當前位置:首頁 » 操作系統 » 各種排序演算法

各種排序演算法

發布時間: 2022-01-23 06:45:31

A. 各種排序演算法

有插入排序,堆排序,快速排序,基排序,計數排序,桶排序,我說不完的,,詳情參看《演算法導論》

B. 數據結構中比較各種排序演算法 求詳解 ,,,,,,,,,,

排序演算法包括:插入排序、交換排序、選擇排序以及合並排序。

其中插入排序包括直接插入排序和Shell排序,交換排序包括冒泡排序和分化交換排序,選擇排序包括直接選擇排序和堆排序。

這些排序演算法中,直接插入排序、冒泡排序和直接選擇排序這三種排序的演算法平均時間復雜度是O(n的平方);分化交換排序、堆排序和合並排序這三種排序的演算法平均時間復雜度是

C. 、題目:各種排序演算法實現和比較

給個聯系方式。我發給你!!!

D. 幾種常用的排序演算法比較

排序,從小大,0坐標的在下面,即排序後小的在下面,大的在上面。

1,冒泡Bubble:從第0個開始,一直往上,與相鄰的元素比較,如果下面的大,則交換。
Analysis:
Implementation:
void BubbleSort(int *pData, int iNum)

2,插入Insertion:與打撲克牌時整理牌很想像,假定第一張牌是有序的,從第二張牌開始,拿出這張牌來,往下比較,如果有比這張牌大的,則把它撥到上一個位置,直到找到比手上的這張更小的(或到頂了),
則把手上的這張牌插入到這張更小的牌的後面。
Analysis:
Implementation:
void InsertionSort(int *list, int length)
{
int i, j, temp;
for (i = 1; i < length; i++)
{
temp = list[i];
j = i - 1;
while ((j >= 0) && (list[j] > temp))
{
list[j+1] = list[j];
j--;
}
list[j+1] = temp;
}
}

3,選擇Selection:從所有元素中找到最小的放在0號位置,從其它元素(除了0號元素)中再找到最小的,放到1號位置,......。
Analysis:
Implementation:
void SelectionSort(int data[], int count)
{
int i, j, min, temp;
for (i = 0; i < count - 1; i++)
{
/* find the minimum */
min = i;
for (j = i+1; j < count; j++)
{
if (data[j] < data[min])
{
min = j;
}
}
/* swap data[i] and data[min] */
temp = data[i];
data[i] = data[min];
data[min] = temp;
}
}

4,快速Quick:先拿出中間的元素來(值保存到temp里),設置兩個索引(index or pointer),一個從0號位置開始往最大位置尋找比temp大的元素;一個從最大號位置開始往最小位置尋找比temp小的元素,找到了或到頂了,則將兩個索引所指向的元素
互換,如此一直尋找交換下去,直到兩個索引交叉了位置,這個時候,從0號位置到第二個索引的所有元素就都比temp小,從第一個索引到最大位置的所有元素就都比temp大,這樣就把所有元素分為了兩塊,然後採用前面的辦法分別排序這兩個部分。總的來
說,就是隨機找一個元素(通常是中間的元素),然後把小的放在它的左邊,大的放右邊,對左右兩邊的數據繼續採用同樣的辦法。只是為了節省空間,上面採用了左右交換的方法來達到目的。
Analysis:
Implementation:
void QuickSort(int *pData, int left, int right)
{
int i, j;
int middle, iTemp;
i = left;
j = right;

middle = pData[(left + right) / 2]; //求中間值
do
{
while ((pData[i] < middle) && (i < right)) //從左掃描大於中值的數
i++;

while ((pData[j] > middle) && (j > left)) //從右掃描小於中值的數
j--;

if (i <= j) //找到了一對值
{
//交換
iTemp = pData[i];
pData[i] = pData[j];
pData[j] = iTemp;
i++;
j--;
}
} while (i <= j); //如果兩邊掃描的下標交錯,就停止(完成一次)

//當左邊部分有值(left<j),遞歸左半邊
if(left < j)
QuickSort(pData, left, j);

