演算法與數據結構
① 演算法和數據結構有什麼區別
其實兩者可以說關聯不大。
演算法就是一個處理的方法,比如大學里基礎的排序演算法,就是為了完成對一組數據排序。查找演算法,就是為了在一個集合中查找需要的項。除此之外,還有很多演算法,比方說,加密、壓縮、圖像處理。
而數據結構就是數據的結構。比方說隊列、堆、棧、鏈表、樹等等。
大學里的《演算法與數據結構》這門課是個入門的演算法課和數據結構課程。教授針對不同的數據結構進行的排序、查找、遍歷的不同演算法。僅是演算法基礎,就象大學里都是以C語言作為入門語言一樣的。
② 什麼是數據結構和演算法
數據結構,Data_Structure,其中D是數據元素的集合,R是該集合中所有元素之間的關系的有限集合。數據結構則是指相互之間存在一種或多種特定關系的數據元素的集合。通常情況下,精心選擇的數據結構可以帶來更高的運行或者存儲效率。數據結構往往同高效的檢索演算法和索引技術有關。
數據結構是計算機專業學生在大學期間都會學習的一門課程,但是由於課程偏理論,缺乏實際操作的學習體驗,而讓大家產生了一種「數據結構不重要,我只要學習了Java/C語言/Python同樣能敲代碼」的錯覺,但其實它是一門集技術性、理論性和實踐性於一體的課程。
演算法是某一系列運算步驟,它表達解決某一類計算問題的一般方法,對這類方法的任何一個輸入,它可以按步驟一步一步計算,最終產生一個輸出。
小碼哥的李明傑也說過所有的計算問題,都離不開要計算的對象或者要處理的信息,如何高效的把它們組織起來,就是數據結構關心的問題,所以演算法是離不開數據結構的,這就是數據與演算法。
③ 演算法和數據結構
給你貼USACO這一題的通關報告,英文的啊:
We use a recursive complete search to simply test all boards. The search proceeds by trying to put one checker in each row. We keep track of which columns and diagonals already have checkers on them in the "col", "updiag", and "downdiag" arrays.
Since we generate solutions in increasing order, we record the first 3 in the "sol" array.
Symmetry enables us to count the first half of the solutions double and avoid calculating the second half. An exception happens when N is odd; the odd row needs to be counted once.
The N>6 lines get the program out of trouble when N==6, because at that point, the first 3 solutions include one of the symmetric answers.
Since we number rows from 0 to N-1 rather than 1 to N, we need to add 1 to each digit as we print (in "printsol").
/*
TASK: checker
LANG: C
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#define MAXN 16
int n;
int nsol, nprinted;
char row[MAXN];
FILE *fout;
void
solution() {
int i;
for(i=0; i<n; i++) {
if(i != 0) fprintf(fout, " ");
fprintf(fout, "%d", row[i]+1);
}
fprintf(fout, "\n");
}
/* Keep track of whether there is a checker on each column, and diagonal. */
char col[MAXN]; /* (i, j) -> j */
char updiag[2*MAXN]; /* (i, j) -> i+j */
char downdiag[2*MAXN]; /* (i, j) -> i-j + N */
/*
* Calculate number of ways to place checkers
* on each row of the board starting at row i and going to row n.
*/
void
nway(i, lim) {
int j;
if(i == n) {
nsol++;
if (n > 6 && row[0] < n/2) nsol++;
if (nprinted++ < 3) solution();
return;
}
for(j=0; j<lim; j++){
if(!col[j] && !updiag[i+j] && !downdiag[i-j+MAXN]){
row[i] = j;
col[j]++;
updiag[i+j]++;
downdiag[i-j+MAXN]++;
nway(i+1,n);
col[j]--;
updiag[i+j]--;
downdiag[i-j+MAXN]--;
}
}
}
main(void) {
FILE *fin = fopen("checker.in", "r");
fout = fopen("checker.out", "w");
fscanf(fin, "%d", &n);
nway(0, n>6?(n+1)/2:n);
fprintf(fout, "%d\n", nsol);
exit (0);
}
Clever Michael Rybak's Solution
The Ukraine's Michael Rybak removed the 'this row is used' search (which obviously at the end of the recursion is a lot of wasted iterating) and replaced it with a list of valid rows to use (which presumably has but a single element at the end of the recursion). His program runs almost 4x faster then N==13.
