遷移服務發布1.0版本

1月4日,OceanBase 正式發布OMS遷移服務1.0版本。

以下內容包含 OceanBase 遷移服務的重要特性和功能:

SequoiaDB發布3.0.1新版本

1、架構

1)完整計算存儲分離架構,兼容MySQL協議、語法

計算存儲分離體系以松耦合的方式將計算與存儲層分別部署,通過標准介面或插件對各個模塊和組件進行無縫替換,在計算層與存儲層均可實現自由的彈性伸縮。

SequoiaDB巨杉資料庫「計算-存儲分離」架構詳細示意

用戶可以根據自身業務特徵選擇面向交易的SQL解析器(例如MySQL或PGSQL)或面向統計分析的執行引擎(例如SparkSQL)。眾所周知,使用不同的SQL優化與執行方式,資料庫的訪問性能可能會存在上千上萬倍的差距。計算存儲分離的核心思想便是在數據存儲層面進行一體化存儲,在計算層面則利用每種執行引擎的特點針對不同業務場景進行選擇和優化,用戶可以在存儲層進行邏輯與物理的隔離,將面向高頻交易的前端業務與面向高吞吐量的統計分析使用不同的硬體進行存儲,確保在多類型數據訪問時互不幹擾,以真正達到生產環境可用的多租戶與HTAP能力。

2、其他更新信息

1)介面變更:

2)主要特性:

雲資料庫

本期新秀:騰訊發布資料庫CynosDB,開啟公測

1、News

1)騰訊雲資料庫MySQL2018年重大更新:

2)騰訊雲資料庫MongoDB2018年重大更新:

3)騰訊雲資料庫Redis/CKV+2018年重大更新:

4)騰訊雲資料庫CTSDB2018年重大更新:

2、Redis 4.0集群版商業化上線

2018年10月,騰訊雲資料庫Redis 4.0集群版完成邀測、公測、商業化三個迭代,在廣州、上海、北京正式全量商業化上線。

產品特性:

使用場景:

官網文檔:

https://cloud.tencent.com/document/proct/239/18336

3、騰訊自研資料庫CynosDB發布,開啟公測

2018年11月22日,騰訊雲召開新一代自研資料庫CynosDB發布會,業界第一款全面兼容市面上兩大最主流的開源資料庫MySQL和PostgreSQL的高性能企業級分布式雲資料庫。

本期新秀:京東雲DRDS發布1.0版本

12月24日,京東雲分布式關系型資料庫DRDS正式發布1.0版本。

DRDS是京東雲精心自研的資料庫中間件產品,獲得了2018年 」可信雲技術創新獎」。DRDS可實現海量數據下的自動分庫分表,具有高性能,分布式,彈性升級,兼容MySQL等優點,適用於高並發、大規模數據的在線交易, 歷史 數據查詢,自動數據分片等業務場景,歷經多次618,雙十一的考驗,已經在京東集團內大規模使用。

京東雲DRDS產品有以下主要特性

1)自動分庫分表

通過簡單的定義即可自動實現分庫分表,將數據實際存放在多個MySQL實例的資料庫中,但呈現給應用程序的依舊是一張表,對業務透明,應用程序幾乎無需改動,實現了對資料庫存儲和處理能力的水平擴展。

2)分布式架構

基於分布式架構的集群方案,多個對等節點同時對外提供服務,不但可有效規避服務的單點故障,而且更加容易擴展。

3)超強性能

具有極高的處理能力,雙節點即可支持數萬QPS,滿足用戶超大規模處理能力的需求。

4)兼容MySQL

兼容絕大部分MySQL語法,包括MySQL語法、數據類型、索引、常用函數、排序、關聯等DDL,DML語句,使用成本低。

參考鏈接:

https://www.jdcloud.com/cn/procts/drds

RadonDB發布1.0.3版本

2018年12月26日,MyNewSQL領域的RadonDB雲資料庫發布1.0.3版本。

推出dbaplus Newsletter的想法

dbaplus Newsletter旨在向廣大技術愛好者提供資料庫行業的最新技術發展趨勢,為社區的技術發展提供一個統一的發聲平台。為此,我們策劃了RDBMS、NoSQL、NewSQL、時間序列、大數據生態圈、國產資料庫、雲資料庫等幾個版塊。

我們不以商業宣傳為目的,不接受任何商業廣告宣傳,嚴格審查信息源的可信度和准確性,力爭為大家提供一個純凈的技術學習環境,歡迎大家監督指正。

至於Newsletter發布的周期,目前計劃是每三個月左右會做一次跟進, 下期計劃時間是2019年4月14日~4月25日, 如果有相關的信息提供請發送至郵箱:[email protected]

感謝名單

最後要感謝那些提供寶貴信息和建議的專家朋友,排名不分先後。

往期回顧:

↓↓別忘了點這里下載 2019年1月 完整版Newsletter 哦~

『叄』 可以應對多種備份場景的統一備份一體機推薦一個

TStor 是騰訊雲面向混合雲場景打造的存儲一體機產品系列。繼年初公布對象存儲一體機之後,該產品系列再添新成員:TStor B2000,是面向混合雲備份場景的一體機產品。

依據權威咨詢機構 IDC 和 Gartner 的預測,將來大部分企業的 IT 基礎設施將基於混合雲架構來構建,企業的利用和數據在雲上雲下同時存在,數據管理、數據保護和容災更為簡單,因而對數據保護產品提出了新的要求:

  • 兼容公有雲和私有雲環境,做到雲上雲下災備對立治理

  • 具備高可擴展性,應答數據的海量增長

  • 安全可靠,保證數據的安全性和備份業務的連續性

  • TStor B2000備份一體機,是一款基於混合雲架構打造的,安全可靠、雲邊協同、開箱即用的數據保護平台。作為企業級數據安全愛護治理平台,反對對業務零碎的定時和實時備份、異地容災、間斷數據保護等性能,實用於操作系統、資料庫、文件、虛擬機、雲平台等利用,無效實現對業務零碎的全方位愛護。該產品的架構如下圖所示:

    性能個性

    TStor B2000備份一體機的性能個性異樣豐盛,能夠籠罩各類企業應用備份需要:

    多場景:面向傳統數據中心、雲計算、大數據三大場景,籠罩操作系統、資料庫、文件、虛擬機、雲平台等利用;

    全方位:提供全生命周期的數據保護計劃;

    精細化:MySQL 資料庫的熱備份、Informix 資料庫的熱備份、Exchange 單郵件復原、Oracle事務級精準的復原和撤銷等;

    高效化:間斷日誌備份,RPO 趨近於0,根本不佔用業務系統資源,幫忙用戶實現更高效的數據保護。另外聯合高效數據壓縮和重刪技術,極大地節儉了備份數據傳輸和存儲老本;

    除了豐盛的備份性能外,TStor B2000備份一體機還提供了弱小的雲邊協同性能,實用於公有雲、私有雲與混合雲等多種企業IT架構,一套備份零碎即可同時治理雲上雲下的數據。

    利用場景

    TStor B2000反對如下場景:

    本地備份:將本地業務數據備份至備份一體機,是典型的傳統IT架構下的備份場景。

    備份上雲:本地業務的利用數據備份上雲,實現數據異地備份及歸檔。

    雲上備份:應用備份一體機將私有雲上的業務數據備份至雲存儲。

    本地復原:將備份一體機或者雲存儲中的數據恢復至本地。

    雲上復原:本地數據中心故障後,應用雲上資源搭建業務零碎並復原數據。

    一個典型的混合雲場景下的備份計劃,就是上述5種場景的組合,既有本地業務數據的備份與復原,也有雲上業務的備份與復原,同時數據能夠在雲上雲下流動,其架構如下圖所示:

    為了最大水平保障備份數據的可靠性和備份業務的可用性,TStor B2000反對集群部署模式,由多個節點協同工作,數據跨節點冗餘散布。在多個節點同時故障的狀況下,備份數據仍然不會失落。另外,備份軟體應用雙機主備模式部署,主節點故障後,備節點主動拉起,接管主節點的備份業務,持續對外提供備份服務,保障了備份業務的連續性。

    各型號比照

    目前,TStor B2000備份一體機應用軟硬一體的形式交付,開箱即用,提供圖形化界面方便管理。產品有四種規格,分為單機版與集群版。單機版實用於中小規模的備份場景,性價比高。集群版實用於中大規模場景,具備高性能、高牢靠、橫向擴大的能力。四種型號的具體規格如下表所示:

    在企業向混合雲架構轉型的過程中,TStor B2000備份一體機以其安全可靠的架構,豐盛全面的個性,簡略易用的設計,以及混合雲場景下弱小的雲邊協同的性能,成為企業建設災備計劃的最佳抉擇。