//當右邊部分有值(right>i),遞歸右半邊
if(right > i)
QuickSort(pData, i, right);
}

5,希爾Shell:是對Insertion Sort的一種改進,在Insertion Sort中,從第2個位置開始取出數據,每次都是與前一個(step/gap==1)進行比較。Shell Sort修改為,在開始時採用較大的步長step,
從第step位置開始取數據,每次都與它的前step個位置上的數據進行比較(如果有8個數據,初始step==4,那麼pos(4)與pos(0)比較,pos(0)與pos(-4),pos(5)與pos(1),pos(1)與pos(-3),
...... pos(7)與pos(3),pos(3)與pos(-1)),然後逐漸地減小step,直到step==1。step==1時,排序過程與Insertion Sort一樣,但因為有前面的排序,這次排序將減少比較和交換的次數。
Shell Sort的時間復雜度與步長step的選擇有很大的關系。Shell排序比冒泡排序快5倍,比插入排序大致快2倍。Shell排序比起QuickSort,MergeSort,HeapSort慢很多。但是它相對比較簡單,它適合
於數據量在5000以下並且速度並不是特別重要的場合。它對於數據量較小的數列重復排序是非常好的。
Analysis:
Implementation:
template<typename RandomIter, typename Compare>
void ShellSort(RandomIter begin, RandomIter end, Compare cmp)
{
typedef typename std::iterator_traits<RandomIter>::value_type value_type;
typedef typename std::iterator_traits<RandomIter>::difference_type diff_t;

diff_t size = std::distance(begin, end);
diff_t step = size / 2;
while (step >= 1)
{

for (diff_t i = step; i < size; ++i)
{
value_type key = *(begin+i);
diff_t ins = i; // current position

while (ins >= step && cmp(key, *(begin+ins-step)))
{
*(begin+ins) = *(begin+ins-step);
ins -= step;
}

*(begin+ins) = key;
}

if(step == 2)
step = 1;
else
step = static_cast<diff_t>(step / 2.2);
}
}

template<typename RandomIter>
void ShellSort(RandomIter begin, RandomIter end)
{
typedef typename std::iterator_traits<RandomIter>::value_type value_type;
ShellSort(begin, end, std::less<value_type>());
}

6,歸並Merge:先將所有數據分割成單個的元素,這個時候單個元素都是有序的,然後前後相鄰的兩個兩兩有序地合並,合並後的這兩個數據再與後面的兩個合並後的數據再次合並,充分前面的過程直到所有的數據都合並到一塊。
通常在合並的時候需要分配新的內存。
Analysis:
Implementation:
void Merge(int array[], int low, int mid, int high)
{
int k;
int *temp = (int *) malloc((high-low+1) * sizeof(int)); //申請空間,使其大小為兩個已經排序序列之和,該空間用來存放合並後的序列
int begin1 = low;
int end1 = mid;
int begin2 = mid + 1;
int end2 = high;

for (k = 0; begin1 <= end1 && begin2 <= end2; ++k) //比較兩個指針所指向的元素,選擇相對小的元素放入到合並空間,並移動指針到下一位置
{
if(array[begin1]<=array[begin2])
{
temp[k] = array[begin1++];
}
else
{
temp[k] = array[begin2++];
}
}
if(begin1 <= end1) //若第一個序列有剩餘,直接拷貝出來粘到合並序列尾
{
memcpy(temp+k, array+begin1, (end1-begin1+1)*sizeof(int));
}
if(begin2 <= end2) //若第二個序列有剩餘,直接拷貝出來粘到合並序列尾
{
memcpy(temp+k, array+begin2, (end2-begin2+1)*sizeof(int));
}
memcpy(array+low, temp, (high-low+1)*sizeof(int));//將排序好的序列拷貝回數組中
free(temp);
}

void MergeSort(int array[], unsigned int first, unsigned int last)
{
int mid = 0;
if (first < last)
{
mid = (first+last)/2;
MergeSort(array, first, mid);
MergeSort(array, mid+1,last);
Merge(array,first,mid,last);
}
}