Program Checker;
Var diagPLUS: Array[2..30] Of Boolean;
diagMINUS: Array[-15..15] Of Boolean;
sol: Array[1..15] Of ShortInt;
i,n,found: Longint;
stop: Boolean;
next,prev: Array[0..16] Of ShortInt;
sy: ShortInt;
Procere Search0(y:ShortInt);
Var x,i:ShortInt;
Begin
If stop Then Exit;
If y=n+1 Then Begin
Inc(found);
If found<4 Then Begin
For i:=1 To n-1 Do
Write(sol[i],' ');
Writeln(sol[n]);
End Else
stop:=True;
Exit;
End;
If sol[y]<>0 Then Begin
Search0(y+1);
Exit;
End;
x:=next[0];
While x<=n Do Begin
If Not ((diagPLUS[x+y]) Or (diagMINUS[x-y])) Then Begin
sol[y]:=x;
diagPLUS[x+y]:=True;
diagMINUS[x-y]:=True;
next[prev[x]]:=next[x];
prev[next[x]]:=prev[x];
Search0(y+1);
diagPLUS[x+y]:=False;
diagMINUS[x-y]:=False;
next[prev[x]]:=x; prev[next[x]]:=x;
End;
x:=next[x];
End;
sol[y]:=0;
End;
Procere Search;
Var x:ShortInt;
Begin
If sy=n+1 Then Begin
Inc(found);
Exit;
End;
If sol[sy]<>0 Then Begin
Inc(sy);
Search;
Dec(sy);
Exit;
End;
x:=next[0];
While x<=n Do Begin
If Not ((diagPLUS[x+sy]) Or (diagMINUS[x-sy])) Then Begin
sol[sy]:=x;
diagPLUS[x+sy]:=True;
diagMINUS[x-sy]:=True;
next[prev[x]]:=next[x];
prev[next[x]]:=prev[x];
Inc(sy);
Search;
Dec(sy);
diagPLUS[x+sy]:=False;
diagMINUS[x-sy]:=False;
next[prev[x]]:=x;
prev[next[x]]:=x;
End;
x:=next[x];
End;
sol[sy]:=0;
End;
Procere Search2(miny:Longint);
Var x,y,i:ShortInt;
curf:Longint;
Begin
x:=n Div 2+1;
For y:=miny To n Div 2 Do
If Not (diagPLUS[x+y] Or diagMINUS[x-y]) Then Begin
curf:=found;
sol[y]:=x;
diagPLUS[x+y]:=True;
diagMINUS[x-y]:=True;
next[prev[x]]:=next[x]; prev[next[x]]:=prev[x];
sy:=1;
Search;
If y>miny Then
found:=found+(found-curf);
sol[y]:=0;
diagPLUS[x+y]:=False;
diagMINUS[x-y]:=False;
next[prev[x]]:=x; prev[next[x]]:=x;
End;
End;
Procere Search1;
Var x,y,i:ShortInt;
Begin
y:=n Div 2+1;
For x:=1 To n Div 2 Do Begin
sol[y]:=x;
diagPLUS[x+y]:=True;
diagMINUS[x-y]:=True;
next[prev[x]]:=next[x]; prev[next[x]]:=prev[x];
Search2(x);
diagPLUS[x+y]:=False;
diagMINUS[x-y]:=False;
next[prev[x]]:=x; prev[next[x]]:=x;
End;
sol[y]:=0;
found:=found*4;
x:=n Div 2+1;
sol[y]:=x;
diagPLUS[x+y]:=True;
diagMINUS[x-y]:=True;
next[prev[x]]:=next[x]; prev[next[x]]:=prev[x];
sy:=1;
Search;
End;
Begin
Assign(Input,'checker.in'); Reset(Input);
Assign(Output,'checker.out'); Rewrite(Output);
Read(n);
found:=0;
FillChar(diagPLUS,SizeOf(diagPLUS),False);
FillChar(diagMINUS,SizeOf(diagMINUS),False);
FillChar(sol,SizeOf(sol),0);
For i:=0 To n+1 Do Begin
prev[i]:=i-1;
next[i]:=i+1;
End;
If n Mod 2=0 Then Begin
stop:=False;
Search0(1);
sy:=1;
found:=0;
Search;
End Else Begin
stop:=False;
Search0(1);
found:=0;
Search1;
End;
Writeln(found);
Close(Output);
End.
