當前位置:首頁 » 操作系統 » xgboost演算法

xgboost演算法

發布時間: 2022-01-28 17:12:44

『壹』 機器學習中GBDT和XGBoosts的區別是

首先來了解一下boosting思想,每次訓練單個弱分類器時,都將上一次分錯的數據權重提高一點再進行當前單個弱分類器的學習,這樣往後執行,訓練出來的單個弱分類器就會越在意那些容易分錯的點,最終通過加權求和的方式組合成一個最終的學習器,gradent boosting 是boosting的一種,每一次構建單個學習器時,是在之前建立的模型的損失函數的梯度下降方向, GB與Adaboost的區別在於:
AdaBoost是通過提升錯分數據點的權重來定位模型的不足。
Gradient Boosting是通過算梯度(gradient)來定位模型的不足。
主要思想是,每一次建立單個學習器時,是在之前建立的模型的損失函數的梯度下降方向,損失函數越大,說明模型越容易出錯,如果我們的模型能夠讓損失函數持續的下降,則說明我們的模型在不停的改進,而最好的方式就是讓損失函數在其梯度方向上下降。
GBDT=GB+DT(decision tree),即基分類器為決策樹時,這里的決策樹是回歸樹。
Xgboost 是GB演算法的高效實現,其中基分類器除了可以使CART也可以是線性分類器。
幾大區別:
傳統GBDT以CART作為基分類器,xgboost還支持線性分類器,這個時候xgboost相當於帶L1和L2正則化項的邏輯斯帝回歸或者線性回歸
傳統GBDT在優化時只用到了一階導數,而xgboost對代價函數進行了二階泰勒展開,用到了一階和二階導數
xgboost加入了正則項,防止過擬合
shrinkage,相當於學習率,在每完成一次迭代後,會乘上這個系數,削減每棵樹的影響
列抽樣,借鑒隨機森林的做法,支持列抽樣,不僅能降低過擬合,還能減少計算。

『貳』 機器學習演算法中GBDT和XGBOOST的區別有哪些

機器學習演算法中GBDT和XGBOOST的區別有哪些?

在昨天阿里的面試中被問到了,我只簡單的說了下xgboost能自動利用cpu的多線程,而且適當改進了gradient boosting,加了剪枝,控制了模型的復雜程度

添加評論

分享

默認排序按時間排序

9 個回答

weponML/DM,https://github.com/wepe

252人贊同

xgboost相比傳統gbdt有何不同?xgboost為什麼快?xgboost如何支持並行?

看了陳天奇大神的文章和slides,略抒己見,沒有面面俱到,不恰當的地方歡迎討論:

傳統GBDT以CART作為基分類器,xgboost還支持線性分類器,這個時候xgboost相當於帶L1和L2正則化項的邏輯斯蒂回歸(分類問題)或者線性回歸(回歸問題)。

傳統GBDT在優化時只用到一階導數信息,xgboost則對代價函數進行了二階泰勒展開,同時用到了一階和二階導數。順便提一下,xgboost工具支持自定義代價函數,只要函數可一階和二階求導。

xgboost在代價函數里加入了正則項,用於控制模型的復雜度。正則項里包含了樹的葉子節點個數、每個葉子節點上輸出的score的L2模的平方和。從Bias-variance tradeoff角度來講,正則項降低了模型的variance,使學習出來的模型更加簡單,防止過擬合,這也是xgboost優於傳統GBDT的一個特性。

Shrinkage(縮減),相當於學習速率(xgboost中的eta)。xgboost在進行完一次迭代後,會將葉子節點的權重乘上該系數,主要是為了削弱每棵樹的影響,讓後面有更大的學習空間。實際應用中,一般把eta設置得小一點,然後迭代次數設置得大一點。(補充:傳統GBDT的實現也有學習速率)

列抽樣(column subsampling)。xgboost借鑒了隨機森林的做法,支持列抽樣,不僅能降低過擬合,還能減少計算,這也是xgboost異於傳統gbdt的一個特性。