E. 各種排序演算法實現和比較

1、 堆排序定義
n個關鍵字序列Kl,K2,…,Kn稱為堆,當且僅當該序列滿足如下性質(簡稱為堆性質):
(1) ki≤K2i且ki≤K2i+1 或(2)Ki≥K2i且ki≥K2i+1(1≤i≤ )
若將此序列所存儲的向量R[1..n]看做是一棵完全二叉樹的存儲結構,則堆實質上是滿足如下性質的完全二叉樹:樹中任一非葉結點的關鍵字均不大於(或不小於)其左右孩子(若存在)結點的關鍵字。
關鍵字序列(10,15,56,25,30,70)和(70,56,30,25,15,10)分別滿足堆性質(1)和(2),故它們均是堆,其對應的完全二叉樹分別如小根堆示例和大根堆示例所示。
2、大根堆和小根堆
根結點(亦稱為堆頂)的關鍵字是堆里所有結點關鍵字中最小者的堆稱為小根堆。
根結點(亦稱為堆頂)的關鍵字是堆里所有結點關鍵字中最大者,稱為大根堆。
注意:
①堆中任一子樹亦是堆。
②以上討論的堆實際上是二叉堆(Binary Heap),類似地可定義k叉堆。
3、堆排序特點
堆排序(HeapSort)是一樹形選擇排序。
堆排序的特點是:在排序過程中,將R[l..n]看成是一棵完全二叉樹的順序存儲結構,利用完全二叉樹中雙親結點和孩子結點之間的內在關系,在當前無序區中選擇關鍵字最大(或最小)的記錄。
4、堆排序與直接插入排序的區別
直接選擇排序中,為了從R[1..n]中選出關鍵字最小的記錄,必須進行n-1次比較,然後在R[2..n]中選出關鍵字最小的記錄,又需要做n-2次比較。事實上,後面的n-2次比較中,有許多比較可能在前面的n-1次比較中已經做過,但由於前一趟排序時未保留這些比較結果,所以後一趟排序時又重復執行了這些比較操作。
堆排序可通過樹形結構保存部分比較結果,可減少比較次數。
5、堆排序
堆排序利用了大根堆(或小根堆)堆頂記錄的關鍵字最大(或最小)這一特徵,使得在當前無序區中選取最大(或最小)關鍵字的記錄變得簡單。
(1)用大根堆排序的基本思想
① 先將初始文件R[1..n]建成一個大根堆,此堆為初始的無序區
② 再將關鍵字最大的記錄R[1](即堆頂)和無序區的最後一個記錄R[n]交換,由此得到新的無序區R[1..n-1]和有序區R[n],且滿足R[1..n-1].keys≤R[n].key
③ 由於交換後新的根R[1]可能違反堆性質,故應將當前無序區R[1..n-1]調整為堆。然後再次將R[1..n-1]中關鍵字最大的記錄R[1]和該區間的最後一個記錄R[n-1]交換,由此得到新的無序區R[1..n-2]和有序區R[n-1..n],且仍滿足關系R[1..n-2].keys≤R[n-1..n].keys,同樣要將R[1..n-2]調整為堆。
……
直到無序區只有一個元素為止。
(2)大根堆排序演算法的基本操作:
① 初始化操作:將R[1..n]構造為初始堆;
② 每一趟排序的基本操作:將當前無序區的堆頂記錄R[1]和該區間的最後一個記錄交換,然後將新的無序區調整為堆(亦稱重建堆)。
注意:
①只需做n-1趟排序,選出較大的n-1個關鍵字即可以使得文件遞增有序。
②用小根堆排序與利用大根堆類似,只不過其排序結果是遞減有序的。堆排序和直接選擇排序相反:在任何時刻,堆排序中無序區總是在有序區之前,且有序區是在原向量的尾部由後往前逐步擴大至整個向量為止。
(3)堆排序的演算法:
void HeapSort(SeqIAst R)
{ //對R[1..n]進行堆排序,不妨用R[0]做暫存單元
int i;
BuildHeap(R); //將R[1-n]建成初始堆
for(i=n;i1;i--){ //對當前無序區R[1..i]進行堆排序,共做n-1趟。
R[0]=R[1];R[1]=R[i];R[i]=R[0]; //將堆頂和堆中最後一個記錄交換
Heapify(R,1,i-1); //將R[1..i-1]重新調整為堆,僅有R[1]可能違反堆性質
} //endfor
} //HeapSort
(4) BuildHeap和Heapify函數的實現
因為構造初始堆必須使用到調整堆的操作,先討論Heapify的實現。
① Heapify函數思想方法
每趟排序開始前R[l..i]是以R[1]為根的堆,在R[1]與R[i]交換後,新的無序區R[1..i-1]中只有R[1]的值發生了變化,故除R[1]可能違反堆性質外,其餘任何結點為根的子樹均是堆。因此,當被調整區間是R[low..high]時,只須調整以R[low]為根的樹即可。
"篩選法"調整堆
R[low]的左、右子樹(若存在)均已是堆,這兩棵子樹的根R[2low]和R[2low+1]分別是各自子樹中關鍵字最大的結點。若R[low].key不小於這兩個孩子結點的關鍵字,則R[low]未違反堆性質,以R[low]為根的樹已是堆,無須調整;否則必須將R[low]和它的兩個孩子結點中關鍵字較大者進行交換,即R[low]與R[large](R[large].key=max(R[2low].key,R[2low+1].key))交換。交換後又可能使結點R[large]違反堆性質,同樣由於該結點的兩棵子樹(若存在)仍然是堆,故可重復上述的調整過程,對以R[large]為根的樹進行調整。此過程直至當前被調整的結點已滿足堆性質,或者該結點已是葉子為止。上述過程就象過篩子一樣,把較小的關鍵字逐層篩下去,而將較大的關鍵字逐層選上來。因此,有人將此方法稱為"篩選法"。
具體的演算法
②BuildHeap的實現
要將初始文件R[l..n]調整為一個大根堆,就必須將它所對應的完全二叉樹中以每一結點為根的子樹都調整為堆。
顯然只有一個結點的樹是堆,而在完全二叉樹中,所有序號 的結點都是葉子,因此以這些結點為根的子樹均已是堆。這樣,我們只需依次將以序號為 , -1,…,1的結點作為根的子樹都調整為堆即可。
具體演算法。
5、大根堆排序實例
對於關鍵字序列(42,13,24,91,23,16,05,88),在建堆過程中完全二叉樹及其存儲結構的變化情況參見。
6、 演算法分析
堆排序的時間,主要由建立初始堆和反復重建堆這兩部分的時間開銷構成,它們均是通過調用Heapify實現的。
堆排序的最壞時間復雜度為O(nlgn)。堆排序的平均性能較接近於最壞性能。
由於建初始堆所需的比較次數較多,所以堆排序不適宜於記錄數較少的文件。
堆排序是就地排序,輔助空間為O(1),
它是不穩定的排序方法。