Clever Romanian Solution
Submitted by several from Romania, this solution uses bitmasks instead of a list to speed searching:
#include <stdio.h>
#include <stdlib.h>
#include <fstream.h>
#define MAX_BOARDSIZE 16
typedef unsigned long SOLUTIONTYPE;
#define MIN_BOARDSIZE 6
SOLUTIONTYPE g_numsolutions = 0;
void Nqueen(int board_size) {
int aQueenBitRes[MAX_BOARDSIZE]; /* results */
int aQueenBitCol[MAX_BOARDSIZE]; /* marks used columns */
int aQueenBitPosDiag[MAX_BOARDSIZE]; /* marks used "positive diagonals" */
int aQueenBitNegDiag[MAX_BOARDSIZE]; /* marks used "negative diagonals" */
int aStack[MAX_BOARDSIZE + 2]; /* a stack instead of recursion */
int *pnStack;
int numrows = 0; /* numrows rendant - could use stack */
unsigned int lsb; /* least significant bit */
unsigned int bitfield; /* set bits denote possible queen positions */
int i;
int odd = board_size & 1; /* 1 if board_size odd */
int board_m1 = board_size - 1; /* board size - 1 */
int mask = (1 << board_size) - 1; /* N bit mask of all 1's */
aStack[0] = -1; /* sentinel signifies end of stack */
for (i = 0; i < (1 + odd); ++i) {
bitfield = 0;
if (0 == i) {
int half = board_size>>1; /* divide by two */
bitfield = (1 << half) - 1;
pnStack = aStack + 1; /* stack pointer */
aQueenBitRes[0] = 0;
aQueenBitCol[0] = aQueenBitPosDiag[0] = aQueenBitNegDiag[0] = 0;
} else {
bitfield = 1 << (board_size >> 1);
numrows = 1; /* prob. already 0 */
aQueenBitRes[0] = bitfield;
aQueenBitCol[0] = aQueenBitPosDiag[0] = aQueenBitNegDiag[0] = 0;
aQueenBitCol[1] = bitfield;
aQueenBitNegDiag[1] = (bitfield >> 1);
aQueenBitPosDiag[1] = (bitfield << 1);
pnStack = aStack + 1; /* stack pointer */
*pnStack++ = 0; /* row done -- only 1 element & we've done it */
bitfield = (bitfield - 1) >> 1;
/* bitfield -1 is all 1's to the left of the single 1 */
}
for (;;) {
lsb = -((signed)bitfield) & bitfield;
/* this assumes a 2's complement architecture */
if (0 == bitfield) {
bitfield = *--pnStack; /* get prev. bitfield from stack */
if (pnStack == aStack) /* if sentinel hit.... */
break;
--numrows;
continue;
}
bitfield &= ~lsb; /* bit off -> don't try it again */
aQueenBitRes[numrows] = lsb; /* save the result */
if (numrows < board_m1) { /* more rows to process? */
int n = numrows++;
aQueenBitCol[numrows] = aQueenBitCol[n] | lsb;
aQueenBitNegDiag[numrows] = (aQueenBitNegDiag[n] | lsb) >> 1;
aQueenBitPosDiag[numrows] = (aQueenBitPosDiag[n] | lsb) << 1;
*pnStack++ = bitfield;
bitfield = mask & ~(aQueenBitCol[numrows] |
aQueenBitNegDiag[numrows] | aQueenBitPosDiag[numrows]);
continue;
} else {
++g_numsolutions;
bitfield = *--pnStack;
--numrows;
continue;
}
}
}
g_numsolutions *= 2;
}
int main(int argc, char** argv) {
ifstream f("checker.in");
ofstream g("checker.out");
long boardsize,s[20],ok,k,i,sol=0;
