當前位置:首頁 » 操作系統 » 演算法的重要性

演算法的重要性

發布時間: 2022-01-31 21:03:07

演算法重不重要

程序 = 數據結構 + 演算法
這是一種普遍的編程理念,你說演算法重要嗎?

這里所說的演算法不是指復雜的數學運算,而是指解決一類問題的方法和步驟。
復雜的數學運算那是數學家的事,而且很多可以在網上找到現成的演算法代碼,直接用就可以,一般的程序員不需要知道太多的數學知識,當然如果你從事這方面的工作例外。
這里所說的演算法是指可以由計算機執行的一類問題的程序或步驟,這些程序或步驟必須是明確和有效的,而且要在有限步內完成。計算機按演算法的程序或步驟對問題的初始數據進行處理,從而實現演算法並解決問題,所以我們說演算法是計算機科學的重要基礎,沒有演算法就沒有計算機。
這里的演算法在程序中提現最多的其實是邏輯問題,沒有很好的邏輯是很難編出好的程序的。

㈡ 數據結構與演算法的重要性

我是計算機專業的學生,現在大三了,這兩門科很重要,我也是沒學好吃了很多苦頭,所以不管採用什麼辦法都得學好學精

㈢ 演算法的重要性

做工程前提是有可以實現的演算法才可以完成工程。演算法側重理論層面,工程側重應用。

㈣ 演算法在程序里有啥意義

演算法可以優化程序的性能,比如普通的程序員寫一個遍歷可能就是for循環再疊加放for循環,而如果說是使用演算法的話就可以從隊列以及二叉樹等其他一些角度來考慮。合適的演算法能夠大大的縮減程序的運行時間也節省伺服器的性能。
希望可以幫到您,感謝您的採納。

㈤ 為什麼排序演算法那麼重要

因為排序是最基本最常見的演算法啊,你在編程的過程中會發現許多演算法都是基於排序演算法的轉變。並且許多演算法離不開排序,先經過排序才能接下去寫,其他演算法的話還有查找

㈥ C語言中什麼叫演算法,演算法在程序設計中的重要作用

一、什麼是演算法
演算法是一系列解決問題的清晰指令,也就是說,能夠對一定規范的輸入,在有限時間內獲得所要求的輸出。演算法常常含有重復的步驟和一些比較或邏輯判斷。如果一個演算法有缺陷,或不適合於某個問題,執行這個演算法將不會解決這個問題。不同的演算法可能用不同的時間、空間或效率來完成同樣的任務。一個演算法的優劣可以用空間復雜度與時間復雜度來衡量。
演算法的時間復雜度是指演算法需要消耗的時間資源。一般來說,計算機演算法是問題規模n 的函數f(n),演算法執行的時間的增長率與f(n) 的增長率正相關,稱作漸進時間復雜度(Asymptotic Time Complexity)。時間復雜度用「O(數量級)」來表示,稱為「階」。常見的時間復雜度有: O(1)常數階;O(log2n)對數階;O(n)線性階;O(n2)平方階。
演算法的空間復雜度是指演算法需要消耗的空間資源。其計算和表示方法與時間復雜度類似,一般都用復雜度的漸近性來表示。同時間復雜度相比,空間復雜度的分析要簡單得多。