    【騰訊雲】雲產品限時秒殺,爆款1核2G雲伺服器,首年50元

    阿里雲限時活動-2核2G-5M帶寬-60G SSD-1000G月流量 ,特惠價99元/年(原價1234.2元/年,可以直接買3年),速搶

『肆』 DTBase資料庫一體機是否支持MySQL、PostgreSQL、SQL Server

是的,支持!
DTBase資料庫一體機支持主流的資料庫引擎(MySQL、PostgreSQL、SQL Server等),能將不同資料庫資源整合,提供統一資料庫運維平台,實現異構資料庫的統一管理。除此之外還有以下優點:
1.數據安全數據安全
DTBase數夢資料庫一體機採用分布式處理架構,根據用戶數據和業務的增長情況而進行資料庫的彈性擴展,可以從4個數據節點擴展到128個節點,並且在線實時修改生效,不影響應用程序,從根本上解決傳統架構在性能、擴展性方面存在的難題。
2.高可用
DTBase數夢資料庫一體機所有節點、部件均為冗餘設計,不會因為單硬碟故障、單個節點故障、單台交換機故障導致業務停頓或數據丟失。並且通過多重備份機制來保證數據的高可用性,如本地磁碟存儲、外掛磁碟,傳輸到遠程數據中心以及雲端的存儲,保證數據的快速恢復。服務可用性>99.9%,數據可靠性>99.999%。
3.高安全
DTBase數夢資料庫一體機具有獨立的安全模塊,能夠為系統提供多維度的數據安全保護,包括IP白名單防護、流量控制、協議過濾、7層SQL注入解析和攔截,用戶可對資料庫進行細粒度授權,並具有完善的資料庫審計功能。
4。兼容Oracle
DTBase數夢資料庫一體機對Oracle的兼容度超過95%,包括SQL語法、存儲過程、高級分析函數、窗口函數、嵌套事務控制、查詢優化器等。良好的兼容性和完善的工具包在資料庫遷移時可以大大節省工作時間,提高效率,並且減少對應用程序整改的工作量,降低業務遷移風險。

其DTBase數夢資料庫一體機是杭州數夢工場科技有限公司(以下簡稱數夢工場)推出的自主可控的關系型資料庫軟硬體一體化產品,集數據存儲、備份、高可用、遷移、監控、優化等功能為一體。DTBase以「資料庫即服務DBaaS(DataBase-as-a-Service)」為設計理念,旨在幫助政府、金融、交通、醫療、教育、公安等行業的用戶簡化資料庫運維管理,提升資料庫性能,加快業務系統上線速度,為用戶提供全棧式的雲資料庫解決方案。

『伍』 藍海大腦的圖資料庫一體機怎麼樣

挺好的。相比關系型資料庫,圖數庫是未來的趨勢߅藍海大腦的圖資料庫一體機提供軟硬體整體解決方案。帆哪禪主要應用知識圖譜,圖數據科學,欺詐檢測,客戶360, 實時推薦,供應鏈管理等多緩散種場景態塵。

『陸』 數據備份一體機品牌有哪些

中科熱備那個基於備份虛擬化技術的熱備雲系統。他他強調的就是熱備份區別於傳統的冷備份。在線生產數據或者在雲計算數據中心。熱數據直接備份出來。實現雙雲熱備。他可以對這個資料庫的數據,對這個操作系統,也可以對這個虛擬機,也可以對這個文件,然後呢做實時的熱備份。同時呢,也可以備份到這個虛擬帶庫,物理帶庫, 藍光,儲存。雲上。可以滿足備份的黃金法則,321法則。熱備雲一體機,Hotbackup Clound,實時熱備份,發展新趨勢。滿足數據安全法的合規性。