f>>boardsize;
Nqueen (boardsize);
k=1;
s[k]=0;
while (k>0) {
ok=0;
while(s[k]<boardsize && !ok) {
ok=1;
s[k]++;
for(i=1;i<k;i++)
if(s[i]==s[k] || abs(s[k]-s[i])==abs(k-i))
ok=0;
}
if(sol!=3)
if(!ok)
k--;
else
if(k==boardsize) {
for(i=1;i<boardsize;i++) {
for(int j=1;j<=boardsize;j++)
if(s[i]==j) g<<j<<" ";
}
for(i=1;i<=boardsize;i++)
if(s[boardsize]==i) g<<i;
g<<"\n";
sol++;
} else {
k++;
s[k]=0;
} else break;
}
g<<g_numsolutions<<"\n";
f.close();
g.close();
return 0;
}
這些程序你要先輸入一個數字,皇後數量,輸入8就行
④ 數據結構和演算法有什麼關系數據結構就是演算法嗎
首先你要弄清楚數據結構是什麼?數據結構呢其實就是一種存儲數據之間的邏輯結構:比如我們學過的線性結構:順序表啦,鏈表啦;層次結構:樹啦。合適的數據結構可以帶來更高的運行效率和存儲效率,與相應解決實際問題演算法的適應性也就越高,這也就是為什麼一些演算法指定了數據存儲必須以某種特定的數據結才行。一般都是根據合適的數據結構來設計演算法,而不是根據演算法來設計數據結構。
演算法和數據結構往往是互不分開的。離開了演算法,數據結構就顯得毫無意義,而沒有了數據結構演算法就沒有實現的條件。良好的數據結構思想就是一種高效的演算法,但是數據結構不等於演算法。只有當數據結構用於處理某個特定問題類型的時候,數據結構才會體現為演算法。要想細致的了解,就要多看書,因為這東西畢竟發展了那麼多年,一兩句話是說不清楚的。想知道更多的數據結構與演算法知識嗎?可以去了解一下小碼哥李明傑。
⑤ 演算法和數據結構有什麼區別
一、指代不同
1、演算法:是指解題方案的准確而完整的描述,是一系列解決問題的清晰指令。
2、數據結構:指相互之間存在一種或多種特定關系的數據元素的集合。
二、目的不同
1、演算法:指令描述的是一個計算,當其運行時能從一個初始狀態和(可能為空的)初始輸入開始,經過一系列有限而清晰定義的狀態,最終產生輸出並停止於一個終態。
2、數據結構:研究的是數據的邏輯結構和數據的物理結構之間的相互關系,並對這種結構定義相適應的運算,設計出相應的演算法,並確保經過這些運算以後所得到的新結構仍保持原來的結構類型。
三、特點不同
1、演算法:演算法中執行的任何計算步驟都是可以被分解為基本的可執行的操作步驟,即每個計算步驟都可以在有限時間內完成。
2、數據結構:核心技術是分解與抽象。通過分解可以劃分出數據的3個層次;再通過抽象,舍棄數據元素的具體內容,就得到邏輯結構。
⑥ 演算法與數據結構
ListNode.h
template<typename Type> class SingleList;
template<typename Type> class ListNode{
private:
friend typename SingleList<Type>;
ListNode():m_pnext(NULL){}
ListNode(const Type item,ListNode<Type> *next=NULL):m_data(item),m_pnext(next){}
~ListNode(){
m_pnext=NULL;
}
public:
Type GetData();
friend ostream& operator<< <Type>(ostream& ,ListNode<Type>&);
private:
Type m_data;
ListNode *m_pnext;
};
template<typename Type> Type ListNode<Type>::GetData(){
return this->m_data;
}
template<typename Type> ostream& operator<<(ostream& os,ListNode<Type>& out){
os<<out.m_data;
return os;
}
SingleList.h
#include "ListNode.h"
template<typename Type> class SingleList{
public:
SingleList():head(new ListNode<Type>()){}
~SingleList(){
MakeEmpty();
delete head;
}
public:
void MakeEmpty(); //make the list empty
int Length(); //get the length
ListNode<Type> *Find(Type value,int n); //find thd nth data which is equal to value
ListNode<Type> *Find(int n); //find the nth data
bool Insert(Type item,int n=0); //insert the data in the nth position
Type Remove(int n=0); //remove the nth data
bool RemoveAll(Type item); //remove all the data which is equal to item
Type Get(int n); //get the nth data
void Print(); //print the list
private:
ListNode<Type> *head;
};
template<typename Type> void SingleList<Type>::MakeEmpty(){
ListNode<Type> *pdel;
while(head->m_pnext!=NULL){
pdel=head->m_pnext;
head->m_pnext=pdel->m_pnext;
delete pdel;
}
}