二、演算法設計的方法
1.遞推法
遞推法是利用問題本身所具有的一種遞推關系求問題解的一種方法。設要求問題規模為N的解,當N=1時,解或為已知,或能非常方便地得到解。能採用遞推法構造演算法的問題有重要的遞推性質,即當得到問題規模為i-1的解後,由問題的遞推性質,能從已求得的規模為1,2,…,i-1的一系列解,構造出問題規模為I的解。這樣,程序可從i=0或i=1出發,重復地,由已知至i-1規模的解,通過遞推,獲得規模為i的解,直至得到規模為N的解。
【問題】 階乘計算
問題描述:編寫程序,對給定的n(n≤100),計算並輸出k的階乘k!(k=1,2,…,n)的全部有效數字。
由於要求的整數可能大大超出一般整數的位數,程序用一維數組存儲長整數,存儲長整數數組的每個元素只存儲長整數的一位數字。如有m位成整數N用數組a[ ]存儲:
N=a[m]×10m-1+a[m-1]×10m-2+ … +a[2]×101+a[1]×100
並用a[0]存儲長整數N的位數m,即a[0]=m。按上述約定,數組的每個元素存儲k的階乘k!的一位數字,並從低位到高位依次存於數組的第二個元素、第三個元素……。例如,5!=120,在數組中的存儲形式為:
3 0 2 1 ……
首元素3表示長整數是一個3位數,接著是低位到高位依次是0、2、1,表示成整數120。
計算階乘k!可採用對已求得的階乘(k-1)!連續累加k-1次後求得。例如,已知4!=24,計算5!,可對原來的24累加4次24後得到120。細節見以下程序。
# include <stdio.h>
# include <malloc.h>
......
2.遞歸
遞歸是設計和描述演算法的一種有力的工具,由於它在復雜演算法的描述中被經常採用,為此在進一步介紹其他演算法設計方法之前先討論它。
能採用遞歸描述的演算法通常有這樣的特徵:為求解規模為N的問題,設法將它分解成規模較小的問題,然後從這些小問題的解方便地構造出大問題的解,並且這些規模較小的問題也能採用同樣的分解和綜合方法,分解成規模更小的問題,並從這些更小問題的解構造出規模較大問題的解。特別地,當規模N=1時,能直接得解。
【問題】 編寫計算斐波那契(Fibonacci)數列的第n項函數fib(n)。
斐波那契數列為:0、1、1、2、3、……,即:
fib(0)=0;
fib(1)=1;
fib(n)=fib(n-1)+fib(n-2) (當n>1時)。
寫成遞歸函數有:
int fib(int n)
{ if (n==0) return 0;
if (n==1) return 1;
if (n>1) return fib(n-1)+fib(n-2);
}
遞歸演算法的執行過程分遞推和回歸兩個階段。在遞推階段,把較復雜的問題(規模為n)的求解推到比原問題簡單一些的問題(規模小於n)的求解。例如上例中,求解fib(n),把它推到求解fib(n-1)和fib(n-2)。也就是說,為計算fib(n),必須先計算fib(n-1)和fib(n-2),而計算fib(n-1)和fib(n-2),又必須先計算fib(n-3)和fib(n-4)。依次類推,直至計算fib(1)和fib(0),分別能立即得到結果1和0。在遞推階段,必須要有終止遞歸的情況。例如在函數fib中,當n為1和0的情況。
在回歸階段,當獲得最簡單情況的解後,逐級返回,依次得到稍復雜問題的解,例如得到fib(1)和fib(0)後,返回得到fib(2)的結果,……,在得到了fib(n-1)和fib(n-2)的結果後,返回得到fib(n)的結果。
在編寫遞歸函數時要注意,函數中的局部變數和參數知識局限於當前調用層,當遞推進入「簡單問題」層時,原來層次上的參數和局部變數便被隱蔽起來。在一系列「簡單問題」層,它們各有自己的參數和局部變數。
由於遞歸引起一系列的函數調用,並且可能會有一系列的重復計算,遞歸演算法的執行效率相對較低。當某個遞歸演算法能較方便地轉換成遞推演算法時,通常按遞推演算法編寫程序。例如上例計算斐波那契數列的第n項的函數fib(n)應採用遞推演算法,即從斐波那契數列的前兩項出發,逐次由前兩項計算出下一項,直至計算出要求的第n項。
【問題】 組合問題
問題描述:找出從自然數1、2、……、n中任取r個數的所有組合。例如n=5,r=3的所有組合為: (1)5、4、3 (2)5、4、2 (3)5、4、1
(4)5、3、2 (5)5、3、1 (6)5、2、1
(7)4、3、2 (8)4、3、1 (9)4、2、1
(10)3、2、1
分析所列的10個組合,可以採用這樣的遞歸思想來考慮求組合函數的演算法。設函數為void comb(int m,int k)為找出從自然數1、2、……、m中任取k個數的所有組合。當組合的第一個數字選定時,其後的數字是從餘下的m-1個數中取k-1數的組合。這就將求m個數中取k個數的組合問題轉化成求m-1個數中取k-1個數的組合問題。設函數引入工作數組a[ ]存放求出的組合的數字,約定函數將確定的k個數字組合的第一個數字放在a[k]中,當一個組合求出後,才將a[ ]中的一個組合輸出。第一個數可以是m、m-1、……、k,函數將確定組合的第一個數字放入數組後,有兩種可能的選擇,因還未去頂組合的其餘元素,繼續遞歸去確定;或因已確定了組合的全部元素,輸出這個組合。細節見以下程序中的函數comb。
【程序】
# include <stdio.h>
# define MAXN 100
int a[MAXN];
void comb(int m,int k)
{ int i,j;
for (i=m;i>=k;i--)
{ a[k]=i;
if (k>1)
comb(i-1,k-1);
else
{ for (j=a[0];j>0;j--)
printf(「%4d」,a[j]);
printf(「\n」);
}
}
}