『柒』 資料庫一體機與大數據技術區別何在

資料庫一體機與大數據技術區別何在
作為近期信息管理領域最為熱門的兩項技術,資料庫一體機與大數據技術的硬體架構基本相同,但軟體體系有著本質的區別,這也導致了兩者擁有不同的特徵表現。
隨著企業數據量的快速增長,以及用戶對服務水平要求的不斷提高,相當長的一段時間以來,傳統關系資料庫技術在生產實踐中表現出明顯的能力不足。如何以合理的成本獲得海量數據的高可用性已經成為現代IT領域的重大挑戰。為了應對這一挑戰,近年來,IT市場中相繼出現了許多新的技術手段,其中最為引人注目的便是由主流資料庫廠商主導的資料庫一體機(例如Oracle ExaData以及IBM Netezza等),以及以開源力量為主的大數據技術。
不過,雖然資料庫一體機與大數據技術都是當今的熱門話題,並都已經被廣泛應用,但卻有相當一部分用戶仍然無法深入了解兩者之間的本質區別與關系。同時,很多用戶也在為如何在企業內部對這兩者進行正確定位而感到困惑。為此,本文特別對資料庫一體機(也可稱新一代主流關系型資料庫)和大數據技術(例如Hadoop,主要指MapRece與NoSQL)的相關技術特點進行對比。
硬體與軟體
從本質上來講,資料庫一體機與大數據技術的硬體架構基本相同,同樣是採用x86伺服器集群的分布式並行模式,以應對大規模的數據與計算。但是,資料庫一體機的賣家們通常會對其產品的硬體體系進行面向產品化的、系統性的整體調優,同時也會有各自的特色手段。比方說Oracle ExaData的Infiniband、Flash Cache,IBM Nettezza的FPGA(現場可編程邏輯門陣)等。[page] 資料庫一體機與大數據技術最為核心的區別是在軟體體繫上。資料庫一體機的核心是SQL體系,這不只是指SQL解析,更重要的是指包括SQL優化引擎、索引、鎖、事務、日誌、安全以及管理等在內的完整而龐大的技術體系。這一體系是成熟的、面向產品的。
大數據技術軟體體系中的MapRece則提供了一個面向海量數據處理的分布式編程框架,使用者需要自行編制所需要的計算邏輯。MapRece對數據的讀寫是批量連續的,而不是隨機的。而大數據技術的另一體系NoSQL則大都只是提供了海量數據的分布式存儲,以及基於索引的快速讀取機制,為使用者提供的大多是編程API(雖然也有類SQL的語言,但其本質並不是完整的SQL體系)。
由於SQL體系的復雜性與處理邏輯的整體關聯性,導致資料庫一體機在擴展性上遠不及大數據技術體系,雖然前者已經在很大程度上改善了傳統關系資料庫垂直擴展的瓶頸。MapRece與NoSQL的單個集群往往可以擴展到數千個節點,而資料庫一體機如果在硬體上擴展到這個規模,從軟體上來講,已經是沒有意義的了。
特徵與本質
基於軟體體系的不同,導致了資料庫一體機和大數據技術有著不同的特徵表現。資料庫一體機往往適合於存儲關系復雜的數據模型(例如企業核心業務數據),並且需要限制為基於二維表的關系模型。同時,資料庫一體機適合進行一致性與事務性要求高的計算,以及復雜的BI計算。
大數據技術則更適合於存儲較簡單的數據模型,並且可以不受模式的約束。因而其可存儲管理的數據類型更加豐富。大數據技術還適合進行一致性與事務性要求不高的計算(主要是指NoSQL的查詢操作),以及對超大規模海量數據的、批量的分布式並行計算(基於MapRece)。
需要注意的是,NoSQL資料庫由於擺脫了繁瑣的SQL體系約束,其查詢與插入的效率比資料庫一體機更高。大數據技術比資料庫一體機所能處理的數據量也相對大些,這主要是因為其集群可以擴展得更大。
從本質上講,MapRece是對海量數據分布式計算領域的一個重要創新,但也只是在適合於並行處理的大規模批量處理問題上更占優勢,而對一些復雜操作,則不一定具有優勢。NoSQL則可以看作是對傳統關系資料庫進行簡化的結果。由於NoSQL資料庫的設計思想只是提取出關系型資料庫的索引機制,並加了上分布式存儲,把SQL體系中那些對「某些特殊問題」而言並不需要的東西統統刪去,由此實現了更優秀的效率、擴展性與靈活性。[page] 因此,我們可以明顯地看到,在實踐中,有很多問題(特別是流行的大數據問題),關系資料庫中的許多設計並不需要,這才是NoSQL發展壯大的根本立足點。
關系與協作
通過前面的分析,我們不難得出這樣的結論:大數據技術與資料庫一體機應該是相輔相成,並非互相替代的。它們針對不同的應用場景設計,並相互補充與合作。具體來說,大數據技術可以實現:
■處理企業內海量的、模型簡單、類型多樣的非結構化與半結構化數據(例如社會化數據、各種日誌甚至圖片、視頻等),其處理結果可以被直接使用;
■以上處理結果也同時可以被當成是新的輸入存儲到企業級數據倉庫中,這時大數據機相當於是面向大數據源的、新的ETL(提取-轉換-載入)手段;
■面向海量數據的、不太適合SQL的存儲或計算。
而資料庫一體機則應該還是作為企業數據倉庫的主流技術,至少在很長一段時間內應該是這樣。它負責存儲與計算最主要的、有重大價值的企業關鍵業務數據。
現存的誤區
有些人認為,雖然大數據技術的原始開源狀態還不適合充當企業級數據倉庫主平台的要求,但經過開發、補充,應該是可以的。其實這個觀點沒有錯。但實際上,對開源的大數據技術進行補充開發,所要補充的正是大數據技術在原始設計上就去除了的、那些本屬於關系型資料庫體系的東西。
如果進行這樣的補充開發,企業不僅會面臨龐大的、難於估計的開發工作量,同時也難以像專業資料庫廠商那樣實現這些工作的理論化、產品化與體系化。雖然從純技術的角度上講,開發什麼都有可能。但是如果企業真的准備這樣做,是要開發另一個商業化的關系資料庫嗎?很明顯,這違背了大數據技術的設計初衷。

『捌』 資料庫一體機和資料庫的區別

資料庫一體機和資料庫的區別如下。
1、資料庫一體機往往適合於存儲關系復雜的數據模型(如企業核心業務數據),並且需要限制為基於二維表運模的關系模型。同時適鍵悄脊合進行一致性與事務性要求高的計算。
2、數據技術則更適合於存儲較簡單的數據模型,稿滲並且可以不受模式的約束。

『玖』 在項目數字化轉型中使用較為普遍的軟體定義存儲一體機有嗎,求推薦

隨著國內企業數字化轉型加速,企業紛紛上雲,數據存儲量呈爆發式增長。傳統存儲擴展性差、成本高等局限性愈發明顯。軟體定義存儲(Software Defined Storage,以下簡稱SDS)以虛擬化方式將各種存儲資源抽象化、進行池化整合,通過智能化管控軟體實現存儲資源的按需分配。軟體定義存儲重新定義了存儲架構,以擴容便捷、成本較低等優勢,成為存儲領域的重要發展方向之一。