template<typename Type> int SingleList<Type>::Length(){
ListNode<Type> *pmove=head->m_pnext;
int count=0;
while(pmove!=NULL){
pmove=pmove->m_pnext;
count++;
}
return count;
}
template<typename Type> ListNode<Type>* SingleList<Type>::Find(int n){
if(n<0){
cout<<"The n is out of boundary"<<endl;
return NULL;
}
ListNode<Type> *pmove=head->m_pnext;
for(int i=0;i<n&&pmove;i++){
pmove=pmove->m_pnext;
}
if(pmove==NULL){
cout<<"The n is out of boundary"<<endl;
return NULL;
}
return pmove;
}
template<typename Type> ListNode<Type>* SingleList<Type>::Find(Type value,int n){
if(n<1){
cout<<"The n is illegal"<<endl;
return NULL;
}
ListNode<Type> *pmove=head;
int count=0;
while(count!=n&&pmove){
pmove=pmove->m_pnext;
if(pmove->m_data==value){
count++;
}
}
if(pmove==NULL){
cout<<"can't find the element"<<endl;
return NULL;
}
return pmove;
}
template<typename Type> bool SingleList<Type>::Insert(Type item, int n){
if(n<0){
cout<<"The n is illegal"<<endl;
return 0;
}
ListNode<Type> *pmove=head;
ListNode<Type> *pnode=new ListNode<Type>(item);
if(pnode==NULL){
cout<<"Application error!"<<endl;
return 0;
}
for(int i=0;i<n&&pmove;i++){
pmove=pmove->m_pnext;
}
if(pmove==NULL){
cout<<"the n is illegal"<<endl;
return 0;
}
pnode->m_pnext=pmove->m_pnext;
pmove->m_pnext=pnode;
return 1;
}
template<typename Type> bool SingleList<Type>::RemoveAll(Type item){
ListNode<Type> *pmove=head;
ListNode<Type> *pdel=head->m_pnext;
while(pdel!=NULL){
if(pdel->m_data==item){
pmove->m_pnext=pdel->m_pnext;
delete pdel;
pdel=pmove->m_pnext;
continue;
}
pmove=pmove->m_pnext;
pdel=pdel->m_pnext;
}
return 1;
}
template<typename Type> Type SingleList<Type>::Remove(int n){
if(n<0){
cout<<"can't find the element"<<endl;
exit(1);
}
ListNode<Type> *pmove=head,*pdel;
for(int i=0;i<n&&pmove->m_pnext;i++){
pmove=pmove->m_pnext;
}
if(pmove->m_pnext==NULL){
cout<<"can't find the element"<<endl;
exit(1);
}
pdel=pmove->m_pnext;
pmove->m_pnext=pdel->m_pnext;
Type temp=pdel->m_data;
delete pdel;
return temp;
}
template<typename Type> Type SingleList<Type>::Get(int n){
if(n<0){
cout<<"The n is out of boundary"<<endl;
exit(1);
}
ListNode<Type> *pmove=head->m_pnext;
for(int i=0;i<n;i++){
pmove=pmove->m_pnext;
if(NULL==pmove){
cout<<"The n is out of boundary"<<endl;
exit(1);
}
}
return pmove->m_data;
}
template<typename Type> void SingleList<Type>::Print(){
ListNode<Type> *pmove=head->m_pnext;
cout<<"head";
while(pmove){
cout<<"--->"<<pmove->m_data;
pmove=pmove->m_pnext;
}
cout<<"--->over"<<endl<<endl<<endl;
}
⑦ 演算法和數據結構的關系
任何程序都是由數據和處理這些數據的方法組成的。
就像烹飪菜餚一樣,食材(數據)和烹飪方法(處理這些食材的方法,諸如煎炒煮炸蒸焗燜燉之類的)兩者必不可少。而所謂數據結構就是組織(大量)數據的方法,所謂演算法就是處理這些數據的方法。
////////////////////////////////////////////////////////////////////////////
杭州巨立安(JulianTec)是杭州市場上
唯一由資深研發工程師所創辦的機構。所以:
就專業程度和實在程度而言,杭州巨立安(JulianTec)
是您在arm架構下學習嵌入式Linux研發的上佳指導!