void main()
{ a[0]=3;
comb(5,3);
}
3.回溯法
回溯法也稱為試探法,該方法首先暫時放棄關於問題規模大小的限制,並將問題的候選解按某種順序逐一枚舉和檢驗。當發現當前候選解不可能是解時,就選擇下一個候選解;倘若當前候選解除了還不滿足問題規模要求外,滿足所有其他要求時,繼續擴大當前候選解的規模,並繼續試探。如果當前候選解滿足包括問題規模在內的所有要求時,該候選解就是問題的一個解。在回溯法中,放棄當前候選解,尋找下一個候選解的過程稱為回溯。擴大當前候選解的規模,以繼續試探的過程稱為向前試探。

【問題】 組合問題
問題描述:找出從自然數1,2,…,n中任取r個數的所有組合。
採用回溯法找問題的解,將找到的組合以從小到大順序存於a[0],a[1],…,a[r-1]中,組合的元素滿足以下性質:
(1) a[i+1]>a,後一個數字比前一個大;
(2) a-i<=n-r+1。
按回溯法的思想,找解過程可以敘述如下:
首先放棄組合數個數為r的條件,候選組合從只有一個數字1開始。因該候選解滿足除問題規模之外的全部條件,擴大其規模,並使其滿足上述條件(1),候選組合改為1,2。繼續這一過程,得到候選組合1,2,3。該候選解滿足包括問題規模在內的全部條件,因而是一個解。在該解的基礎上,選下一個候選解,因a[2]上的3調整為4,以及以後調整為5都滿足問題的全部要求,得到解1,2,4和1,2,5。由於對5不能再作調整,就要從a[2]回溯到a[1],這時,a[1]=2,可以調整為3,並向前試探,得到解1,3,4。重復上述向前試探和向後回溯,直至要從a[0]再回溯時,說明已經找完問題的全部解。按上述思想寫成程序如下:
【程序】
# define MAXN 100
int a[MAXN];
void comb(int m,int r)
{ int i,j;
i=0;
a=1;
do {
if (a-i<=m-r+1
{ if (i==r-1)
{ for (j=0;j<r;j++)
printf(「%4d」,a[j]);
printf(「\n」);
}
a++;
continue;
}
else
{ if (i==0)
return;
a[--i]++;
}
} while (1)
}

