當前位置:首頁 » 操作系統 » 樹的遍歷演算法

樹的遍歷演算法

發布時間: 2022-01-24 10:00:14

⑴ 二叉樹的遞歸遍歷,其中先序遍歷演算法如xia void ProOrder(BiTree bt) {

從頭開始,A不為空,A->lchild到達B,B不為空,B->lchild到達null,此時ProOrder(bt->lchild);執行完,執行ProOrder(bt->rchild);即ProOrder(B->lchild)到達D;到達D後又不為空,又開始執行ProOrder(bt->lchild),即ProOrder(D>lchild)到達F。然後.......
去看一下遞歸的執行原理吧。如果有兩個遞歸,第一個執行完之後才會執行第二個,當然,在執行第二個的時候,又會重新調用第一個,然後又等第一個執行完再執行第二個。

⑵ 什麼叫遍歷演算法(最好有例子)

遍歷演算法:所謂遍歷(Traversal),是指沿著某條搜索路線,依次對樹中每個結點均做一次且僅做一次訪問。訪問結點所做的操作依賴於具體的應用問題。遍歷是二叉樹上最重要的運算之一,是二叉樹上進行其它運算之基礎。當然遍歷的概念也適合於多元素集合的情況,如數組。

遍歷演算法概念延伸:

圖遍歷:圖遍歷又稱圖的遍歷,屬於數據結構中的內容。指的是從圖中的任一頂點出發,對圖中的所有頂點訪問一次且只訪問一次。圖的遍歷操作和樹的遍歷操作功能相似。圖的遍歷是圖的一種基本操作,圖的許多其它操作都是建立在遍歷操作的基礎之上。

舉例:

遍歷二叉樹搜索路線:

從二叉樹的遞歸定義可知,一棵非空的二叉樹由根結點及左、右子樹這三個基本部分組成。因此,在任一給定結點上,可以按某種次序執行三個操作:⑴訪問結點本身(N),⑵遍歷該結點的左子樹(L),⑶遍歷該結點的右子樹(R)。以上三種操作有六種執行次序:NLR、LNR、LRN、NRL、RNL、RLN。前三種次序與後三種次序對稱。

遍歷二叉樹的執行蹤跡三種遞歸遍歷演算法的搜索路線相同(如下圖虛線所示)。具體線路為:從根結點出發,逆時針沿著二叉樹外緣移動,對每個結點均途徑三次,最後回到根結點。

⑶ 二叉樹的遍歷

1.遍歷方案 從二叉樹的遞歸定義可知,一棵非空的二叉樹由根結點及左、右子樹這三個基本部分組成。因此,在任一給定結點上,可以按某種次序執行三個操作: (1)訪問結點本身(N), (2)遍歷該結點的左子樹(L), (3)遍歷該結點的右子樹(R)。以上三種操作有六種執行次序: NLR、LNR、LRN、NRL、RNL、RLN。 注意: 前三種次序與後三種次序對稱,故只討論先左後右的前三種次序。 2.三種遍歷的命名 根據訪問結點操作發生位置命名: ① NLR:前序遍歷(PreorderTraversal亦稱(先序遍歷)) ——訪問結點的操作發生在遍歷其左右子樹之前。 ② LNR:中序遍歷(InorderTraversal) ——訪問結點的操作發生在遍歷其左右子樹之中(間)。 ③ LRN:後序遍歷(PostorderTraversal) ——訪問結點的操作發生在遍歷其左右子樹之後。 注意: 由於被訪問的結點必是某子樹的根,所以N(Node)、L(Left subtlee)和R(Right subtree)又可解釋為根、根的左子樹和根的右子樹。NLR、LNR和LRN分別又稱為先根遍歷、中根遍歷和後根遍歷。 遍歷演算法 1.中序遍歷的遞歸演算法定義: 若二叉樹非空,則依次執行如下操作: (1)遍歷左子樹; (2)訪問根結點; (3)遍歷右子樹。 2.先序遍歷的遞歸演算法定義: 若二叉樹非空,則依次執行如下操作: (1) 訪問根結點; (2) 遍歷左子樹; (3) 遍歷右子樹。 3.後序遍歷得遞歸演算法定義: 若二叉樹非空,則依次執行如下操作: (1)遍歷左子樹; (2)遍歷右子樹; (3)訪問根結點。 ~