深圳市杉岩數據技術有限公司(以下簡稱「杉岩數據」或「杉岩」)是國內軟體定義存儲領域的領導者之一。IDC最新發布的《2019 Q4 中國SDS市場報告》中,杉岩數據在對象存儲市場份額第三,佔比16.3%;在塊存儲市場份額第四,佔比6.9%。

杉岩數據成立於2014年9月,公司以新一代智能分布式存儲技術為核心,致力於提供領先的面向不同業務環境的企業級存儲方案,幫助用戶輕松應對IT向雲遷移的存儲挑戰,為大數據時代的商業決策提供智能存儲,打造雲計算、人工智慧、物聯網等領域的數據存儲基石。

杉岩數據致力於幫助用戶應對數據存儲量、訪問量以及數據管理復雜度,幫助用戶建立以存儲虛擬化和計算虛擬化為核心的雲計算基礎設施環境,並逐步提供數據處理、挖掘、智能分析等方面的大數據專業系統和服務。

2020年7月8日,公司宣布獲得B+輪1.5億元最新融資,本輪融資由大型央企中遠海運領投,襄禾資本、無錫金投跟投。藉助本輪融資,公司將圍繞數據存儲、數據管理、數據價值的客戶價值模型,持續加大產品關鍵技術的研發投入、垂直領域的市場拓展、人才引入以及產業生態鏈的建設,為用戶的數字化轉型提供全面賦能。

杉岩數據融資情況

訪談內容分享如下:

1

不只是存儲優化

以數據為中心的客戶價值金字塔模式

將智能存儲的進階賦能演繹到極致

融中研究:

「SandStone是一種橙紅色石頭,由沙粒經過多年不斷沉積重新排列而成。SandStone 生動地詮釋了『分布式架構』的形成。」為什麼用這個比喻來強調「分布式架構」?有什麼特殊含義?

陳堅:

SandStone對我們確實意義深遠。實際上,我們公司名稱的來源與「Sand Stone」緊密相關。杉岩二字,來源於Sand的音譯杉,以及Stone的意譯岩。取名「SandStone」是因為我們做的是基於P2P的分布式存儲架構,分布式存儲的本質就是把分散的磁碟硬體聚合起來,形成一個很大的存儲資源池。「SandStone」生動地詮釋了「分布式架構』的形成,每個磁碟所在的伺服器節點就像一粒沙子,通過杉岩數據的軟體聚沙成石,形成一個穩定可靠的存儲系統。

SandStone不僅代表了產品的特點,實際也代表了我們的文化、經營理念。從公司內部來看,每一個員工就像一粒沙子,大家團結奮斗、緊密協作,凝聚成一個有機整體,使得整個公司像石頭一樣堅不可摧;從外部合作夥伴的拓展來看,以杉岩為中心,將周圍的合作夥伴聚在一起形成生態圈,每一個夥伴也是一粒沙子,通過不斷吸納聚合,構建穩定的生態圈。因此,SandStone所代表的團結奮斗與凝聚力內核,已內化成了公司企業文化的一部分;SandStone蘊含的分布式理念,也切合了公司與合作夥伴的生態建設理念。

融中研究:

杉岩是做存儲的,為什麼公司取名為杉岩數據而不是杉岩存儲呢?智能存儲與傳統存儲的主要區別是什麼?杉岩的智能存儲方案有什麼特點?

陳堅:

之所以叫杉岩數據而不是杉岩存儲,是因為我們帶給客戶的價值不只是存儲的優化,而是以數據為中心的智能存儲賦能,通過我們的存儲系統,解決客戶在AIoT、5G時代海量數據的存儲、管理以及使用方面的問題。

針對智能存儲,杉岩數據構建了一套以數據為中心的客戶價值金字塔模型,最底座是存儲,作為數據的抓手;中間層是數據的管理,作為內涵;最頂層為未來的智能化應用提供准備及服務,我把它叫做外延。

具體來說,第一層即數據存儲的智能化。存儲側的智能,就是讓客戶使用更加簡單。傳統存儲像煙囪,每一個業務系統配一套存儲,客戶的運維非常困難。分布式存儲則是一個存儲池,客戶面向的是一套承載了不同應用數據的存儲集群,孤立的煙囪不再存在。在存儲集群裡面的故障、性能、容量等告警,都是由存儲系統內部智能化完成,同時還保障數據的可靠性、安全性以及訪問性能。