main()
{ comb(5,3);
}

4.貪婪法
貪婪法是一種不追求最優解,只希望得到較為滿意解的方法。貪婪法一般可以快速得到滿意的解,因為它省去了為找最優解要窮盡所有可能而必須耗費的大量時間。貪婪法常以當前情況為基礎作最優選擇,而不考慮各種可能的整體情況,所以貪婪法不要回溯。
例如平時購物找錢時,為使找回的零錢的硬幣數最少,不考慮找零錢的所有各種發表方案,而是從最大面值的幣種開始,按遞減的順序考慮各幣種,先盡量用大面值的幣種,當不足大面值幣種的金額時才去考慮下一種較小面值的幣種。這就是在使用貪婪法。這種方法在這里總是最優,是因為銀行對其發行的硬幣種類和硬幣面值的巧妙安排。如只有面值分別為1、5和11單位的硬幣,而希望找回總額為15單位的硬幣。按貪婪演算法,應找1個11單位面值的硬幣和4個1單位面值的硬幣,共找回5個硬幣。但最優的解應是3個5單位面值的硬幣。
【問題】 裝箱問題
問題描述:裝箱問題可簡述如下:設有編號為0、1、…、n-1的n種物品,體積分別為v0、v1、…、vn-1。將這n種物品裝到容量都為V的若干箱子里。約定這n種物品的體積均不超過V,即對於0≤i<n,有0<vi≤V。不同的裝箱方案所需要的箱子數目可能不同。裝箱問題要求使裝盡這n種物品的箱子數要少。
若考察將n種物品的集合分劃成n個或小於n個物品的所有子集,最優解就可以找到。但所有可能劃分的總數太大。對適當大的n,找出所有可能的劃分要花費的時間是無法承受的。為此,對裝箱問題採用非常簡單的近似演算法,即貪婪法。該演算法依次將物品放到它第一個能放進去的箱子中,該演算法雖不能保證找到最優解,但還是能找到非常好的解。不失一般性,設n件物品的體積是按從大到小排好序的,即有v0≥v1≥…≥vn-1。如不滿足上述要求,只要先對這n件物品按它們的體積從大到小排序,然後按排序結果對物品重新編號即可。裝箱演算法簡單描述如下:
{ 輸入箱子的容積;
輸入物品種數n;
按體積從大到小順序,輸入各物品的體積;
預置已用箱子鏈為空;
預置已用箱子計數器box_count為0;
for (i=0;i<n;i++)
{ 從已用的第一隻箱子開始順序尋找能放入物品i 的箱子j;
if (已用箱子都不能再放物品i)
{ 另用一個箱子,並將物品i放入該箱子;
box_count++;
}
else
將物品i放入箱子j;
}
}
上述演算法能求出需要的箱子數box_count,並能求出各箱子所裝物品。下面的例子說明該演算法不一定能找到最優解,設有6種物品,它們的體積分別為:60、45、35、20、20和20單位體積,箱子的容積為100個單位體積。按上述演算法計算,需三隻箱子,各箱子所裝物品分別為:第一隻箱子裝物品1、3;第二隻箱子裝物品2、4、5;第三隻箱子裝物品6。而最優解為兩只箱子,分別裝物品1、4、5和2、3、6。
若每隻箱子所裝物品用鏈表來表示,鏈表首結點指針存於一個結構中,結構記錄尚剩餘的空間量和該箱子所裝物品鏈表的首指針。另將全部箱子的信息也構成鏈表。以下是按以上演算法編寫的程序。
}