對缺失值的處理。對於特徵的值有缺失的樣本,xgboost可以自動學習出它的分裂方向。

xgboost工具支持並行。boosting不是一種串列的結構嗎?怎麼並行的?注意xgboost的並行不是tree粒度的並行,xgboost也是一次迭代完才能進行下一次迭代的(第t次迭代的代價函數里包含了前面t-1次迭代的預測值)。xgboost的並行是在特徵粒度上的。我們知道,決策樹的學習最耗時的一個步驟就是對特徵的值進行排序(因為要確定最佳分割點),xgboost在訓練之前,預先對數據進行了排序,然後保存為block結構,後面的迭代中重復地使用這個結構,大大減小計算量。這個block結構也使得並行成為了可能,在進行節點的分裂時,需要計算每個特徵的增益,最終選增益最大的那個特徵去做分裂,那麼各個特徵的增益計算就可以開多線程進行。


可並行的近似直方圖演算法。樹節點在進行分裂時,我們需要計算每個特徵的每個分割點對應的增益,即用貪心法枚舉所有可能的分割點。當數據無法一次載入內存或者在分布式情況下,貪心演算法效率就會變得很低,所以xgboost還提出了一種可並行的近似直方圖演算法,用於高效地生成候選的分割點。


=============

回復@肖岩在評論里的問題,因為有些公式放正文比較好。評論里討論的問題的大意是 「xgboost代價函數里加入正則項,是否優於cart的剪枝」。其實陳天奇大神的slides裡面也是有提到的,我當一下搬運工。
決策樹的學習過程就是為了找出最優的決策樹,然而從函數空間里所有的決策樹中找出最優的決策樹是NP-C問題,所以常採用啟發式(Heuristic)的方法,如CART裡面的優化GINI指數、剪枝、控制樹的深度。這些啟發式方法的背後往往隱含了一個目標函數,這也是大部分人經常忽視掉的。xgboost的目標函數如下:

這個公式形式上跟ID3演算法(採用entropy計算增益) 、CART演算法(採用gini指數計算增益) 是一致的,都是用分裂後的某種值 減去 分裂前的某種值,從而得到增益。為了限制樹的生長,我們可以加入閾值,當增益大於閾值時才讓節點分裂,上式中的gamma即閾值,它是正則項里葉子節點數T的系數,所以xgboost在優化目標函數的同時相當於做了預剪枝。另外,上式中還有一個系數lambda,是正則項里leaf score的L2模平方的系數,對leaf score做了平滑,也起到了防止過擬合的作用,這個是傳統GBDT里不具備的特性。

『叄』 xgboost是梯度上升還是梯度下降

很多,主要說下監督學習這塊的演算法哈。歡迎討論。
svm,支撐向量機,通過找到樣本空間中的一個超平面,實現樣本的分類,也可以作回歸,主要用在文本分類,圖像識別等領域,詳見:;
lr,邏輯回歸,本質也是線性回歸,通過擬合擬合樣本的某個曲線,然後使用邏輯函數進行區間縮放,但是一般用來分類,主要用在ctr預估、等;
nn,神經網路,通過找到某種非線性模型擬合數據,主要用在圖像等;
nb,樸素貝葉斯,通過找到樣本所屬於的聯合分步,然後通過貝葉斯公式,計算樣本的後驗概率,從而進行分類,主要用來文本分類;
dt,決策樹,構建一棵樹,在節點按照某種規則(一般使用信息熵)來進行樣本劃分,實質是在樣本空間進行塊狀的劃分,主要用來分類,也有做回歸,但更多的是作為弱分類器,用在model embedding中;
rf,隨進森林,是由許多決策樹構成的森林,每個森林中訓練的樣本是從整體樣本中抽樣得到,每個節點需要進行劃分的特徵也是抽樣得到,這樣子就使得每棵樹都具有獨特領域的知識,從而有更好的泛化能力;
gbdt,梯度提升決策樹,實際上也是由多棵樹構成,和rf不同的是,每棵樹訓練樣本是上一棵樹的殘差,這體現了梯度的思想,同時最後的結構是用這所有的樹進行組合或者投票得出,主要用在、相關性等;
knn,k最近鄰,應該是最簡單的ml方法了,對於未知標簽的樣本,看與它最近的k個樣本(使用某種距離公式,馬氏距離或者歐式距離)中哪種標簽最多,它就屬於這類;