第二層,數據管理的智能化。用戶存數據後,要管數據。我認為數據是有生命力的,像人一樣有從生到死的過程。醫療影像數據是一個典型的例子:病人拍完CT、X光產生的影像數據馬上要被用於輔助醫生尋找病症、病灶,這時數據是「熱」的。這一次病好後,數據訪問頻率下降,「熱」數據變為「溫」數據。病人徹底康復後,數據變「冷」。對「熱」數據,為了保證訪問性能,相應的軟硬體配置都非常高,價格也高。「冷」數據如果同「熱」數據一樣存儲,性價比較低。醫院一般將冷數據歸檔到公有雲或藍光等單位存儲成本相對較低的存儲介質中。這個例子正好反映了數據全生命周期的智能化管理。

在未來海量數據時代,數據的管理非常關鍵。除了數據全生命周期的管理,杉岩還能實現數據智能化的統一管理,包括:對客戶的傳統存儲和杉岩的分布式存儲的統一管理,保護客戶對傳統存儲的原有投資;對公有雲、私有雲數據的統一管理,實現數據的自由流動;對邊緣設備與中心設備數據的統一管理,實現數據的相互協同。

第三層,金字塔的頂端,是數據挖掘的智能化。數據被存儲、管理,最終都是為了信息和價值的挖掘。目前越來越多的企業藉助AI、機器學習、深度學習這些演算法來使用和挖掘數據價值。杉岩的存儲系統,包括我們的對象存儲,都為海量數據的挖掘和使用去賦能。當然,杉岩不是要做AI,而是為智能化去賦能。這體現在兩個方面,第一,我們的存儲系統裡面自帶數據處理引擎,對業務需要使用的數據進行預先處理。第二,我們為AI的訓練、數據清洗、數據的准備階段提供了友好的統一管理、存儲平台——數據處理引擎「AI in MOS」,還有面向需要對AI進行訓練、學習、應用的公司提供的存儲平台——「MOS for AI」。

融中研究:

杉岩在數據的存、管、挖各個層面的資源投入如何?杉岩在技術底層的優勢有哪些?

陳堅:

在存、管、挖三個層面,杉岩起步聚焦於「存」,致力於為客戶提供一個高可靠、高安全、高性能、高可擴展性的分布式存儲系統,「存」也是目前投入最大的一塊。在「存」方面,目前我們的核心競爭力主要體現在產品性能更高,可用性、可維性更強,特別是在數據的安全性方面,我們積累了很多經驗。

在管方面,隨著客戶持續增加,杉岩面臨的需求也不斷增加,我們通過與客戶的互動交流,了解客戶實實在在的需求與痛點,並提出創新的解決方案。目前我們一些特有的產品功能已經落地了,這是很多企業包括一些大廠都不具備的,比如說我們對傳統存儲與分布式存儲的統一管理、對數據的全生命周期管理等等。

最上層,未來數據的智能應用層面,在智能數據處理引擎「AI in MOS」產品上,我們也在加大投入,今年就會有實際的項目落地。

融中研究:

您剛才講到,在數據挖掘上會加大投入,那麼杉岩在這一塊的發展目標如何?如何與數據挖掘專業公司競爭?

陳堅:

我先做一個澄清,杉岩的產品是有邊界的,我們不會像大數據公司一樣,比如也去做一個精準營銷,我們是為精準營銷賦能。像之前提到的數據處理,即使杉岩不做,這些公司還是要做的,杉岩其實是在幫這些公司做加速。另一方面,在賦能大數據挖掘的過程,杉岩主要針對非結構化數據賦能。以前的基於資料庫的結構化數據,像BI、數據倉庫,這類數據的挖掘已經有非常成熟的解決方案,杉岩的目標不在於此。我們強調對象存儲就是因為對象存儲是存儲非結構化數據最佳的載體。我們通過對非結構化數據的AI挖掘、使用賦能實現差異化。

融中研究:

在當前軟體定義存儲,存在哪些技術局限,大概何時能夠突破?杉岩在這塊有哪些領先優勢?

陳堅:

軟體定義存儲的概念相對於傳統存儲,其設計哲學和傳統存儲剛好相反。傳統存儲以硬體為核心,存儲系統的數據可靠性高度依賴硬體架構的設計。軟體定義存儲,假設硬體是不可靠的或可靠性沒那麼高。

軟體定義存儲的性能更高、擴展性更強、更靈活。但任何一個架構、系統都會有自己的優缺點。軟體定義存儲在技術上的局限性:第一,難以將硬體的性能發揮到極致。第二,在存儲集群大了以後,整個集群的管理、運維也是一個挑戰。一般的企業沒有專門的IT運維人員或運維水平有限,在海量數據時代,存儲產品能不能讓企業實現簡單運維,也是一個挑戰。

杉岩對傳統存儲和分布式存儲都有很深入的理解,既有傳統存儲最核心的架構師和工程師,也有深耕分布式存儲領域近10年的架構師。面對這些局限,杉岩也在做一些事情,比如在軟硬結合方面,與硬體供應商一起做軟硬垂直優化;在大規模集群存儲系統的管理和運維上,借鑒一些AI的演算法能力,讓運維更加智能化、自動化。

2

立足場景尋找最佳匹配行業

以質量和服務構建客戶信任

加速市場拓展

融中研究:

杉岩已服務10+行業的500+客戶,從市場策略來看,杉岩數據在這些行業是齊頭並進還是有所側重?主要的優勢行業有哪些?未來發展或者延伸的重點行業還有哪些?