⑷ 二叉樹遍歷的演算法實現

從二叉樹的遞歸定義可知,一棵非空的二叉樹由根結點及左、右子樹這三個基本部分組成。因此,在任一給定結點上,可以按某種次序執行三個操作:
⑴訪問結點本身(N),
⑵遍歷該結點的左子樹(L),
⑶遍歷該結點的右子樹(R)。
以上三種操作有六種執行次序:
NLR、LNR、LRN、NRL、RNL、RLN。
注意:
前三種次序與後三種次序對稱,故只討論先左後右的前三種次序。 根據訪問結點操作發生位置命名:
① NLR:前序遍歷(PreorderTraversal亦稱(先序遍歷))
——訪問根結點的操作發生在遍歷其左右子樹之前。
② LNR:中序遍歷(InorderTraversal)
——訪問根結點的操作發生在遍歷其左右子樹之中(間)。
③ LRN:後序遍歷(PostorderTraversal)
——訪問根結點的操作發生在遍歷其左右子樹之後。
注意:
由於被訪問的結點必是某子樹的根,所以N(Node)、L(Left subtree)和R(Right subtree)又可解釋為根、根的左子樹和根的右子樹。NLR、LNR和LRN分別又稱為先根遍歷、中根遍歷和後根遍歷。 1.先(根)序遍歷的遞歸演算法定義:
若二叉樹非空,則依次執行如下操作:
⑴ 訪問根結點;
⑵ 遍歷左子樹;
⑶ 遍歷右子樹。
2.中(根)序遍歷的遞歸演算法定義:
若二叉樹非空,則依次執行如下操作:
⑴遍歷左子樹;
⑵訪問根結點;
⑶遍歷右子樹。
3.後(根)序遍歷得遞歸演算法定義:
若二叉樹非空,則依次執行如下操作:
⑴遍歷左子樹;
⑵遍歷右子樹;
⑶訪問根結點。 用二叉鏈表做為存儲結構,中序遍歷演算法可描述為:
void InOrder(BinTree T)
{ //演算法里①~⑥是為了說明執行過程加入的標號
① if(T) { // 如果二叉樹非空
② InOrder(T->lchild);
③ printf(%c,T->data); // 訪問結點
④ InOrder(T->rchild);
⑤ }
⑥ } // InOrder 計算中序遍歷擁有比較簡單直觀的投影法,如圖
⑴在搜索路線中,若訪問結點均是第一次經過結點時進行的,則是前序遍歷;若訪問結點均是在第二次(或第三次)經過結點時進行的,則是中序遍歷(或後序遍歷)。只要將搜索路線上所有在第一次、第二次和第三次經過的結點分別列表,即可分別得到該二叉樹的前序序列、中序序列和後序序列。
⑵上述三種序列都是線性序列,有且僅有一個開始結點和一個終端結點,其餘結點都有且僅有一個前驅結點和一個後繼結點。為了區別於樹形結構中前驅(即雙親)結點和後繼(即孩子)結點的概念,對上述三種線性序列,要在某結點的前驅和後繼之前冠以其遍歷次序名稱。
【例】上圖所示的二叉樹中結點C,其前序前驅結點是D,前序後繼結點是E;中序前驅結點是E,中序後繼結點是F;後序前驅結點是F,後序後繼結點是A。但是就該樹的邏輯結構而言,C的前驅結點是A,後繼結點是E和F。
二叉鏈表基本思想
基於先序遍歷的構造,即以二叉樹的先序序列為輸入構造。
注意:
先序序列中必須加入虛結點以示空指針的位置。
【例】
建立上圖所示二叉樹,其輸入的先序序列是:ABD∮∮∮CE∮∮F∮∮。
構造演算法
假設虛結點輸入時以空格字元表示,相應的構造演算法為:
void CreateBinTree (BinTree **T){ //構造二叉鏈表。T是指向根指針的指針,故修改*T就修改了實參(根指針)本身 char ch; if((ch=getchar())=='') *T=NULL; //讀入空格,將相應指針置空 else{ //讀人非空格 *T=(BinTNode *)malloc(sizeof(BinTNode)); //生成結點 (*T)->data=ch; CreateBinTree(&(*T)->lchild); //構造左子樹 CreateBinTree(&(*T)->rchild); //構造右子樹 }}
注意:
調用該演算法時,應將待建立的二叉鏈表的根指針的地址作為實參。
示例
設root是一根指針(即它的類型是BinTree),則調用CreateBinTree(&root)後root就指向了已構造好的二叉鏈表的根結點。
二叉樹建立過程見
下面是關於二叉樹的遍歷、查找、刪除、更新數據的代碼(遞歸演算法): #include<iostream>#include<cstdio>#include<cmath>#include<iomanip>#include<cstdlib>#include<ctime>#include<algorithm>#include<cstring>#include<string>#include<vector>#include<list>#include<stack>#include<queue>#include<map>#include<set>usingnamespacestd;typedefintT;classbst{structNode{Tdata;Node*L;Node*R;Node(constT&d,Node*lp=NULL,Node*rp=NULL):data(d),L(lp),R(rp){}};Node*root;intnum;public:bst():root(NULL),num(0){}voidclear(Node*t){if(t==NULL)return;clear(t->L);clear(t->R);deletet;}~bst(){clear(root);}voidclear(){clear(root);num=0;root=NULL;}boolempty(){returnroot==NULL;}intsize(){returnnum;}TgetRoot(){if(empty())throwemptytree;returnroot->data;}voidtravel(Node*tree){if(tree==NULL)return;travel(tree->L);cout<<tree->data<<'';travel(tree->R);}voidtravel(){travel(root);cout<<endl;}intheight(Node*tree){if(tree==NULL)return0;intlh=height(tree->L);intrh=height(tree->R);return1+(lh>rh?lh:rh);}intheight(){returnheight(root);}voidinsert(Node*&tree,constT&d){if(tree==NULL)tree=newNode(d);elseif(ddata)insert(tree->L,d);elseinsert(tree->R,d);}voidinsert(constT&d){insert(root,d);num++;}Node*&find(Node*&tree,constT&d){if(tree==NULL)returntree;if(tree->data==d)returntree;if(ddata)returnfind(tree->L,d);elsereturnfind(tree->R,d);}boolfind(constT&d){returnfind(root,d)!=NULL;}boolerase(constT&d){Node*&pt=find(root,d);if(pt==NULL)returnfalse;combine(pt->L,pt->R);Node*p=pt;pt=pt->R;deletep;num--;returntrue;}voidcombine(Node*lc,Node*&rc){if(lc==NULL)return;if(rc==NULL)rc=lc;elsecombine(lc,rc->L);}boolupdate(constT&od,constT&nd){Node*p=find(root,od);if(p==NULL)returnfalse;erase(od);insert(nd);returntrue;}};intmain(){bstb;cout<<inputsomeintegers:;for(;;){intn;cin>>n;b.insert(n);if(cin.peek()==' ')break;}for(;;){cout<<inputdatapair:;intod,nd;cin>>od>>nd;if(od==-1&&nd==-1)break;b.update(od,nd);}}

