啟發式演算法
A. 什麼是啟發式演算法(轉)
它並不告訴你該如何直接從A點到達B點,它甚至可能連A點和B點在哪裡都不知道。實際上,啟發式方法是穿著小丑兒外套的演算法:它的結果不太好預測,也更有趣,但不會給你什麼30 天無效退款的保證。 駕駛汽車到達某人的家,寫成演算法是這樣的:沿167 號高速公路往南行至Puyallup;從SouthHillMall出口出來後往山上開4.5 英里;在一個雜物店旁邊的紅綠燈路口右轉,接著在第一個路口左轉;從左邊褐色大房子的車道進去,就是NorthCedar路714號。 用啟發式方法來描述則可能是這樣:找出上一次我們寄給你的信,照著信上面的寄出地址開車到這個鎮;到了之後你問一下我們的房子在哪裡。這里每個人都認識我們——肯定有人會很願意幫助你的;如果你找不到人,那就找個公共電話亭給我們打電話,我們會出來接你。 從上面的啟發式演算法的解釋可以看出,啟發式演算法的難點是建立符合實際問題的一系列啟發式規則。
B. 經典的啟發式演算法包括哪些
蟻群,模擬退火,禁忌搜索,人工神經網路等。。。
推薦教材《現代優化計算方法》第二版 邢文訓,謝金星 清華大學出版社
另一本補充,《最優化理論與方法》 黃平 清華大學出版社
第一本教材網上有電子版,你自己搜下
C. 誰能詳細介紹一下啟發式演算法的原理或者方法
整數規劃一般是不容易得到最優解的。啟發式演算法可以在合理的計算時間內得到較解。局域搜索啟發式演算法應用廣泛。局域搜索的一般步驟如下: 從一個初始可行解出發 找出相鄰的可行解 從相鄰的可行解中找出更好的可行解 地,局域搜索啟發式演算法會得到一個局部最優解,而這個局部最優解有時就是全局。演算法的好與壞都決定於步驟 3。 1.1 模擬退火方法 相鄰元素是隨機選擇的,選上的概率為pn , pn= 1∑。移動的決策取n∈ N標成本和退火概率: c(y)?c(x)??py(x)?eTc(y)φ c(x) pxy= ? ?py(x)?Ct溫度梯度是根據一定的規則選擇的,比如T (t) =T t() = Calog t或, a π 1。
D. 啟發式演算法的新演算法
如何找到一個分叉率較少又通用的合理啟發式演算法,已被人工智慧社群深入探究過。 他們使用幾種常見技術:
部分問題的解答的代價通常可以評估解決整個問題的代價,通常很合理。例如一個10-puzzle拼盤,解題的代價應該與將1到5的方塊移回正確位置的代價差不多。通常解題者會先建立一個儲存部份問題所需代價的模式資料庫(pattern database)以評估問題。 解決較易的近似問題通常可以拿來合理評估原先問題。例如曼哈頓距離是一個簡單版本的n-puzzle問題,因為我們假設可以獨立移動一個方塊到我們想要的位置,而暫不考慮會移到其他方塊的問題。 給我們一群合理的啟發式函式h1(n),h2(n),...,hi(n),而函式h(n) = max{h1(n),h2(n),...,hi(n)}則是個可預測這些函式的啟發式函式。 一個在1993年由A.E. Prieditis寫出的程式ABSOLVER就運用了這些技術,這程式可以自動為問題產生啟發式演算法。ABSOLVER為8-puzzle產生的啟發式演算法優於任何先前存在的!而且它也發現了第一個有用的解魔術方塊的啟發式程式。
E. 遺傳演算法是確定性演算法還是啟發式演算法
啟發式演算法實際上就是針對具體問題,加入了人的經驗的最優求解演算法。不同的問題,有不同的啟發規則。
遺傳演算法、粒子群演算法這一類演算法某種程度上可以歸為啟發式演算法。因不同的問題,實現遺傳演算法和粒子群演算法的方法與途徑也會有所區別。
F. 什麼是啟發式演算法
大自然是神奇的,它造就了很多巧妙的手段和運行機制。受大自然的啟發,人們從大自然的運行規律中找到了許多解決實際問題的方法。對於那些受大自然的運行規律或者面向具體問題的經驗、規則啟發出來的方法,人們常常稱之為啟發式演算法(Heuristic Algorithm)。現在的啟發式演算法也不是全部來自然的規律,也有來自人類積累的工作經驗。 駕駛汽車到達某人的家,寫成演算法是這樣的:沿167 號高速公路往南行至陽谷;從陽谷高速出口出來後往山上開4.5 英里;在一個雜物店旁邊的紅綠燈路口右轉,接著在第一個路口左轉;從左邊褐色大房子的車道進去,就是某人的家。 啟發式方法來描述則可能是這樣:找出上一次我們寄給你的信,照著信上面的寄出地址開車到這個鎮;到了之後你問一下我們的房子在哪裡。這里每個人都認識我們——肯定有人會很願意幫助你的;如果你找不到人,那就找個公共電話亭給我們打電話,我們會出來接你。
G. 啟發式演算法的介紹
啟發式演算法(heuristic algorithm)是相對於最優化演算法提出的。一個問題的最優演算法求得該問題每個實例的最優解。啟發式演算法可以這樣定義:一個基於直觀或經驗構造的演算法,在可接受的花費(指計算時間和空間)下給出待解決組合優化問題每一個實例的一個可行解,該可行解與最優解的偏離程度一般不能被預計。
H. 遺傳演算法和啟發式演算法是什麼關系
都是為了解決NP問題這種需要大規模運算的演算法,原理不一樣,運算量也不一樣的。