5.分治法
任何一個可以用計算機求解的問題所需的計算時間都與其規模N有關。問題的規模越小,越容易直接求解,解題所需的計算時間也越少。例如,對於n個元素的排序問題,當n=1時,不需任何計算;n=2時,只要作一次比較即可排好序;n=3時只要作3次比較即可,…。而當n較大時,問題就不那麼容易處理了。要想直接解決一個規模較大的問題,有時是相當困難的。
分治法的設計思想是,將一個難以直接解決的大問題,分割成一些規模較小的相同問題,以便各個擊破,分而治之。
如果原問題可分割成k個子問題(1<k≤n),且這些子問題都可解,並可利用這些子問題的解求出原問題的解,那麼這種分治法就是可行的。由分治法產生的子問題往往是原問題的較小模式,這就為使用遞歸技術提供了方便。在這種情況下,反復應用分治手段,可以使子問題與原問題類型一致而其規模卻不斷縮小,最終使子問題縮小到很容易直接求出其解。這自然導致遞歸過程的產生。分治與遞歸像一對孿生兄弟,經常同時應用在演算法設計之中,並由此產生許多高效演算法。
分治法所能解決的問題一般具有以下幾個特徵:
(1)該問題的規模縮小到一定的程度就可以容易地解決;
(2)該問題可以分解為若干個規模較小的相同問題,即該問題具有最優子結構性質;
(3)利用該問題分解出的子問題的解可以合並為該問題的解;
(4)該問題所分解出的各個子問題是相互獨立的,即子問題之間不包含公共的子子問題。
上述的第一條特徵是絕大多數問題都可以滿足的,因為問題的計算復雜性一般是隨著問題規模的增加而增加;第二條特徵是應用分治法的前提,它也是大多數問題可以滿足的,此特徵反映了遞歸思想的應用;第三條特徵是關鍵,能否利用分治法完全取決於問題是否具有第三條特徵,如果具備了第一條和第二條特徵,而不具備第三條特徵,則可以考慮貪心法或動態規劃法。第四條特徵涉及到分治法的效率,如果各子問題是不獨立的,則分治法要做許多不必要的工作,重復地解公共的子問題,此時雖然可用分治法,但一般用動態規劃法較好。
分治法在每一層遞歸上都有三個步驟:
(1)分解:將原問題分解為若干個規模較小,相互獨立,與原問題形式相同的子問題;
(2)解決:若子問題規模較小而容易被解決則直接解,否則遞歸地解各個子問題;
(3)合並:將各個子問題的解合並為原問題的解。
6.動態規劃法
經常會遇到復雜問題不能簡單地分解成幾個子問題,而會分解出一系列的子問題。簡單地採用把大問題分解成子問題,並綜合子問題的解導出大問題的解的方法,問題求解耗時會按問題規模呈冪級數增加。
為了節約重復求相同子問題的時間,引入一個數組,不管它們是否對最終解有用,把所有子問題的解存於該數組中,這就是動態規劃法所採用的基本方法。以下先用實例說明動態規劃方法的使用。
【問題】 求兩字元序列的最長公共字元子序列
問題描述:字元序列的子序列是指從給定字元序列中隨意地(不一定連續)去掉若干個字元(可能一個也不去掉)後所形成的字元序列。令給定的字元序列X=「x0,x1,…,xm-1」,序列Y=「y0,y1,…,yk-1」是X的子序列,存在X的一個嚴格遞增下標序列<i0,i1,…,ik-1>,使得對所有的j=0,1,…,k-1,有xij=yj。例如,X=「ABCBDAB」,Y=「BCDB」是X的一個子序列。
考慮最長公共子序列問題如何分解成子問題,設A=「a0,a1,…,am-1」,B=「b0,b1,…,bm-1」,並Z=「z0,z1,…,zk-1」為它們的最長公共子序列。不難證明有以下性質:
(1) 如果am-1=bn-1,則zk-1=am-1=bn-1,且「z0,z1,…,zk-2」是「a0,a1,…,am-2」和「b0,b1,…,bn-2」的一個最長公共子序列;
(2) 如果am-1!=bn-1,則若zk-1!=am-1,蘊涵「z0,z1,…,zk-1」是「a0,a1,…,am-2」和「b0,b1,…,bn-1」的一個最長公共子序列;
(3) 如果am-1!=bn-1,則若zk-1!=bn-1,蘊涵「z0,z1,…,zk-1」是「a0,a1,…,am-1」和「b0,b1,…,bn-2」的一個最長公共子序列。
這樣,在找A和B的公共子序列時,如有am-1=bn-1,則進一步解決一個子問題,找「a0,a1,…,am-2」和「b0,b1,…,bm-2」的一個最長公共子序列;如果am-1!=bn-1,則要解決兩個子問題,找出「a0,a1,…,am-2」和「b0,b1,…,bn-1」的一個最長公共子序列和找出「a0,a1,…,am-1」和「b0,b1,…,bn-2」的一個最長公共子序列,再取兩者中較長者作為A和B的最長公共子序列。
代碼如下:
# include <stdio.h>
# include <string.h>
# define N 100
char a[N],b[N],str[N];

int lcs_len(char *a, char *b, int c[ ][ N])
{ int m=strlen(a), n=strlen(b), i,j;
for (i=0;i<=m;i++) c[0]=0;
for (i=0;i<=n;i++) c[0]=0;
for (i=1;i<=m;i++)
for (j=1;j<=m;j++)
if (a[i-1]==b[j-1])
c[j]=c[i-1][j-1]+1;
else if (c[i-1][j]>=c[j-1])
c[j]=c[i-1][j];
else
c[j]=c[j-1];
return c[m][n];
}

char *buile_lcs(char s[ ],char *a, char *b)
{ int k, i=strlen(a), j=strlen(b);
k=lcs_len(a,b,c);
s[k]=』』;
while (k>0)
if (c[j]==c[i-1][j]) i--;
else if (c[j]==c[j-1]) j--;
else { s[--k]=a[i-1];
i--; j--;
}
return s;
}