F. 簡述各種排序演算法的優缺點

一、冒泡排序
已知一組無序數據a[1]、a[2]、……a[n],需將其按升序排列。首先比較a[1]與 a[2]的值,若a[1]大於a[2]則交換 兩者的值,否則不變。再比較a[2]與a[3]的值,若a[2]大於a[3]則交換兩者的值,否則不變。再比 較a[3]與a[4],以此 類推,最後比較a[n-1]與a[n]的值。這樣處理一輪後,a[n]的值一定是這組數據中最大的。再對a[1]~a[n- 1]以相同方法 處理一輪,則a[n-1]的值一定是a[1]~a[n-1]中最大的。再對a[1]~a[n-2]以相同方法處理一輪,以此類推。共處理 n-1 輪 後a[1]、a[2]、……a[n]就以升序排列了。
優點:穩定;
缺點:慢,每次只能移動相鄰兩個數據。

二、選擇排序
每一趟從待排序的數據元素中選出最小(或最大)的一個元素,順序放在已排好序的數列的最後,直到全部待排序的數 據元素排完。
選擇排序是不穩定的排序方法。
n 個記錄的文件的直接選擇排序可經過n-1 趟直接選擇排序得到有序結果:
①初始狀態:無序區為R[1..n],有序區為空。
②第1 趟排序 在無序區R[1..n]中選出關鍵字最小的記錄R[k],將它與無序區的第1 個記錄R[1]交換,使R[1..1]和R[2..n]分別變 為記錄個數增加1 個的新有序區和記錄個數減少1 個的新無序區。
③第i 趟排序
第i 趟排序開始時,當前有序區和無序區分別為R[1..i-1]和R(1≤i≤n-1)。該趟 排序從當前無序區中選出關鍵字最 小的記錄 R[k],將它與無序區的第1 個記錄R 交換,使R[1..i]和R 分別變為記錄個數增加1 個的新有序區和記錄個數減少 1 個的新無序區。
這樣,n 個記錄的文件的直接選擇排序可經過n-1 趟直接選擇排序得到有序結果。
優點:移動數據的次數已知(n-1 次);
缺點:比較次數多。