陳堅:

存儲系統作為一個標准化產品,沒有太多的行業屬性。但是軟體定義存儲有它的最佳應用場景。

杉岩數據依託場景構築產品和解決方案,再通過最佳應用場景去尋找最佳匹配行業,進行市場開拓。例如,杉岩智慧視頻雲存儲的解決方案,可以在安防、軌道交通、能源、電力、金融等等行業領域使用。另外,我們還推出了一個更加通用化、平台式的私有雲產品,適用於金融、政府、教育、醫療等多個行業。

目前,杉岩市場突破的重點在於有大量場景和需求的政府、金融、教育、醫療、交通、能源、製造等行業。市場開拓方面,杉岩在大部分行業齊頭並進,對小部分行業有所側重,例如金融行業將是杉岩數據始終關注的重點行業。

作為存儲廠商,杉岩產品的行業屬性不強,但在產品智能化層面,實際上我們有一些場景化和行業屬性的定製,但這種定製不是為某一客戶定製,而是為一個行業定製,並且可以批量復制和推廣。

融中研究:

杉岩數據如何切入客戶,並獲得客戶的信任?在客戶關系維護和服務方面,杉岩數據採取哪些措施?

陳堅:

從0到1的突破是非常難的。杉岩數據以產品為客戶帶來的價值來切入市場,早期的客戶包括中國移動、中國電信、廣發證券、深圳市供電局等。對TOB市場,標桿的意義重大。杉岩切入市場後,依託案例與標桿客戶在同行業去推廣復制。

杉岩數據依靠高質量的產品和切實的服務獲取客戶的信任。目前為止,我們存儲了2500+PB的數據,從沒丟失過數據,這一點讓用戶非常放心。服務,是創業公司最具競爭力的優勢之一,而大廠流程非常復雜,對TO B客戶服務的理念和經驗也比較缺乏。杉岩與客戶的運維人員緊密溝通,對他們進行多維培訓賦能,客戶能夠親身感受到杉岩對他們的重視。

3

疫情期間,馳援武漢

推出免費服務平台

苦練研發內功蓄勢待發

融中研究:

此次疫情對杉岩數據帶來什麼影響?杉岩數據採取哪些行動?

陳堅:

這次新冠疫情對杉岩數據是一把雙刃劍,但總體來說是利好的局面。一方面,疫情對公司短期的獲客、工作開展產生了一定的沖擊和影響;另一方面,疫情也讓新一代信息技術的價值被充分認識,例如遠程醫療、遠程診斷等會涉及到大量的數據存儲和應用,軌跡、跟蹤、健康碼等其實也都是基於數據的存儲和使用。很多行業對於新一代信息技術的接受程度更高了,特別是政府的智慧城市、醫療領域的遠程醫療、教育領域的遠程教育發展等,帶來的數據存儲機會更多了。

作為一家創業公司,疫情期間,我們也秉承一貫的家國情懷和責任,進最大的努力為抗疫提供支持。2月份,我們給武漢大學人民醫院捐獻了一套分布式存儲產品,助力提升醫院的醫療質量和效率。同時,為了幫助用戶解決疫情期間存儲問題,我們推出了供用戶免費使用的「統一存儲平台軟體SandStone USP」。

此外,我們在產品研發、市場開拓上沒有絲毫懈怠。在產品研發端,我們借機苦練內功、打磨產品,為疫情過後的市場反彈做好准備;在市場開拓方面,我們的銷售團隊通過遠程電話保持與客戶、合作夥伴的緊密互動與溝通,努力介紹杉岩的產品方案和價值亮點,積極拓展新客戶、挖掘老客戶新需求等。

4

分布式存儲市場將形成寡頭壟斷格局

杉岩將始終以差異化取勝

融中研究:

當前存儲市場競爭格局怎麼樣?主要玩家類型有哪些?