void main()
{ printf (「Enter two string(<%d)!\n」,N);
scanf(「%s%s」,a,b);
printf(「LCS=%s\n」,build_lcs(str,a,b));
}
7.迭代法
迭代法是用於求方程或方程組近似根的一種常用的演算法設計方法。設方程為f(x)=0,用某種數學方法導出等價的形式x=g(x),然後按以下步驟執行:
(1) 選一個方程的近似根,賦給變數x0;
(2) 將x0的值保存於變數x1,然後計算g(x1),並將結果存於變數x0;
(3) 當x0與x1的差的絕對值還小於指定的精度要求時,重復步驟(2)的計算。
若方程有根,並且用上述方法計算出來的近似根序列收斂,則按上述方法求得的x0就認為是方程的根。上述演算法用C程序的形式表示為:
程序如下:
【演算法】迭代法求方程組的根
{ for (i=0;i<n;i++)
x=初始近似根;
do {
for (i=0;i<n;i++)
y = x;
for (i=0;i<n;i++)
x = gi(X);
for (delta=0.0,i=0;i<n;i++)
if (fabs(y-x)>delta) delta=fabs(y-x); } while (delta>Epsilon);
for (i=0;i<n;i++)
printf(「變數x[%d]的近似根是 %f」,I,x);
printf(「\n」);
} 具體使用迭代法求根時應注意以下兩種可能發生的情況:
(1)如果方程無解,演算法求出的近似根序列就不會收斂,迭代過程會變成死循環,因此在使用迭代演算法前應先考察方程是否有解,並在程序中對迭代的次數給予限制;
(2)方程雖然有解,但迭代公式選擇不當,或迭代的初始近似根選擇不合理,也會導致迭代失敗。
8.窮舉搜索法
窮舉搜索法是對可能是解的眾多候選解按某種順序進行逐一枚舉和檢驗,並從眾找出那些符合要求的候選解作為問題的解。
【問題】 將A、B、C、D、E、F這六個變數排成如圖所示的三角形,這六個變數分別取[1,6]上的整數,且均不相同。求使三角形三條邊上的變數之和相等的全部解。如圖就是一個解。
程序引入變數a、b、c、d、e、f,並讓它們分別順序取1至6的整數,在它們互不相同的條件下,測試由它們排成的如圖所示的三角形三條邊上的變數之和是否相等,如相等即為一種滿足要求的排列,把它們輸出。當這些變數取盡所有的組合後,程序就可得到全部可能的解。程序如下:
按窮舉法編寫的程序通常不能適應變化的情況。如問題改成有9個變數排成三角形,每條邊有4個變數的情況,程序的循環重數就要相應改變。

㈦ 在計算機中演算法有什麼作用

在計算機中演算法的作用:計算機中使用的其他技術離不開演算法的支撐,而且只有把演算法和其他技術有效的結合起來,才能使計算機解決問題的能力最大化,最後達到1+1>2的效果。

計算機演算法是以一步接一步的方式來詳細描述計算機如何將輸入轉化為所要求的輸出的過程,或者說,演算法是對計算機上執行的計算過程的具體描述。

計算機不能做到無限快,存儲也不是免費的,為了提高解決問題的效率,必須研究演算法,同時,解決同一個問題的各種不同演算法的效率常常相差非常大,這種效率上的差距影響往往比硬體和軟體方面的差距還要大。

(7)演算法的重要性擴展閱讀:

計算機中演算法特點:

1、有窮性。一個演算法應包含有限的操作步驟,而不能是無限的。事實上「有窮性」往往指「在合理的范圍之內」。如果讓計算機執行一個歷時1000年才結束的演算法,這雖然是有窮的,但超過了合理的限度,人們不把他視為有效演算法。

2、確定性。演算法中的每一個步驟都應當是確定的,而不應當是含糊的、模稜兩可的。演算法中的每一個步驟應當不致被解釋成不同的含義,而應是十分明確的。也就是說,演算法的含義應當是唯一的,而不應當產生「歧義性」。

3、有零個或多個輸入、所謂輸入是指在執行演算法是需要從外界取得必要的信息。

4、有一個或多個輸出。演算法的目的是為了求解,沒有輸出的演算法是沒有意義的。

5、有效性。 演算法中的每一個 步驟都應當能有效的執行。並得到確定的結果。

㈧ 演算法為什麼重要

第一,演算法實際上不能孤立理解。演算法必須和數據、產品一起來理解。演算法的出現,實際上背後隱藏著人們閱讀行為的「數據化」。我們知道,閱讀是一種私密的行為,閱讀的行為是人們建立精神世界的支柱。那麼問題來了,我們使用產品,我們必須上傳數據。當每個人的閱讀都變為數據,實際上意味著每個人的愛好都能夠被迅速的存儲(你也可以被理解為監視)。而演算法則使得機器能夠最有效率的對人們的愛好和行為進行判斷和分析。從用戶上看,這即是方便,也是隱私的暴露。而對於商業來看,當數據和演算法達到一定水平之後,判斷人們的愛好和規律,進而製作廣告,推出吸引人的媒介產品就成了輕而易舉的事情。可以說未來的數據就是最核心,最重要的資源。