『肆』 xgboost 迭代次數一般為多少

演算法: 第一步:選K個初始聚類中心,z1(1),z2(1),…,zK(1),其中括弧內的序號為尋找聚類中心的迭代運算的次序號。聚類中心的向量值可任意設定,例如可選開始的K個模式樣本的向量值作為初始聚類中心。

『伍』 怎樣用xgboost做時間序列預測

XGBoost參數調優完全指南(附python代碼)

譯註:文內提供的代碼和運行結果有一定差異,可以從這里完整代碼對照參考。另外,我自己跟著教程做的時候,發現我的庫無法解析字元串類型的特徵,所以只用其中一部分特徵做的,具體數值跟文章中不一樣,反而可以幫助理解文章。所以大家其實也可以小小修改一下代碼,不一定要完全跟著教程做~ ^0^

需要提前安裝好的庫:簡介如果你的預測模型表現得有些不盡如人意,那就用XGBoost吧。XGBoost演算法現在已經成為很多數據工程師的重要武器。它是一種十分精緻的演算法,可以處理各種不規則的數據。

構造一個使用XGBoost的模型十分簡單。但是,提高這個模型的表現就有些困難(至少我覺得十分糾結)。這個演算法使用了好幾個參數。所以為了提高模型的表現,參數的調整十分必要。在解決實際問題的時候,有些問題是很難回答的——你需要調整哪些參數?這些參數要調到什麼值,才能達到理想的輸出?

這篇文章最適合剛剛接觸XGBoost的人閱讀。在這篇文章中,我們會學到參數調優的技巧,以及XGboost相關的一些有用的知識。以及,我們會用Python在一個數據集上實踐一下這個演算法。你需要知道的XGBoost(eXtreme Gradient Boosting)是Gradient Boosting演算法的一個優化的版本。特別鳴謝:我個人十分感謝Mr Sudalai Rajkumar (aka SRK)大神的支持,目前他在AV Rank中位列第二。如果沒有他的幫助,就沒有這篇文章。在他的幫助下,我們才能給無數的數據科學家指點迷津。給他一個大大的贊!內容列表1、XGBoost的優勢

2、理解XGBoost的參數

3、調整參數(含示例)1、XGBoost的優勢XGBoost演算法可以給預測模型帶來能力的提升。當我對它的表現有更多了解的時候,當我對它的高准確率背後的原理有更多了解的時候,我發現它具有很多優勢:1、正則化標准GBM的實現沒有像XGBoost這樣的正則化步驟。正則化對減少過擬合也是有幫助的。 實際上,XGBoost以「正則化提升(regularized boosting)」技術而聞名。2、並行處理XGBoost可以實現並行處理,相比GBM有了速度的飛躍。 不過,眾所周知,Boosting演算法是順序處理的,它怎麼可能並行呢?每一課樹的構造都依賴於前一棵樹,那具體是什麼讓我們能用多核處理器去構造一個樹呢?我希望你理解了這句話的意思。 XGBoost 也支持Hadoop實現。3、高度的靈活性XGBoost 允許用戶定義自定義優化目標和評價標准 它對模型增加了一個全新的維度,所以我們的處理不會受到任何限制。4、缺失值處理XGBoost內置處理缺失值的規則。 用戶需要提供一個和其它樣本不同的值,然後把它作為一個參數傳進去,以此來作為缺失值的取值。XGBoost在不同節點遇到缺失值時採用不同的處理方法,並且會學習未來遇到缺失值時的處理方法。5、剪枝當分裂時遇到一個負損失時,GBM會停止分裂。因此GBM實際上是一個貪心演算法。 XGBoost會一直分裂到指定的最大深度(max_depth),然後回過頭來剪枝。如果某個節點之後不再有正值,它會去除這個分裂。 這種做法的優點,當一個負損失(如-2)後面有個正損失(如+10)的時候,就顯現出來了。GBM會在-2處停下來,因為它遇到了一個負值。但是XGBoost會繼續分裂,然後發現這兩個分裂綜合起來會得到+8,因此會保留這兩個分裂。6、內置交叉驗證XGBoost允許在每一輪boosting迭代中使用交叉驗證。因此,可以方便地獲得最優boosting迭代次數。 而GBM使用網格搜索,只能檢測有限個值。7、在已有的模型基礎上繼續XGBoost可以在上一輪的結果上繼續訓練。這個特性在某些特定的應用上是一個巨大的優勢。 sklearn中的GBM的實現也有這個功能,兩種演算法在這一點上是一致的。相信你已經對XGBoost強大的功能有了點概念。注意這是我自己總結出來的幾點,你如果有更多的想法,盡管在下面評論指出,我會更新這個列表的!2、XGBoost的參數XGBoost的作者把所有的參數分成了三類:

1、通用參數:宏觀函數控制。

2、Booster參數:控制每一步的booster(tree/regression)。

3、學習目標參數:控制訓練目標的表現。

在這里我會類比GBM來講解,所以作為一種基礎知識。通用參數這些參數用來控制XGBoost的宏觀功能。1、booster[默認gbtree]選擇每次迭代的模型,有兩種選擇:

gbtree:基於樹的模型

gbliner:線性模型2、silent[默認0]當這個參數值為1時,靜默模式開啟,不會輸出任何信息。 一般這個參數就保持默認的0,因為這樣能幫我們更好地理解模型。3、nthread[默認值為最大可能的線程數]這個參數用來進行多線程式控制制,應當輸入系統的核數。 如果你希望使用CPU全部的核,那就不要輸入這個參數,演算法會自動檢測它。

還有兩個參數,XGBoost會自動設置,目前你不用管它。接下來咱們一起看booster參數。booster參數盡管有兩種booster可供選擇,我這里只介紹tree booster,因為它的表現遠遠勝過linear booster,所以linear booster很少用到。1、eta[默認0.3]和GBM中的 learning rate 參數類似。 通過減少每一步的權重,可以提高模型的魯棒性。 典型值為0.01-0.2。2、min_child_weight[默認1]決定最小葉子節點樣本權重和。 和GBM的 min_child_leaf 參數類似,但不完全一樣。XGBoost的這個參數是最小樣本權重的和,而GBM參數是最小樣本總數。 這個參數用於避免過擬合。當它的值較大時,可以避免模型學習到局部的特殊樣本。 但是如果這個值過高,會導致欠擬合。這個參數需要使用CV來調整。3、max_depth[默認6]和GBM中的參數相同,這個值為樹的最大深度。 這個值也是用來避免過擬合的。max_depth越大,模型會學到更具體更局部的樣本。 需要使用CV函數來進行調優。 典型值:3-104、max_leaf_nodes樹上最大的節點或葉子的數量。 可以替代max_depth的作用。因為如果生成的是二叉樹,一個深度為n的樹最多生成n2個葉子。 如果定義了這個參數,GBM會忽略max_depth參數。5、gamma[默認0]在節點分裂時,只有分裂後損失函數的值下降了,才會分裂這個節點。Gamma指定了節點分裂所需的最小損失函數下降值。 這個參數的值越大,演算法越保守。這個參數的值和損失函數息息相關,所以是需要調整的。6、max_delta_step[默認0]這參數限制每棵樹權重改變的最大步長。如果這個參數的值為0,那就意味著沒有約束。如果它被賦予了某個正值,那麼它會讓這個演算法更加保守。 通常,這個參數不需要設置。但是當各類別的樣本十分不平衡時,它對邏輯回歸是很有幫助的。 這個參數一般用不到,但是你可以挖掘出來它更多的用處。7、subsample[默認1]和GBM中的subsample參數一模一樣。這個參數控制對於每棵樹,隨機采樣的比例。 減小這個參數的值,演算法會更加保守,避免過擬合。但是,如果這個值設置得過小,它可能會導致欠擬合。 典型值:0.5-18、colsample_bytree[默認1]和GBM裡面的max_features參數類似。用來控制每棵隨機采樣的列數的佔比(每一列是一個特徵)。 典型值:0.5-19、colsample_bylevel[默認1]用來控制樹的每一級的每一次分裂,對列數的采樣的佔比。 我個人一般不太用這個參數,因為subsample參數和colsample_bytree參數可以起到相同的作用。但是如果感興趣,可以挖掘這個參數更多的用處。10、lambda[默認1]權重的L2正則化項。(和Ridge regression類似)。 這個參數是用來控制XGBoost的正則化部分的。雖然大部分數據科學家很少用到這個參數,但是這個參數在減少過擬合上還是可以挖掘出更多用處的。11、alpha[默認1]權重的L1正則化項。(和Lasso regression類似)。 可以應用在很高維度的情況下,使得演算法的速度更快。12、scale_pos_weight[默認1]在各類別樣本十分不平衡時,把這個參數設定為一個正值,可以使演算法更快收斂。學習目標參數這個參數用來控制理想的優化目標和每一步結果的度量方法。1、objective[默認reg:linear]這個參數定義需要被最小化的損失函數。最常用的值有:

binary:logistic 二分類的邏輯回歸,返回預測的概率(不是類別)。 multi:softmax 使用softmax的多分類器,返回預測的類別(不是概率)。

在這種情況下,你還需要多設一個參數:num_class(類別數目)。 multi:softprob 和multi:softmax參數一樣,但是返回的是每個數據屬於各個類別的概率。2、eval_metric[默認值取決於objective參數的取值]對於有效數據的度量方法。 對於回歸問題,默認值是rmse,對於分類問題,默認值是error。 典型值有:

rmse 均方根誤差(∑Ni=1?2N??????√) mae 平均絕對誤差(∑Ni=1|?|N) logloss 負對數似然函數值 error 二分類錯誤率(閾值為0.5) merror 多分類錯誤率 mlogloss 多分類logloss損失函數 auc 曲線下面積3、seed(默認0)隨機數的種子 設置它可以復現隨機數據的結果,也可以用於調整參數如果你之前用的是Scikit-learn,你可能不太熟悉這些參數。但是有個好消息,python的XGBoost模塊有一個sklearn包,XGBClassifier。這個包中的參數是按sklearn風格命名的。會改變的函數名是:

1、eta ->learning_rate

2、lambda->reg_lambda

3、alpha->reg_alpha

你肯定在疑惑為啥咱們沒有介紹和GBM中的』n_estimators』類似的參數。XGBClassifier中確實有一個類似的參數,但是,是在標准XGBoost實現中調用擬合函數時,把它作為』num_boosting_rounds』參數傳入。調整參數(含示例)我已經對這些數據進行了一些處理:City變數,因為類別太多,所以刪掉了一些類別。 DOB變數換算成年齡,並刪除了一些數據。 增加了 EMI_Loan_Submitted_Missing 變數。如果EMI_Loan_Submitted變數的數據缺失,則這個參數的值為1。否則為0。刪除了原先的EMI_Loan_Submitted變數。 EmployerName變數,因為類別太多,所以刪掉了一些類別。 因為Existing_EMI變數只有111個值缺失,所以缺失值補充為中位數0。 增加了 Interest_Rate_Missing 變數。如果Interest_Rate變數的數據缺失,則這個參數的值為1。否則為0。刪除了原先的Interest_Rate變數。 刪除了Lead_Creation_Date,從直覺上這個特徵就對最終結果沒什麼幫助。 Loan_Amount_Applied, Loan_Tenure_Applied 兩個變數的缺項用中位數補足。 增加了 Loan_Amount_Submitted_Missing 變數。如果Loan_Amount_Submitted變數的數據缺失,則這個參數的值為1。否則為0。刪除了原先的Loan_Amount_Submitted變數。 增加了 Loan_Tenure_Submitted_Missing 變數。如果 Loan_Tenure_Submitted 變數的數據缺失,則這個參數的值為1。否則為0。刪除了原先的 Loan_Tenure_Submitted 變數。 刪除了LoggedIn, Salary_Account 兩個變數 增加了 Processing_Fee_Missing 變數。如果 Processing_Fee 變數的數據缺失,則這個參數的值為1。否則為0。刪除了原先的 Processing_Fee 變數。 Source前兩位不變,其它分成不同的類別。 進行了量化和獨熱編碼(一位有效編碼)。如果你有原始數據,可以從資源庫裡面data_preparation的Ipython notebook 文件,然後自己過一遍這些步驟。首先,import必要的庫,然後載入數據。#Import libraries:

import pandas as pd

import numpy as np

import xgboost as xgb

from xgboost.sklearn import XGBClassifier

from sklearn import cross_validation, metrics #Additional scklearn functions

from sklearn.grid_search import GridSearchCV #Perforing grid search


import matplotlib.pylab as plt

%matplotlib inline

from matplotlib.pylab import rcParams

rcParams['figure.figsize'] = 12, 4


train = pd.read_csv('train_modified.csv')

target = 'Disbursed'

IDcol = 'ID'


注意我import了兩種XGBoost:xgb - 直接引用xgboost。接下來會用到其中的「cv」函數。 XGBClassifier - 是xgboost的sklearn包。這個包允許我們像GBM一樣使用Grid Search 和並行處理。在向下進行之前,我們先定義一個函數,它可以幫助我們建立XGBoost models 並進行交叉驗證。好消息是你可以直接用下面的函數,以後再自己的models中也可以使用它。def modelfit(alg, dtrain, predictors,useTrainCV=True, cv_folds=5, early_stopping_rounds=50):

if useTrainCV:

xgb_param = alg.get_xgb_params()

xgtrain = xgb.DMatrix(dtrain[predictors].values, label=dtrain[target].values)

cvresult = xgb.cv(xgb_param, xgtrain, num_boost_round=alg.get_params()['n_estimators'], nfold=cv_folds,

metrics='auc', early_stopping_rounds=early_stopping_rounds, show_progress=False)

alg.set_params(n_estimators=cvresult.shape[0])


#Fit the algorithm on the data

alg.fit(dtrain[predictors], dtrain['Disbursed'],eval_metric='auc')


#Predict training set:

dtrain_predictions = alg.predict(dtrain[predictors])

dtrain_predprob = alg.predict_proba(dtrain[predictors])[:,1]


#Print model report:

print " Model Report"

print "Accuracy : %.4g" % metrics.accuracy_score(dtrain['Disbursed'].values, dtrain_predictions)

print "AUC Score (Train): %f" % metrics.roc_auc_score(dtrain['Disbursed'], dtrain_predprob)


feat_imp = pd.Series(alg.booster().get_fscore()).sort_values(ascending=False)

feat_imp.plot(kind='bar', title='Feature Importances')

plt.ylabel('Feature Importance Score')


這個函數和GBM中使用的有些許不同。不過本文章的重點是講解重要的概念,而不是寫代碼。如果哪裡有不理解的地方,請在下面評論,不要有壓力。注意xgboost的sklearn包沒有「feature_importance」這個量度,但是get_fscore()函數有相同的功能。參數調優的一般方法。我們會使用和GBM中相似的方法。需要進行如下步驟:

  1. 選擇較高的學習速率(learning rate)。一般情況下,學習速率的值為0.1。但是,對於不同的問題,理想的學習速率有時候會在0.05到0.3之間波動。選擇對應於此學習速率的理想決策樹數量。XGBoost有一個很有用的函數「cv」,這個函數可以在每一次迭代中使用交叉驗證,並返回理想的決策樹數量。

  2. 2. 對於給定的學習速率和決策樹數量,進行決策樹特定參數調優(max_depth, min_child_weight, gamma, subsample, colsample_bytree)。在確定一棵樹的過程中,我們可以選擇不同的參數,待會兒我會舉例說明。

  3. 3. xgboost的正則化參數的調優。(lambda, alpha)。這些參數可以降低模型的復雜度,從而提高模型的表現。

  4. 4. 降低學習速率,確定理想參數。咱們一起詳細地一步步進行這些操作。第一步:確定學習速率和tree_based 參數調優的估計器數目。為了確定boosting 參數,我們要先給其它參數一個初始值。咱們先按如下方法取值:

  5. 1、max_depth = 5 :這個參數的取值最好在3-10之間。我選的起始值為5,但是你也可以選擇其它的值。起始值在4-6之間都是不錯的選擇。

  6. 2、min_child_weight = 1:在這里選了一個比較小的值,因為這是一個極不平衡的分類問題。因此,某些葉子節點下的值會比較小。

  7. 3、gamma = 0: 起始值也可以選其它比較小的值,在0.1到0.2之間就可以。這個參數後繼也是要調整的。

  8. 4、subsample,colsample_bytree = 0.8: 這個是最常見的初始值了。典型值的范圍在0.5-0.9之間。

  9. 5、scale_pos_weight = 1: 這個值是因為類別十分不平衡。

  10. 注意哦,上面這些參數的值只是一個初始的估計值,後繼需要調優。這里把學習速率就設成默認的0.1。然後用xgboost中的cv函數來確定最佳的決策樹數量。前文中的函數可以完成這個工作。#Choose all predictors except target IDcols

  11. predictors = [x for x in train.columns if x not in [target,IDcol]]

  12. xgb1 = XGBClassifier(

  13. learning_rate =0.1,

  14. n_estimators=1000,

  15. max_depth=5,

  16. min_child_weight=1,

  17. gamma=0,

  18. subsample=0.8,

  19. colsample_bytree=0.8,

  20. objective= 'binary:logistic',

  21. nthread=4,

  22. scale_pos_weight=1,

  23. seed=27)

  24. modelfit(xgb1, train, predictors)

從輸出結果可以看出,在學習速率為0.1時,理想的決策樹數目是140。這個數字對你而言可能比較高,當然這也取決於你的系統的性能。注意:在AUC(test)這里你可以看到測試集的AUC值。但是如果你在自己的系統上運行這些命令,並不會出現這個值。因為數據並不公開。這里提供的值僅供參考。生成這個值的代碼部分已經被刪掉了。<喎?"/kf/ware/vc/" target="_blank" class="keylink">="第二步-maxdepth-和-minweight-參數調優">第二步: max_depth 和 min_weight 參數調優我們先對這兩個參數調優,是因為它們對最終結果有很大的影響。首先,我們先大范圍地粗調參數,然後再小范圍地微調。

注意:在這一節我會進行高負荷的柵格搜索(grid search),這個過程大約需要15-30分鍾甚至更久,具體取決於你系統的性能。你也可以根據自己系統的性能選擇不同的值。param_test1 = {

'max_depth':range(3,10,2),

'min_child_weight':range(1,6,2)

}

gsearch1 = GridSearchCV(estimator = XGBClassifier( learning_rate =0.1, n_estimators=140, max_depth=5,

min_child_weight=1, gamma=0, subsample=0.8, colsample_bytree=0.8,

objective= 'binary:logistic', nthread=4, scale_pos_weight=1, seed=27),

param_grid = param_test1, scoring='roc_auc',n_jobs=4,iid=False, cv=5)

gsearch1.fit(train[predictors],train[target])

gsearch1.grid_scores_, gsearch1.best_params_, gsearch1.best_score_

『陸』 xgboost演算法可以用來幹嘛

XGBoost演算法主要用於決策樹,是對原有演算法的改進,由許多弱分類器集成為一個強分類器。用途和決策樹的用途是一樣的,即回歸和分類。

『柒』 xgboost的優缺點是

xgboost適用場景:分類回歸問題都可以。優缺點如下:
1)在尋找最佳分割點時,考慮傳統的枚舉每個特徵的所有可能分割點的貪心法效率太低,xgboost實現了一種近似的演算法。大致的思想是根據百分位法列舉幾個可能成為分割點的候選者,然後從候選者中根據上面求分割點的公式計算找出最佳的分割點。
2)xgboost考慮了訓練數據為稀疏值的情況,可以為缺失值或者指定的值指定分支的默認方向,這能大大提升演算法的效率,paper提到50倍。
3)特徵列排序後以塊的形式存儲在內存中,在迭代中可以重復使用;雖然boosting演算法迭代必須串列,但是在處理每個特徵列時可以做到並行。
4)按照特徵列方式存儲能優化尋找最佳的分割點,但是當以行計算梯度數據時會導致內存的不連續訪問,嚴重時會導致cache miss,降低演算法效率。paper中提到,可先將數據收集到線程內部的buffer,然後再計算,提高演算法的效率。
5)xgboost 還考慮了當數據量比較大,內存不夠時怎麼有效的使用磁碟,主要是結合多線程、數據壓縮、分片的方法,盡可能的提高演算法的效率。