⑸ 實現二叉樹遍歷的遞歸演算法(求二叉樹的節點總數,高度)

#include<stdlib.h>
#include<stdio.h>
#define MAXSIZE 100
typedef char ElemType;

typedef struct bonde
{
ElemType data;
struct bonde *lchild,*rchild;
}BTree;
typedef struct
{
BTree *data[MAXSIZE];
int top;
}Stack;

BTree *CreateBTree();
void porder(BTree *T);
int leafs(BTree *T);
int depth(BTree *T);
void main()//主函數
{
BTree *b;
int m,n;
printf("Create a tree....\n\n");
b=(BTree *)malloc(sizeof(int));
b=CreateBTree();
printf("\n");
porder(b);
m=leafs(b);
printf("\nthe tree's leafs:%d\n",m);
n=depth(b);
printf("\n\nthe tree's heigh:%d\n",n);
}
void StackInit(Stack *s)
{
s->top=-1;
}
int StackEmpty(Stack s)
{
if(s.top==-1)
return 1;
else
return 0;
}

int push(Stack *s,BTree *e)
{
if(s->top==MAXSIZE-1)
return 0;
else
{
(s->top)++;
s->data[s->top]=e;
return 1;
}
}
BTree *pop(Stack *s)
{
BTree *e;
if(s->top==-1)
return NULL;
else
{
e=s->data[(s->top)--];
return e;
}
}
BTree * CreateBTree()//建樹過程
{
char ch;
BTree *b;
ch = getchar();
if(ch == '@')
{
b = NULL;
}
else
{
if(!(b = (BTree *)malloc(sizeof(BTree)))) exit(-1);

b->lchild = CreateBTree();
b->data=ch;
printf("%5c",p->data);
b->rchild = CreateBTree();
}
return b;
}

void porder(BTree *T)//先序遍歷該樹並輸出
{
Stack s;
StackInit(&s);

while (t!=NULL||!StackEmpty(s))
{
if(t!=NULL)
{
printf("%c ",t->data);
push(&s,t);
t=t->lchild;
}

else
{
t=pop(&s);
t=t->rchild;
}

}
}
int leafs(BTree *T)、、求節點總數
{
int num1,num2;
if(T==NULL)
return 0;
else
if(T->lchild==NULL && T->rchild==NULL)
return 1;
else
{
num1=leafs(T->lchild);
num2=leafs(T->rchild);
return(num1+num2);
}
}
int depth(BTree *T)//求高度
{
int dep1,dep2;
if(T==NULL)
return 0;
else
{
dep1=depth(T->lchild);
dep2=depth(T->rchild);
if(dep1>dep2)
return(dep1+1);
else
return(dep2+1);
}
}