第二,演算法意味著預測,意味著在人們的意識之外,發現他還沒有找到的需求。這是很有意思的。它超出了人們的想像,機器比我們更加了解我們自己。從媒介產品角度來說,這非常有意思,傳播的生產模式可能改變了,反饋滯後的問題也會解決。而從更長遠的角度看,了解閱讀數據只是第一步,下一步可能是更加深層次的愛好,甚至是更底層的行為和思考。但從這個方面來,演算法不是人工智慧,但他意味著人工智慧。它是一個關鍵的入口,從這個地方開始,人們可以藉助機器的力量對自己的行為進行矯正,人的感性思維能力和數據得出的科學結論開始融合了,這是人走向人機合一的第一步。但反過來,我們也需要警惕,演算法的這種功能是不是掌握在社會的良性力量手裡?如果資本或者其他利益集團掌握了演算法和數據資源,是否會對社會控制又多一層牢不可破的枷鎖,一個反烏托邦的社會可能會到來。

第三,不要忘記了演算法的迭代。演算法的妙處在於它是自我成長的。人的迭代是有限的,因為人的思維模式是固定的,學習能力在成年後隨著時間遞減。但是演算法,就像Alphago的棋術,幾年內就漲了幾個量級。這是因為隨著人們使用,給予越來越多的反饋,演算法會越來越精確,發展到人們難以想像的地步,因為演算法是機器學習得出的,人們也越來越不知道演算法背後究竟是什麼東西。可以說,這是其他任何模式都無法做到的。他不知道這背後到底是什麼。

所以總的來說一句話,演算法是很有意思也很有價值的一個熱點。我們要答這個熱點,可以用到的理論既要包括新媒體、人工智慧的相關理論包括一些我們已經說到的如信息繭房、知識溝之類的問題,也要從反面用到傳播政治經濟學(考慮演算法和數據資源的所有權)、全景監視(演算法意味著對人們徹底的監視)。這樣我們答題會比較有深度,也比較完整。

㈨ 到底是演算法重要還是開發技術重要

都不重要。

1、能夠把「演算法或開發」與現實需求更好結合的最好-
利是利益的利,便利的利----闡述共鳴是千年不變的法則。
2、先搞演算法--基礎;開發技術是演算法的一小部分----
最重要的是:1、學最最基礎的。2、搞定現實人的問題。 ----1 2結合才能奇跡。
最好的不在於技術,而在於共鳴或輿論
3、思想無價、知識次之、其餘不要被過多干擾。

㈩ 數據結構和演算法為什麼這么重要

演算法可以理解為做一件事、任務的思路和方案;這個重要性應該能明白吧。
而數據結構則是為了更好、更方便的實現演算法。

舉個例子,不知道恰當不恰當:
你想自己造一座房子。於是你設計了一個方案(==演算法):首先選地址,然後買材料,最後動手造;
為了能較好的完成造房子,你設計一種(大)磚頭(==數據結構),這樣堆砌起來比較方便。你自己造的大磚頭相當於你設計的「數據結構」.

熱點內容
福建社保銀行卡初始密碼是多少 發布:2024-11-15 11:47:40 瀏覽:911
游戲多開用什麼配置 發布:2024-11-15 11:46:51 瀏覽:729
管理java版本 發布:2024-11-15 11:44:03 瀏覽:629
ndk編譯的程序如何執行 發布:2024-11-15 11:43:18 瀏覽:626
輕應用伺服器適合搭建網站嗎 發布:2024-11-15 11:36:08 瀏覽:246
c語言的百分號 發布:2024-11-15 11:34:24 瀏覽:31
一加五安卓8什麼時候推送 發布:2024-11-15 11:19:40 瀏覽:854
暗影騎士擎有哪些配置 發布:2024-11-15 11:13:46 瀏覽:598
方舟主機專用伺服器是什麼意思 發布:2024-11-15 11:12:23 瀏覽:8
創維最早的伺服器是什麼 發布:2024-11-15 11:11:35 瀏覽:864