三、插入排序
已知一組升序排列數據a[1]、a[2]、……a[n],一組無序數據b[1]、 b[2]、……b[m],需將二者合並成一個升序數列。 首先比較b[1]與a[1]的值,若b[1]大於a[1],則跳過,比較b[1]與a[2]的值, 若b[1]仍然大於a[2],則繼續跳過,直 到b[1]小於a 數組中某一數據a[x],則將a[x]~a[n]分別向後移動一位,將b[1]插入到原來 a[x]的位置這就完成了b[1] 的插入。b[2]~b[m]用相同方法插入。(若無數組a,可將b[1]當作n=1 的數組a)
優點:穩定,快;
缺點:比較次數不一定,比較次數越少,插入點後的數據移動越多,特別是當數據總量龐大的時候,但用鏈表可以解決 這個問題。

四、縮小增量排序
由希爾在1959 年提出,又稱希爾排序(shell 排序)。
已知一組無序數據a[1]、a[2]、……a[n],需將其按升序排列。發現當n 不大時,插入 排序的效果很好。首先取一增 量d(d<n),將a[1]、a[1+d]、a[1+2d]……列為第一組,a[2]、a[2+d]、 a[2+2d]……列為第二組……,a[d]、a[2d]、a[3d]……="" 列為最後一組以次類推,在各組內用插入排序,然後取d'<d,重復上述操="" 作,直到d="1。"
優點:快,數據移動少;=""
缺點:不穩定,d="" 的取值是多少,應取多少個不同的值,都無法確切知道,只能憑經驗來取。=""

五、快速排序=""
快速排序是冒泡排序的改進版,是目前已知的最快的排序方法。
="" 已知一組無序數據a[1]、a[2]、……a[n],需將其按升序排列。首先任取數據a[x]="" 作為基準。比較a[x]與其它數據並="" 排序,使a[x]排在數據的第k="" 位,並且使a[1]~a[k-1]中的每一個數="" 據a[x],然後采 用分治的策略分別對a[1]~a[k-1]和a[k+1]~a[n] 兩組數據進行快速排序。
優點:極快,數據移動少;
缺點:不穩定。

G. 求各種排序演算法的比較

給你一個國家集訓隊的快排吧,這個應該夠用了。
這個是對a數組從小到大排序,把這個添加到任何程序中都很快。這個肯定要比堆排序快。對於插入排序快的快排肯定要較慢。但這個比較穩定,要不國家集訓隊怎麼用它呢!!!!!!
procere qsort(l,r:longint);
var
i,j,x,yy:longint;
begin
i:=l;j:=r;x:=a[(i+j) shr 1];
repeat
while a[i]<x do inc(i);
while a[j]>x do dec(j);
if i<=j then
begin
yy:=a[i];a[i]:=a[j];a[j]:=yy;
inc(i);dec(j);
end;
until i>j;
if i<r then qsort(i,r);
if l<j then qsort(l,j);
end;

H. 各種排序演算法比較

插入排序 n*n、希爾排序 <=n*n、起泡排序 <=n* n、快速排序 n *log 2 n、選擇排序=n * n、堆排序n * log2 n、歸並排序 n * n

I. 在各類演算法中那種演算法排序是最快的

說句實話,沒有最快這一說。

  1. 如果不在乎浪費空間,應該是桶排序最快

  2. 如果整體基本有序,插入排序最快

  3. 如果考慮綜合情況,快速排序更加實用常見(希爾排序、堆排序等各種排序也各有優劣)

  4. 一般情況下,冒泡這種排序僅僅是名字起的有趣罷了,不太好用

J. c語言各種排序演算法

1:桶排序;
2:堆排序;
3:冒泡排序;
4:快速排序
5:選擇排序;
6:插入排序;
7:希爾排序;
8:歸並排序;
9:基數排序;
10:計數排序;

熱點內容
c語言源程序的基本單位 發布:2025-01-10 16:47:37 瀏覽:285
王者安卓賬號如何換到蘋果 發布:2025-01-10 16:34:47 瀏覽:729
c語言lua 發布:2025-01-10 16:34:46 瀏覽:206
我的世界檢測伺服器人員 發布:2025-01-10 16:32:30 瀏覽:832
資料庫表模板 發布:2025-01-10 16:22:21 瀏覽:356
郵政新農合社保卡初始密碼多少 發布:2025-01-10 16:01:32 瀏覽:143
安卓系統哪個最商務 發布:2025-01-10 15:49:28 瀏覽:910
填色腳本實例 發布:2025-01-10 15:34:21 瀏覽:759
如何配置燒烤 發布:2025-01-10 15:34:13 瀏覽:54
python列表相乘 發布:2025-01-10 15:31:33 瀏覽:322