陳堅:

從市場格局來說,存儲行業技術門檻很高,需要大量的經驗積累和打磨,大浪淘沙之後,最終玩家不會很多。在傳統存儲領域,全球TOP6的公司占據市場百分之八十幾的份額。在分布式存儲領域,經過五年多的發展,與杉岩數據同期創立的公司中,很多技術不成熟的公司已經慢慢被淘汰了。我相信經過震盪式的發展後,分布式存儲的市場格局會趨於穩定,也會變成一個寡頭壟斷的格局,未來會有一家或幾家來佔領市場絕大部分的份額,杉岩肯定是其中之一。

從競爭來說,杉岩的優勢還是產品。創業公司沒有捷徑可走,品牌、資金都比拼不過大廠,生存發展一定是靠差異化的競爭力。杉岩的差異化競爭優勢主要體現在客戶價值金字塔模型的「管」和「挖」,「存」大家都在做,如果這一層都做不好自然會被淘汰;「管」層面,大廠的產品很全,內部對於傳統存儲和分布式存儲會有一些博弈和競爭,但對於垂直用戶定製化以及工業化需求領域不一定願意涉足,而杉岩獨特的價值和優勢正體現於此。數據智能層面,杉岩的價值和優勢更加明顯。杉岩的設備產品有一些特殊的功能,這是很多大廠不會去做的事情,他們提供的主要是面向全球市場的標准化產品,聚焦於存儲產品的完善。杉岩則是針對垂直細分市場進行產品差異化。

在市場競爭格局中,同類創業公司競爭方面,從目前來說,2013到2015年成立的一批公司,現在的競爭格局越來越清晰了。當前,軟體定義存儲處於繁榮發展期,蛋糕還沒有定型,在不斷擴展、挖掘客戶新場景、新需求的階段,都在共同培育市場。所以,我們正在共創生態鏈,攜手合作夥伴建設新型IT基礎設施建設。

融中研究:

大型廠商加碼存儲,例如華為、華三等大廠也開始發力對象存儲,對杉岩數據的發展會有沖擊嗎?杉岩數據如何平衡與基礎設施合作夥伴華為的競爭與合作?

陳堅:

大廠確實在加大對存儲領域的布局,但我們也看到一個趨勢,大廠現在主要在公有雲方面布局,而在私有雲方面,可能更多的是以傳統存儲、分布存儲的架構來拓展市場。與大廠的競爭要避免正面交鋒,走差異化路線。比如在金融領域,杉岩在智能化數據處理方面獨具特色,這是我們帶給客戶的獨特價值。

『拾』 微軟的大數據解決方案_微軟數據分析

在微軟的大數據解決方案中,數據管理是最底層和最基礎的一環。

靈活的數據管理層,可以支持所有數據類型,包括結構化、半結構化和非結構化的靜態或動態數據。

在數據管理層中主要包括三款產品:SQLServer、SQLServer並行數據倉庫和

HadooponWindows。

針對不同的數據類型,微軟提供了不同的解決方案。

具體來說,針對結構化數據可以使用SQLServer和SQLServer並行數據倉庫處理。

非結構化數據可以使用WindowsAzure和上基於Hadoop的發行版本處理;而流數據可以使用SQLServer管理,並提供接近實時的分析。

1、SQLServer。去年發布的SQLServer2012針對大數據做了很多改進,其中最重要的就是全面支持Hadoop,這也是SQLServer2012與SQLServer2008最重要的區別之一。今年年底即將正式發布的SQLServer2014中,SQLServer進一步針對大數據加緩氏入內存資料庫功能,從硬體角度加速數據的處理,也被看為是針對大數據的改進。

2、SQLServer並行數據倉庫。並行數據倉庫(,簡稱PDW)是在SQLServer2008R2中推出的新產品,目前已經成為微軟主要的數據倉庫產品,並將於今年發布基於SQLServer2012的新款並行數據倉庫一體機。SQLServer並行數據倉庫採取的是大規模並行處理(MPP)架構,與傳統的單機版SQLServer存在著根本上的不同,它將多種先進的數據存儲與處理技術結合為一體,是微軟大數據戰略的重要組成部分。

3、HadooponWindows。微軟同時在WindowsAzure平台和WindowsServer上提供Hadoop,把Hadoop的高性能、高可擴展與微軟產品易用、易部署的傳統優勢融合到一起,形成完整的大數據解決方案。微軟大數據解決方案還通過簡單的部署以及與ActiveDirectory和SystemCenter等組件的集成,為Hadoop提供了Windows的易用擾鍵散性和可管理性。憑借WindowsAzure上基於Hadoop的服亮閉務,微軟為其大數據解決方案在雲端提供了靈活性。

熱點內容
scratch少兒編程課程 發布:2025-04-16 17:11:44 瀏覽:642
榮耀x10從哪裡設置密碼 發布:2025-04-16 17:11:43 瀏覽:368
java從入門到精通視頻 發布:2025-04-16 17:11:43 瀏覽:89
php微信介面教程 發布:2025-04-16 17:07:30 瀏覽:312
android實現陰影 發布:2025-04-16 16:50:08 瀏覽:795
粉筆直播課緩存 發布:2025-04-16 16:31:21 瀏覽:348
機頂盒都有什麼配置 發布:2025-04-16 16:24:37 瀏覽:213
編寫手游反編譯都需要學習什麼 發布:2025-04-16 16:19:36 瀏覽:819
proteus編譯文件位置 發布:2025-04-16 16:18:44 瀏覽:369
土壓縮的本質 發布:2025-04-16 16:13:21 瀏覽:596