『捌』 xgboost需不需要特徵挑選

相當於學習速率(xgboost中的eta)。xgboost的並行是在特徵粒度上的。我們知道,xgboost在訓練之前,預先對數據進行了排序,用於高效地生成候選的分割點。(補充。
xgboost在代價函數里加入了正則項。
Shrinkage(縮減),這也是xgboost異於傳統gbdt的一個特性,xgboost還支持線性分類器,貪心演算法效率就會變得很低,所以xgboost還提出了一種可並行的近似直方圖演算法,防止過擬合,這也是xgboost優於傳統GBDT的一個特性。

對缺失值的處理。
xgboost工具支持並行,然後保存為block結構,後面的迭代中重復地使用這個結構,大大減小計算量。這個block結構也使得並行成為了可能,在進行節點的分裂時,需要計算每個特徵的增益,最終選增益最大的那個特徵去做分裂。xgboost在進行完一次迭代後,會將葉子節點的權重乘上該系數,讓後面有更大的學習空間,這個時候xgboost相當於帶L1和L2正則化項的邏輯斯蒂回歸(分類問題)或者線性回歸(回歸問題)。xgboost借鑒了隨機森林的做法,那麼各個特徵的增益計算就可以開多線程進行。

可並行的近似直方圖演算法。樹節點在進行分裂時,我們需要計算每個特徵的每個分割點對應的增益,即用貪心法枚舉所有可能的分割點。當數據無法一次載入內存或者在分布式情況下。實際應用中,用於控制模型的復雜度。正則項里包含了樹的葉子節點個數、每個葉子節點上輸出的score的L2模的平方和。從Bias-variance tradeoff角度來講,正則項降低了模型的variance,使學習出來的模型更加簡單,決策樹的學習最耗時的一個步驟就是對特徵的值進行排序(因為要確定最佳分割點):傳統GBDT的實現也有學習速率)
列抽樣(column subsampling),一般把eta設置得小一點,然後迭代次數設置得大一點,不僅能降低過擬合,還能減少計算。
傳統GBDT在優化時只用到一階導數信息。boosting不是一種串列的結構嗎?怎麼並行的?注意xgboost的並行不是tree粒度的並行,xgboost也是一次迭代完才能進行下一次迭代的(第t次迭代的代價函數里包含了前面t-1次迭代的預測值),支持列抽樣,xgboost則對代價函數進行了二階泰勒展開,同時用到了一階和二階導數,xgboost工具支持自定義代價函數,只要函數可一階和二階求導。對於特徵的值有缺失的樣本,xgboost可以自動學習出它的分裂方向。順便提一下,主要是為了削弱每棵樹的影響
傳統GBDT以CART作為基分類器

『玖』 r語言中xgboost演算法可以處理缺失值問題嗎

LARS: 變數選擇
glmnet:也是變數選擇的,只不是過廣義線性模型的
rpart:分類樹
e1071:支持向量機
MASS:經典的統計方法,包括各種估計和檢驗方法!

熱點內容
組卷源碼 發布:2025-01-12 09:51:12 瀏覽:995
java文件夾改名 發布:2025-01-12 09:49:01 瀏覽:115
腳本函數未定義 發布:2025-01-12 09:39:44 瀏覽:634
頁面PHP 發布:2025-01-12 09:38:07 瀏覽:200
郵政銀行打電話登錄密碼是什麼 發布:2025-01-12 09:37:27 瀏覽:563
linuxroot遠程登錄 發布:2025-01-12 09:37:26 瀏覽:302
怎麼算伺服器ip 發布:2025-01-12 08:59:19 瀏覽:854
安卓與ios哪個適合做主力機 發布:2025-01-12 08:54:11 瀏覽:341
微軟怎麼關閉配置更新 發布:2025-01-12 08:34:23 瀏覽:316
wifi的有限的訪問許可權 發布:2025-01-12 08:34:14 瀏覽:610