⑹ 偽代碼寫出樹的先根遍歷演算法

function display_tree($root)
{
// 得到根節點的左右值
$result = mysql_query('SELECT lft, rgt FROM tree '.'WHERE name="'.$root.'";');
$row = mysql_fetch_array($result);

// 准備一個空的右值堆棧
$right = array();

// 獲得根基點的所有子孫節點
$result = mysql_query('SELECT name, lft, rgt FROM tree '.
'WHERE lft BETWEEN '.$row['lft'].' AND '.
$row['rgt'].' ORDER BY lft ASC;');

// 顯示每一行
while ($row = mysql_fetch_array($result))
{
// only check stack if there is one
if (count($right)>0)
{
// 檢查我們是否應該將節點移出堆棧
while ($right[count($right)-1]<$row['rgt'])
{
array_pop($right);
}
}

// 縮進顯示節點的名稱
echo str_repeat(' ',count($right)).$row['name']."n";

// 將這個節點加入到堆棧中
$right[] = $row['rgt'];
}
}

⑺ 二叉樹的遍歷演算法

遞歸演算法的實現是依據棧來做的,建議你看一下關於這方面的內容。
preorder()函數功能為:若當前結點不為空,則列印當前值,並遞歸調用列印左右結點。
preorder()函數在每次遞歸調用前,先將下一條指令地址和參數壓棧,即在執行preorder(root->Lchild)前,preorder(root->Rchild)地址及參數壓棧。
以後每次遞歸調用均是如此。
遞歸函數返回時,也即root=NULL時,當前preoder(root->Rchild)指令出棧,繼續向下執行,直到整個遞歸完成。
對於上述的樹,執行過程如下:
1、列印1
2、調用列印2,列印3調用壓棧
3、列印2
4、調用列印4,列印5調用壓棧
5、列印4
6、調用列印4的左結點,列印4的右結點調用壓棧
7、4無左結點,即當前結點=NULL,調用返回
8、棧中彈出列印4右結點調用
9、4無右結點,調用返回
10、棧中彈出列印5的調用
.....
一直這樣執行下去,所以列印結果為:1-2-4-5-3-6

⑻ c++二叉樹的幾種遍歷演算法

遍歷二叉樹的所有結點且僅訪問一次。按照根節點位置的不同分為前序遍歷,中序遍歷,後序遍歷(除此之外還有層次遍歷,但不常用,此處不做解釋)。

1.前序遍歷:根節點->左子樹->右子樹(根節點在前面)。

2.中序遍歷:左子樹->根節點->右子樹(根節點在中間)。

3.後序遍歷:左子樹->右子樹->根節點(根節點在後邊)。

例如:求下面樹的三種遍歷:

前序遍歷:abdefgc;

中序遍歷:debgfac;

後序遍歷:edgfbca。

⑼ 求二叉樹遍歷演算法C語言實現的

Status
PreOrderTraverse
(
BiTree
T,
Status
(
*Visit
)
(
TElemType
e
)
)
{
//
採用二叉鏈表存儲結構,Visit
是對數據元素操作的應用函數,先序遍歷二叉樹
T
的遞歸演算法。
if
(
T
)
{
//

T
不為空
if
(
Visit
(
T->data
)
)
//
調用函數
Visit
if
(
PreOrderTraverse
(
T->lchild,
Visit
)
)
//
遞歸調用左子樹
if
(
PreOrderTraverse
(
T->rchild,
Visit
)
)
return
OK;
//
遞歸調用右子樹
return
ERROR;
}
else
return
OK;
}
//
PreOrderTraverse

熱點內容
安卓軟體和蘋果系統哪個好 發布:2024-11-15 05:48:32 瀏覽:283
pythonwhileelse 發布:2024-11-15 05:39:10 瀏覽:671
java文件流上傳文件 發布:2024-11-15 05:24:02 瀏覽:147
linux安裝so 發布:2024-11-15 05:22:29 瀏覽:581
九游版冒險王2適合安卓哪個版本 發布:2024-11-15 05:12:33 瀏覽:600
iphonexsmax怎麼連接伺服器 發布:2024-11-15 05:11:46 瀏覽:775
長江存儲校招 發布:2024-11-15 05:11:01 瀏覽:966
oraclesql函數大全 發布:2024-11-15 05:10:00 瀏覽:465
form多文件上傳 發布:2024-11-15 05:09:21 瀏覽:913
雲伺服器搭建網站哪家好 發布:2024-11-15 04:57:34 瀏覽:512